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INTRODUCTION

Recent sequence of papers shows that computing one NE is PPAD (Polynomial Parity Arguments on Directed graphs)-complete
for two, three, or four player games in strategic form [7] [8] [14] [15]. Chen and Deng [8] show that computing NE for two player
games is PPAD-complete. Daskalakis et al. [14] show that finding NE for four player games is PPAD complete. Papers [7] and
[15] independently show that calculating NE for three player games is PPAD-complete. All known algorithms require exponential
time in the worst case. Chen et al. [9] show that the problem of computing a (1/n)-well-supported NE in polymatrix game is

PPAD-complete. Daskalakis and Papadimitriou presented a polynomial time approximation scheme (PTAS) for &-approximation
NE in anonymous games. In [16] the authors described a PTAS for finding an &-approximation NE in an anonymous game with
two pure strategies with a certain order of running time. The PTAS in [16] depends on the existence of an &-approximation NE
consisting of integer multiples of ¢ . Daskalakis [13] presented improved PTAS from the running time view of point. This
improved PTAS is based on the existence of an &-approximation NE satisfying the following conditions: either at most /)
players play mixed strategies, or al players who mix play the same mixed strategy. In [17] the authors extended the PTAS with any
bounded number of pure strategies with running time »2“¥*) ¢ for some function g of & , number of pure strategies and 1/¢,

where U denotes the number of bits required to describe the payoff. Daskalakis and Papadimitriou's PTAS [13] [16] [17] are
algorithms that enumerate a set of mixed strategy profiles which is independent of the input game as candidates for approximation
NE, that is, the game is used only to verify if a given mixed strategy profile is an &-approximation NE. The PTAS is called
oblivious algorithms [18]. Daskalakis and Papadimitriou showed that these type of PTAS for anonymous games must have running
time exponential in1/£[18]. They also proposed a non-oblivious PTAS for two-strategy anonymous games.

Chen et al. [10] presented that the problem of computing a1/ -will-supported NE in a polymatrix game is PPAD-complete. Chen

et al. [9] showed that the problem of finding an &-approximation NE in an anonymous game with seven pure strategies is PPAD-
complete.
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The application of fuzzy theory to decision making problems initiated by Bellman and Zadeh [2] in 1970. Butnariu [5] did
fundamental research on fuzzy games. Chakeri and Sheikholeslam [6] show a method of finding fuzzy NE in Crisp and fuzzy
games, Garagic et al. [23] extend the concept of non cooperative game theory to fuzzy non cooperative games under uncertainty
phenomena. Wu and Soo [35] applied fuzzy game theory to multi-agent coordination.

In this article, we use fuzzy theory as a tool to apply the fuzzy average to 2-player games. This paper represents a revised algorithm
for computing mixed NEs in 2-player games [20] [21]. This algorithm is based on the relationship between the expected payoff
function of 2-player games and the mathematical representation of the fuzzy average of two linguistic values. Based on author’s
understanding, the problem of computing mixed NE in 2-player games in normal form has not been proved in P-complete class.
We prove that the new algorithm can compute mixed NEs in 2-player games in polynomial time for any types of 2-player games in
normal form. We claim that there is a fully polynomial time scheme for 2-player games in normal form.

This article is organized as follows. Section 2 discusses the preliminaries. Section 3 describes the algorithm for calculating mixed
NEs in 2-player games in details. Associated with the algorithm, a theorem, which indicates the main result in this article, and its
proof are represented in this section. Section 4 provides examples. Section 5 is the conclusion and future study.
PRELIMINARIES

2-player games in normal form

2-player games in normal form are also called bi-matrix games. A 2-player game is denoted by G = (2, {S,},.,, {u;},,), Where

i€2

S = (8115812000 S12) >S5 = (851555 55 $5;) 15 a set of strategies for player 1, player 2 respectively; the expected payoff

function Uj of player 1, Uy of player 2 is as follows.

u(R,P)=Red, e B’ 21
4y (P R)=F, o Ay o |

k
where P, = {p,, o P} € A (B) ={(P115 Prar-s L) | 2 P =L py; 200G =1,2,...,k)} represents the probability
i1

distribution over S, ; P, = {py, ..., p»,} € A, (P,) represents the probability distribution overS,; A, , 4, is kXIpayoff
matrix, / Xk payoff matrix, of player 1, player 2, respectively.

Optimal values of function f{x, y)

Let us review the Taylor expansion of a two variable function. Suppose that function f{x, y) is an infinitely differentiable, and (a, b)

is a critical point of f(x, y), with fx (Cl, b) = ﬂc(a, b) = 0. Function f{x, y)’s Taylor expansion is as follows.

Jxy)=flab)+ [ (a.b)x—a)+f, (a,b)(y—Db)

+ %fm (a,b)(x—a)* + %fyy (a,b)(y —b)* + Sy (a,b)(x —a)(y —b)+ H.O.T (high order terms for short)

In the case that (a, b) is a critical point, the first derivatives fx(a, b) and fx(a, b) are zero, the above equation becomes
f(x,y)— f(a,b) = %A(x —a)’ + %C(y —b)’ +B(x—a)y-b)+ HO.T

where A= fxx, B= fyyand C= f xy - We can ignore the high order terms when (x, ) sufficiently close to (a, b). We rewrite the

result as

B xX—a 1

A
f(x,y)—f(a,b)z%(x—a y—Db)e 3 c o Vb =5hTHh (2.2)
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T
where h :(x —da, y—b), the matrix H is called Hessian matrix, the representation on right hand is called quadratic form.

B| fxx fxy

2, . . .
= = f . fyy - (f;y) is the determinant of Hessian matrix.

fxy fyy

A
D=Det H=
B

There are three cases we need to consider.

1) If (a, b) is local minimum value, then the right hand side of (2.2) must be positive for all (x, y) in a neighborhood of (a, b),
such as H > O for all (x, y) in a neighborhood of (a, b). Based on linear algebra, if the two eigenvalues of matrix H are
positive, then H > 0 .

2) If (a, b) is local maximum, then the right hand side of (2.2) must be negative, such as such as H < 0 for all (x, y) in a

neighborhood of (a, b). Based on linear algebra, if the two eigenvalues of matrix H are negative, then H < 0 .

3) If (a, b) is a saddle point, then the right hand side of (2.2) is either positive or negative depending on the values in
neighborhood of (@, b). According to linear algebra, when two eigenvalues of matrix H are nonzero and have opposite sigh,
point (a, b) is a saddle point.

The above inferences can be rephrased for two variable functions as follows.

1) IfD>0and A >0, then f{a, b) is a local minimum of f(x, y);
2) IfD>0and A <0, then f{a, b) is a local maximum of f(x, y);
3) IfD <0, then (a, b) is a saddle point of f{x, y);

4) If D=0, then no conclusion can be drawn.

1.1  Fuzzy Numbers

A fuzzy number is a fuzzy set which is defined in R. There are some types of fuzzy numbers [27]. For example, triangular fuzzy
numbers (TFNs), trapezoid fuzzy numbers, and etc. We only review TFNs in this paper.

The definition of a TFN:

A TFN is denoted as (a, b, ¢), where a € R;b € R;c € Rand (a < b < ¢).The TFN (a, b, ¢) is described in Figure 1.

v

a b C

Figure 1, Triangular fuzzy number (q, b, c)

Y79 i xelab)
b—a
cC—X .

The membership function of the TFN (a, b, c) is defined as £(x) = b if xe(b,c]
C —
0 otherwise

There are two special TFNs. One is (a, a, ¢), such as a = b, and the other is (a, ¢, ¢), such as b = ¢. Suppose the membership
function of TEFN (a, 4, ¢), (a, ¢, ¢) is u(x), v(x), respectively. Then one has the following.
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a

X — s (a <c).
c—a c—a

u(x)=— x+L;(a<c), v(x) =
c—a

c—a
The Fuzzy Average

The fuzzy average [22] is defined with the average of linguistic values of a linguistic variable (x, T(x), U, G, M)[36] [37], where x
the name of the variable; T(x) is the term set of x, U is the universe of discourse which is usually defined as interval [0, 1]; G is the
syntactic rule which generates the terms in 7(x); M is a semantic rule which is usually a mapping from the set 7(x) to a set of fuzzy
numbers defined in U. The fuzzy average of two values of a linguistic variable was described as follows.

Suppose that the two values of a linguistic variable are as follows. (x,7,(x),U,,G,.M ) and(y,T,(y),U,,G,,M,).
M :7;()(7) —){A, 9A29"'3An} ,Mz . T{()O _>{Bl ,Bz,---,Bm} swhere A, (i=1,....,n) and Bj G=1, 2,..,m) are triangular
fuzzy numbers (TFNs) which are defined onU, = [0, 1]andU, =[0, 1], ¥ 4 (x) and /qu (y) are the membership functions

of TFNs Ai andBj , respectively. The fuzzy average is defined as:

u(x ) =23 4y (Ot 1y =4, ()0 Ro 1)

i=l j=1

where

()= !JIAI (% ):ﬂA2 (% )"‘)uAn ()}, () €A, (1, ()
Hp(y)= ‘{/UBl 0’1):/132 ()’1)7--/13,,1 O} (V) €A, (1(1)).

xeU,andy e U, ; n is the number of entries in7, (x) ; m is the number of entries inT, (y) ;R:(l’}j)is a NXMmatrix,

which is called the consequence matrix [22]. It was proved that the fuzzy average converges to arithmetic mean under specific
conditions [22].

Hy (x) is interpreted as the weight of element X; ET{(X), For a givenx € U, andy e U, , the vector gz , (x), s, (y)is
interpreted as probability distribution over 7, (x) , T, () , respectively.

In game theory, the set of strategies S; :(Silr"’gik)(i :1,2,1’1) can be interpreted as the term set T (Si)in the concept of
linguistic variables. For example, for a rock-scissors-paper game, a player’s strategy set.S = (7, s, p) can be considered as term set
of {rock, scissors, paper} in linguistic variables, such as 7', (S§') = {r,s, p} -

For two player games in normal form, when player’s strategy set is represented by the term set, and the payoff matrix is same as
the consequence matrix, it was proven that the expected payoff function is identical to the fuzzy average [20].

The algorithm of computing Nash Equilibria in 2-player games

This new algorithm is an extension of the algorithm [20] [21] for 2-player games. The main idea is the relationship between the
expected payoff function of 2-player games in strategic form and the concept of the fuzzy average. Paper [20] proved that the
expected payoff function of 2-player games in strategic form is identical to the fuzzy average of two linguistic values when the
strategy sets in 2-player games are represented with the term sets in linguistic variables, the payoff matrix is replaced with the
consequence matrix, and the probability distribution over strategy set for each player is represented with the semantic rule M in
linguistic variables. The algorithm in this paper improves the algorithm which was published in [20] from the point of simplicity.
The requirement of dividing strategy domains is no longer required for 2-player games in normal form. The algorithm is as
follows.

1. For a given 2-player games in normal form, build two linguistic values (s 7 (s .), U .. G ..M .)i=1,2)-
l l 1 l

1)  Define the term sets by using the strategy sets, suchas 7 (S,) = {S,}, (i = 1,2) .
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2) DefineU, =[0, 1](i =1,2), and suitable TFNs E, (i = 1,2,..., k)and H,(i = 1,2,..., /), and their membership functions
M, (X)(i=1,2,..k) xeU,andv,(y)i=1,2,..,1) yeU,, respectively.

3) Define proper semantic rules M ; : T (S,;) > P,(i =1,2) where Pl is defined as

P(x)=( kul(x) , kﬂz(x) kﬂk(x) )G
Ly (x) X (x) 2y (%)
P(»)=( k"l ») v, (x) vi(y) ) (3.2)

2v,;(») i v (») i v (y)
Jj=1 Jj=1 j=1

Itis clear that P, € Ak and P, € A, .

2. Construct the expected payoff function (2.1) by using the given payoff matrices, and the probability distributions which are
defined in (3.1) and (3.2).
3. Solve (3.3).

6ul(f)lnf)Z) — O
oP
! (3.3)
ouy (P, R) _
P,

>k *
3. Verify that the solution (R ,}3 )of(3.3) satisfies the conditions: p," ¢ A;(i=1,2) or xeU,;yeU,

* *
4. Examine the point (R ,P2 )by using Hessian matrix as follows.

5.1. For 2-player games, one can calculate the following.

_du(B.P) _dw@Bp) | Cu(RP)
] oP’ rr’’ OROP,  |r=R oP,’ R=F’
P=p P=P P=p
0'u, (P, B) 0'u, (P, P}) 0'u, (P, B)
A2 = 2 LoD = ) and C2 = 2 *
OP, R=R oP,0R, R=R oP, B=R
P=h P=h P=h

5.2. Calculate D, :A,Q —Biz(l'=1,2).

3k *
If D, <0, then (P1 ,P2 )is a saddle point of u,(P,, P_;) ;
3k *
If D, >0 and 4, <0, then, u,(P,, P_,) reaches a local maximum value at (Pl ’PZ );
% *
If D, >0 and 4, >0, then u,(P,, P_;) reaches a local minimum value at (R 9P2 );

If D, =0, then no decision can be made.

This algorithm is able to calculate mixed NEs in 2-player games within polynomial time. We give the following theorem.

Theorem 1

For a given 2-player game in normal form, when probability distributions of player 1 and player 2 are defined with (3.1) and (3.2),
then the algorithm can find mixed NEs in the 2-player game in polynomial time.
If we can prove that (3.3) becomes a system of linear equations, then the theorem is proved [3].
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Proof:

when P, (x)and P,(y) are defined with (3.1) and (3.2), then (3.3) becomes the following.

ou, (P, Py) _ dP,(x)
op,

ou, (P, P) _ dpP,(y)
OP, d

° 4, ‘Pz(J’)T =0
(3.4)

o 4, ¢ B (x)" =0

According to the property of TFNs, we can define ,Llj(x),(j:1,2,---,k,XEU1)and Vj(y),(/'=1,2,...,l,y EUz)as

follows.

H(x)=ax+b, v,(y)=c,y+d, where @; ER b, €R ¢, € Rand d; € Rare constant.
Then the sum of ,Uj(x), Vj (y) is calculated respectively.

k k k k k k
12:1 /Ul(x):(lz:l al)x+l§1 b, 12:1 Vl(y)z(gl cl)y+1§1 d,

(3.1) and (3.2) become as follows.

P (x) = ( H,(x) M, (x) 4, (x) )= ( ax +b, a,x +b, a,x+b, ).
S a® Ea® L (Eaxelb Caxeib (Ca+yb
Pz(y)z(kVI(y) Vz(y) Vl(y) )

S v o) L v
=1 =1 =1

c,y+d, c,y+d, c,y+d,
k k » Tk X SR X
(12—1 cl)y‘*‘;1 d, (;1 cz)y‘*‘;1 d, (;1 c/)y'*‘;1 d,

=( ).

Then the derivative of P, (x) , P, (y) is the following.

k

k
d[)l(x) _ alz bl_bl[é a[ azz bl_bZZ a, akz bl_bkz al

( =1 /=1 =1 =1 =1 )

B @ ) ’((é a)e+2 b)’ <(z a)e+ b)’

k k k k
sz(y):( Clgi dl_dllz::l ¢ ‘72; d, _dzgi ¢ CklZ:% dl_dklZ::l ¢ )
dy X X Sk X Tk X R

((;1 Cz)y+l§ d;) ((;1 Cz))’+l§ d;) ((E Cl))""; d;)

It is clear that the elements in each derivative vector have common denominator, the numerator of each element in the above
derivative vectors is a constant. On the other hand, the elements in vector P, (i =1,2) have common denominator, and the

numerator of each element in vector P, (i =1,2) is a piecewise linear function. Because we can ignore the common denominators

in each equation of (3.4), then the first equation in (3.4) finally becomes a linear equation of y, the second equation in (3.4)
becomes a linear equation of x. Therefore, equation (3.4) becomes a system of linear equations of x and y. Q.E.D.
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EXAMPLES
Three examples are described in this section.

Example 1 - Rock- Scissors-Paper game. Find mixed NEs for a Rock-Scissors-Paper Game with the following payoff bi-matrix.

rock  paper scissors
rock 0,00 (1,-1) (-LD
paper  (—=11) (0,0) (1,-1)
scissors  (1,-1) (=L]I) (0,0)

This is a 2-player symmetric game. The payoff matrices of player 1 and player 2 are as follows.

01 -1 0 -1 1y
A, =|-1 0 1|, 4y=|1 0 =1} =4,.
1 -1 0 110

We build two linguistic values (S,,T (S ), i ,,M )(l 1,2) T.(S;) = (rock , scissors paper) [0 1](1 1,2),

and semantic rule M, is defined as follows.

M, :T,(S,) = (rock , scissors , paper ) > (E,,E, ,E;)
M, :T,(S,) = (rock ,scissors , paper ) —> (H,,H,,H;) ,where E,, H,(i=1,2,3)isa TFN defined inU ,U, , respectively.

We define £, =(0,0,1), E, =E, =(0,1,1), and H, =H, =(0,0,1), H,; =(0,1,1). Then, the sum of membership functions
H;(x),v,(y) of E,, H, is as follows.

3 3
;Z-l H(x)=x+1, ,ZI vi(y)=2-y.

x x x dR(x) , -2 1 1
Al)= (1+x T+x 1+x ), and dx _((1+x)2’(1+x)2’(1+x)2)’
1 1- dP, -1 -1 2

¥ 2=y 2=y dy T 2-y)? -y 2-y)

One can solve the following system of linear equations.

01 -1 1-
aMI(PI’P_I)=dPI(X)'1412'Pz(J’)T=K1(_2, I, Dej =10 I|efl-y|=0
oR d. 1 —1 0 y
auz(Pz,P,z)zsz(y).AZI.Pl(x)TZKZ(_L -1, 2)e| -1 0 1]|e|x =
oP, d 1 -10
1 1
where K, = and X

) =

(1+x)2(2-y) 2-»>1+x)
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1 1 .
The solution isx = 5 e[0,1], y= 5 €[0,1]. The mixed NE(p*, p,") with probability distributions P = (é,%,%) and

Py =( )

UJ|>—~

1
537

W | —

Let us examine the solution (p,", p,") for player 1 by using Hessian matrix or step 5 described in the algorithm.

O*u,(P,P) | pep d*P(x) ol
Al:# ﬁle—lz'Alz‘Pz(J’)T 1=0,
aPl 272 dx YZE
LS (PLP) | e _dP) (AP, | 16
‘T opop, per’ T g N Ty =79

2 & £
D1 :AICI _Bl <0. Therefore, point (R ,}3 )is a saddle point of u, (P, P,) -

Let us examine the solution (p,", p,") for player 2.

*uy (P, P) | popr d*P(y) ot
4, :2—21 222*2—22°A21 '(Pl(x))T 1=0
6P2 2772 dy y:E
_uy (PR | e _dP () (AP0 |16
2= opop, per T gy N T -

2 & £
D, =A4,C, —B,” <0. Thus, point (R ,fé )is a saddle point ofu,(P,,P,) -
Example 2 - Find mixed NEs in the following 2-player game.

Player II

s; LD G D (@2

Player Is,” [ (2, 4) (2, 5) (8, 3)

s’ |3, 3) (0, 4) (0, 1)

A,=12 2 8|, 4, =1 5 4
300 2 31

L 1 2 3 )
We define two linguistic values (S,7(S;),U;,G,;,M ;)i € 2), whereU, =[0, 1], T(Sl-) = {Sl. »S; S, }(z’zl, 2). The semantic

rules M |, (i=1, 2) are defined as follows.

M, :T(S)>{E,E,), E;s},
M,:T(S,))>{H,.H,,H,}
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where TFNs E,, H (i =1,2,3) are defined as follows, £, = (0,0,1) . E, = E, = (0,L1); H, = H, = (0,0,1), £, =(O,L]),

3 3
Then, we have > 4, (x) =1+x and Y v, (y)=2-y.
-1 i-1

The probability distribution p, over U, (i1, 2) is as follows.

P(x)= (ﬂl(x) ,Uz(x) ,u3(x) Cl-x x N
Zluz(x) Z,UI(X) Z’ul(x) 1+x 1+x 1+x
-y 1-
P,(y) = (v(y) vz(y) V(y)) d y’z y’zy
Zv(y) ZV(y) zv(y) —y 2-y’2-y

Then, we have

dx  (I+x)* (1+x)7 (1+x)°  ay Q-1 22—y

One can solve the following system of linear equations.

132) (1-y
(BP) g ac2, 1, Del2 2 8le|1-y|=0
R,

300 y
1 43 I-x
K,e(-1, =1, 2)e|1 5 4|e|x =0
2 31 X
1 1

where K, E——l Ky=—+——.
(1+x)>(1+ ) 1+ »)*A+x)

ou,(P,,P,) _
OP,

The solution is x = % el0, 1], y= % € [0, 1]. This 2-player game has a mixed NE (p,", p,") with probability distribution

).

*

B =G md P =

b

NJ N
O |~

11 1
66 9

Let us examine this solution for player 1.

O*u (P, P) | pepr d*P(x) 1
Alz% izi*z—lz'Alz'Pz(y)T 5=0
6P1 2702 dx =
_Ou@BLP) | ey _dR, (dP0) "l w3
T T Ber T gy N Ty -1 2016

2 % *
D1 =A1C1 _Bl <0. Therefore, point (R ,}3 )is a saddle point of u, (P, P,).
Let us examine the solution for player 2.

62u2 (P, R)
oP’

R=R" _ dsz(x)
B gy?

A4, =

4y, ’Pl()’)T 0

| I
D | = | —
Il
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_ 1250

1
=T _
i_
5

2 . T
:8 u, (P, P) R=P :dpz(J’).AZI .(dpl(x))

? oP,0P, P=P" gy dx

486

y=

2 * *
D, =4,C, —B,” <0. Thus, point (R B )is a saddle point ofu,(P,,P).
Example 3 - Find mixed NEs for the following bi-matrix game.

Player II
aq G &G 4
s; ((0,0) (1,-1) (1,1) (-1,0)
s, [(-1,1) (0,1) (1,0) (0,0)
PlayerI sy | (1,0) (-1,-1) (0,1) (-1,1)
s, [ (1,-1) (-1,0) (1,-1) (0,0)
ss ((1,-1) (0,0) (-1,-1) (0,0)

o b bl 0 1 0 -1 -l
4 1_1 ? (1) O1 I
2 - [ S U N DS B
1 -1 1 0
0 0 | 0 0
1 0 -1
We build two linguistic values (S,,T,(S,),U,,G;,, M )i€?2).T,(S,)=(s,,8,,53,54,85)onU, =[0, 1].

T,(S,)=(a,,a,,a;,a,)onlU, =[0, 1], and the semantic rule A,is defined as follows.
M T (8))=0(5,8,,83,54,85) > (E,E,, Es, E , Es5)

M, :T,(S,)=(a\,a,,ay,a,) > (H,,H,,H;,H,)

where E, (i =1,2,3,4,5)and H, (i = 1,2,3,4) are TFNs defined inU, and U, as follows.

5
E,=E,=(0,0)]), E;=E, =E; =(0,11)and H, =(00,1), H, = H, = H, = (0,1,1). Then, we have > 1,;(x)=2+Xx and
i-1

4
2. v;(y)=1+2y. The probability distribution P, over (], (=1, 2) is as follows.
i=1
X X by X X
Pl(x):(Sﬂl( ) , Sfuz( ) ’ 5#3( ) ’ 5/14( ) , 5/“5( )
;ﬂi (%) E/ui (%) ;ﬂi (%) Z:l'ui (%) gllui (%)

Py=(AW) W ) v -y vy v

o -x 1-x x X X
24x 24x 24x 24x 24+x

)

’ ) 5 = , S , )
4 4 4 4
2v,(n) Zvin) Zv() Zvi) 142y 142y 142y 1+2y
Then, we have
ap(x) .~ -3 -3 2 ’ ) )
dx 2+ 2+ 2+0r 2+ 2+
sz(J’): -3 1 1 1 )
dy 1+2)2 1A+2)2  1+29) (1+2y)?

One can solve the following system of linear equations.
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011 -1
o 1010 Y
G BP) g3 23 0, 2, ell 10 ~1]e]”  |=0
oP, y
1 =110
10 -10 )
— X
010 -1 -1
— X
P,,P -11 -100
M=K2(—3, I, 1 1)e o| x =0
OP, 101 -1 -1
X
00100
X
1 1
where K, = and K, = .
2+ x)*(1+2y) (1+2)*(2+x)

The solution isx=%e[0, 1], y:%e[O, 1]. This 2-player game has a mixed NE (p,", p,") with probability distribution
P22l lymp =222
16 16 16 16 16

Let us examine this solution (p,", p,") for player 1.

o*u, (P, P _ d°P 2
Al :LZZ) PI*PI*Z lz(x) Alzpz(y)r X—§ =0
aPl P,=P, dx :;
T
g OB Py) | pop _dP(x) (AP (3)) | 2 93639
1 0P, 0P, B=py dx Py J’:g 43264

2 * *
D, =A4C, —B," <0 Thus, point (R ,P2 )is a saddle point of u (P,P,).

Let us examine this solution (p,", p,") for player 2.

O*uy,(P,P) | ppr d*Py(y) o2
A2 :2—21 ;:;*:—Zz.Azl.E(x)T 73:0
oP, 2 r=3
_us (PP | pew _dP () (AR | 2 _ 2401
>~ pop, I T R -7 2704

2
D :A2C2 -B, <0. Therefore, point (P,", P,") is a saddle point of u, (P, , P,) .
Conclusion

This article describes an algorithm for calculating mixed NEs in 2-player games. It is proved that the proposed algorithm can
calculate mixed NEs in 2-player games within polynomial time. We show that computing mixed NE in any types of bi-matrix
games is equivalent to solving a system of 2 linear equations. We claim that the problem of finding mixed NEs in 2-player games
is in P-complete class. This algorithm also provides a method to examine the found mixed NE is either a saddle point or a local
maximum point of expected payoff function of 2-player games.

Future study will conduct to apply the algorithm to dynamic game theory.
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