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INTRODUCTION 
 

There is a wide arsenal of numerical methods for solving 
ordinary differential equation of first order.  One of these 
methods, connected to Clairaut, used the indirect
method to investigate the orbit of the comet Galileo in 
Subbotin (1937). Like Clairaut, many scientists have since 
applied the indirect-numerical method for investigating 
practical problems. However, Euler determined the 
shortcomings of existing methods and constructed a direct 
method; this method is now appropriately called the Euler 
method. Euler also determined the shortcomings of his method 
and suggested two ways to correct the indicated deficiency in 
Euler (1956). One of them is the use of Taylor’s formula. 
Substituting the higher-order derivatives in Taylor’s formula 
with the first derivative, Runge-Kutta and Adams constructed 
numerical methods that generated the one and multistep 
methods. Consider the following initial-value problem:
 

),( yxfy  , 
00 )( yxy  .      ………………………….. 

 

The aim of our paper is to construct a numerical method for 
calculating approximate solutions to problem (1). 
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It is known, that many phenomena of neutrality are reduced to solving ordinary differential equation 
(ODE). There are several papers dedicated to solving ODE. In this paper, which compares many 
known algorithms applied to solving differential equations, also suggested an algorithm that uses 
hybrid methods and give a procedure for constructing higher order of accuracy hybrid methods. 
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value problem: 
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The aim of our paper is to construct a numerical method for 
calculating approximate solutions to problem (1).  
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Therefore, we suppose that problem (1) has a unique solution 

determined on the segment [x

h0 . To construct numerical method, we partition the 

segment ],[ 0 Xx divided into N
mesh points given by the following form:

Ni ,...,1,0 . Denote by iy  the approximated values solution 

and by the )( ixy  exact values of the solution of problem (1) at 

the point ix . The approximate values of the function 

at the point ),( mm yx  will be given by the following 

description: 
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Runge-Kutta method, when applied to the solution of problem 
(1), may be written in its general form as follows:
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exact values of the solution of problem (1) at 
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Usually this method is called the Runge-Kutta implicit method. 
The generalization of the Adams method may be written in the 
following form: 
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In references, this method is called the k -step method with 
constant coefficients. As has been noted, Euler’s method 
follows from the formula (3) as a particular case. However, 
methods (2) and (3) have different properties; each has its 
advantages and shortcomings. In the middle of the XX century, 
scientists constructed procedures called hybrid methods that 
are capable of preserving the best properties of both the one 
and multistep methods in Skvortsov (2009) and Mehdiyeva              
et al. (2005). Recently, these methods have received priority. 
Before we provide a scheme for constructing hybrid methods 
with improved properties, we would like to give some brief 
information on the development of approximately methods in 
Mehdiyeva et al. (2011) and Butcher (2008). One of the papers 
devoted to the construction of hybrid methods is attributable to 
Gear (1965), Butcher (1965) and Gupta (1979). In its general 
form, this method may be written as follows: 
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Gear’s method is a hybrid method of type (3). One of the first 
hybrid method of type (1) was constructed in Dahlquist (1956) 
and has the following form: 
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Often, a hybrid method has a symmetric form. Similar methods 
may be written in the following general form: 
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This method is more precise than the corresponding classic 
Runge-Kutta and Adams methods. Note that the method used 
here is a generalization of the methods cited above. If we 

generalize the aforementioned methods, we obtain the 
following: 
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It is easy to see that for ),...,2,1,0(,0 kil
i

 the established 

k -step method of type (3) with constant coefficients follows 

from method (7). However, if )0(,0 kil
i

 , then from 

(7) we will obtain hybrid methods. For example, take the 
following symmetric hybrid method: 
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Developing this idea, here we also investigate the generalized 
form of hybrid methods based on formula (7). More precisely, 
we consider the following: 
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Obviously, method (9) fits multistep methods with constant 
coefficients and multistep hybrid methods. Note that the 
development of hybrid methods has been stated in 
chronological order. Therefore, in section 2, we consider 
strategies deriving from (2), whereas in section 3 we 
investigate methods based on the formula in (9) are 
investigated. In these two sections, exact methods with degree 

94  p  are provided. Section 4 is devoted to the 

construction of algorithms applying the methods constructed 
here. Note that the integer-valued quantity p  is called the 

degree of method (7) if the following asymptotic equality 
holds: 
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On a method for constructing hybrid methods with the 
higher order of accuracy 
 

As noted above, hybrid methods possess some improved 
features over the Runge-Kutta and Adams methods. However, 
their accuracy and the boundaries of the stability domain 

depend on the variables ),...,2,1,0(,, kiliii  . Therefore, 

we consider the definition of these variables, and to this end 
we will employ the method of undetermined coefficients. 
Usually, the use of this method is based on Taylor’s formula, 
which in this case takes the following form: 
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Where nhxx  0
 is a fixed point. 

 

To calculate the values of the parameters 

),...,2,1,0(,, kiliii  , we account for equations (11) and 

(12) in the asymptotic equation (10). Then, we will have: 
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Here, ),...,2,1,0( kili ii  . 
 

Thus, to calculate the parameters
iii l,,   ),...,2,1,0( ki  , 

we have obtained a system of 1p  algebraic equations in 

33 k  unknowns. Obviously, the system of equations in (13) 
will always have the trivial solution. However, the trivial 
solution of (13) is not of interest. Therefore, consider the case 
when system (13) has a nontrivial solution. It is known that for 
the case: 
 

23  kp                       ……………………………….. (14) 
 

the system (13) has a non-zero solution. 
 
However, if we consider the case for which 

),...,2,1,0(0 kili  , then the stable k-step method with 

constant coefficients, whose degree is given by the following: 
 

kp 2max  .                     …………………………………. 

(15) 
 

arises from (3). 
 

The straightforward comparison of (14) and (15) demonstrates 
that hybrid methods of type (7) are more precise and give rise 
to investigative method (7). It is known that the basic 
properties of numerical methods are defined by the values of 
their coefficients; we impose some restrictions on the 
coefficients of method (7). These conditions are the analogues 
of appropriate conditions imposed on the coefficients of the 
multistep method in (3) (see (12)): 
 

A: The coefficients ii  , ),...,2,1,0( ki  are all real 

numbers; moreover, 0 k . 

B: The characteristic polynomials 
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have no common multiple different from constant. 

C: 0)1(   and 1p . 
 

Condition A arises from the fact that the solution of the 
problem under consideration requires a real-valued function, 

and requiring that 0k provides the values of 

,...)2,1,0(  ny kn
. Next, suppose that condition B does not 

hold. Then, it follows that the polynomials )(  and )(  

have a nontrivial common multiple different from constant, 

which we denote by )( . Accounting for this, and using the 

shift operator E ))()(( hxyxyE   , we may rewrite 

difference equation (7) in the following form: 
 

.0)()(  nn yEhyE               ……………………... (16) 

 
Under our assumptions, we may rewrite equation (7) as 
follows: 
 

.0))()()(( 11  nn yEhyEE                ………….. (17) 

 
Here, 
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Hence, we obtain the following because const)( : 
 

.0)()( 11  nn yEhyE         ……………………….. (18) 

 

It is obvious that for the difference equation given in (18) to 

have a unique solution, at most 1k  initial data points 
should be provided. However, it is known from the theory of 

difference equations that for a difference equation of order k  

to have a unique solution, k initial data points should be 
provided. However, the difference equations in (18) and (7) are 
equivalent. Hence, we deduce that difference equation (7) has 

a unique solution when only 1k  initial data are known, 
and this contradicts the aforementioned theory. Consequently, 
our assumption that there exists a common multiple of the 

polynomials )( and )(  cannot be true. Thus, condition 

B must hold for the application of method (7). Now, consider 
the validity of condition C. Suppose that method (7) is 

converges. Then, passing to equation (7) as 0h , we have: 
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(19) 
 

Here nhxx  0  is a fixed point. If we take into account our 

assumption that 0)( xy ,  then from (19) we have 
 

0)1(  ,                                 ………………………….. (20) 
 

and this provides us with a necessary convergence condition. 
Allowing for this condition, we can write: 
 

)()1()( 1    
 

Taking into account the above obtained in relation (16), we 
have: 
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We now range the values of j from 0 to n, sum the obtained 

equations and in results receive the following: 
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Taking the limit of this equation as  0h  yields: 
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However, from (1) we know that 
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Comparing equations (23) and (24) gives us the following: 
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It is easy to show that from the following conditions: 
 

)1()1(;0)1(   ,                        ………………… (25) 
 

receive the condition 1p . 
 

Now, we will prove that 0)1(  . So suppose the opposite is 

true. Then, from our conditions that 0)1(   and 0)1(  , 

we obtain that 1  is a two multiple root of polynomial

)( . Consider the following homogeneous difference 

equation: 
 

,0... 01111   nnknkknk yyyy     …….. (26) 

 

Its general solution may be written in the following form: 
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m
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Here, ),...,2,1( kii   represent the roots of polynomial 

)( . As 0h , it follows that my , because m . 

Thus, we obtain that if 0)1(  , then the method will not 

converge. Hence, it follows that we should have 0)1(  . 

Therefore, in what follows we will assume that the coefficients 

ii  , ),...,2,1,0( ki   from method (7) satisfy all three 

conditions A, B, C. Consider to the construction methods of 

type (7) and suppose that 1k . Then, under the assumption 

that 101  , we will have the following system of 

equations for the variables 
010 ,, l  and 1l : 
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Here, 
,0ll   and

11 l . Solving this nonlinear system of 

equations for l  results in the following quadratic equation: 
 

06/12  ll . 
 

The value of   is determined from the equation 1 l . 

Note that the method with the degree 4p  can be written as 

follows: 
 

.2/)(
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Here, 6/)33(1,6/)33(; 1001  llll .  

 
To apply method (29), we should also know the value of the

0lny 
and

ny . Note that these variables are independent from

1ny , because that method (29) is explicit. But therefore, there 

still exist implicit hybrid methods. For example, consider the 
following method  in Makroglou (1982): 
 

.4/)3( 13/11   nnnn ffhyy           ………………. (30) 
 

This method is an implicit hybrid method with degree 3p  

and is A-stable (see (13)). Note that the coefficients of method 
(30) satisfy the system in (28) except for its final equation. 
When constructing an algorithm for using method (29), it can 
be shown that from the standpoint of application, method (29) 
has some advantages. Now consider the case 0k  and 

0kl . If 0kl , then from method (7) we will obtain a 

forward-jumping hybrid method. It can be observed from 
method (29) and (30) that in hybrid methods, the solutions of 

problem (1) may participate as the mesh points ,...)2,1,0( ixi

and as the intermediate points 
jlix   ),...,2,1,0,...,2,1,0( kji  . 

Therefore, let us consider some generalizations of method (7). 
 

On a scheme for construction of hybrid methods 
 

As noted above, hybrid methods may be generalized by the 

form in (9). It is easy to see that using the established k -step 
algorithm with constant coefficients and assuming that 

),...,2,1,0(,0 kili  , and ),...,2,1,0(,0 kii  , method (3) 

may be obtained from method (9). The stability and degree of 
method (9) may be calculated according to the above 
definitions. One of the basic issues with evaluating this 
algorithm is that of defining the relationship between its degree 
and order. Before establishing this relationship, let us consider 
some restrictions imposed on coefficients of the method (19). 
 

A: The coefficients iiii l,,,  , ),...,2,1,0( ki   must be 

real numbers; moreover, 0k . 
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have no common multiple different from constant. 

C: 0)1()1(   and 1p . 

The necessity of conditions A and B is proved similarly to the 

case that ),...,2,1,0(,0 kii  . Therefore, we consider 

condition C and assume that method (9) is converges. Then, 
following the same steps from section 2, we find that 
 

0)1(  .                                 …………………………... (31) 
 

Substituting the condition obtained in the derivation of method 
(9), we have that 
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Here, as in section 1, after summing the resulting equations 

over all j ranging from 0 to n, we will find that 
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We now take the limit of this equation as 0h  and obtain 
that 
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Hence, it follows that 
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In turn, we obtain the following: 
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Consequently, 1p . The necessity of the condition 

0)1()1(   rests on convergence and follows a proof 

similar to the one derived in section 1. Now, by the method of 
undetermined coefficients, we must examine the definition of 

the quantities ),...,2,1,0(,,, kiliiii  , so we will 

consider the following expansion: 
 
 

      ),()(
)!1(

...)(
!2

)()()(
12

pp
p

hOxy
p

lh
xy

lh

xylhxylhxy







      ………. (36) 

 

Note that the values of the indicated quantities in some sense is 
connected with the relationship between the order and degree 
of method (9); therefore, we require the following lemma. 

Lemma. Let )(xy be a sufficiently smooth function, and 

assume that conditions A, B, and C are holds. For method (9) 

to have degree p , satisfies the following contains are 

necessary and sufficient: 
 

  
  


k

i

k

i

k

i
iiii i

0 0 0

),(,0   

).,...,3,2(

!)!1(

)(

)!1(0 00

11

pl

l

i

l

li

l

i
i

k

i

k

i

lk

i
i

l
i

i

l










 
 




   ……………. (37) 

 

Proof. We first prove that if method (9) has degree p , then 

the coefficients 
iiii l,,,   ),...,2,1,0( ki   will satisfy 

the system of nonlinear algebraic equations given in (37). 
Using the degree of correlation (10), we can write the 
following: 
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The left side of asymptotic equation (38) integrates equations 
(11), (12) and (36). We then have that 
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                                                                      ……………... (39) 
 

Because method (9) has degree p , we obtain the following: 
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It is known that pxxx ,...,,,1 2  forms a linearly independent 

system; therefore, equation (40) is equivalent to the following: 
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This coincides with the system of equations in (37). We now 
will prove that if the coefficients from method (9) is solution 
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of the nonlinear system (37), then its degree is equal to p . 

Indeed, if we integrate equation (37) into equation (44), we 
obtain the asymptotic in (38). It follows from this asymptotic 
equation that method (9) must have degree p . It is easy to 

determine that for the chosen values ),...,1,0(0 kili  , 

system (37) is in fact linear and coincides with the known 
system used for defining the coefficients of the multistep 
method with constant coefficients. Subject to the conditions 

0...10  klll , system (37) is nonlinear. This 

homogeneous system contains from 1p  equations and 

44 k  unknowns. It must possess the zero solution, and for 
system (37) to have a non-zero solution, the condition 

144  pk  must be satisfied. Hence, we obtain that 

24  kp .  Note that if we take ),...,2,1,0(0 kii  , 

then the inequality tying together the degree and order of 
method (9) or (7) will take the following form: 
 

13  kp . 
 

Additionally, it is known that if we consider the case that all 

),...,2,1,0(0 kii  , then the degree and order of method 

(9) must satisfies the condition kp 2 . The relationship 

between the degree and order of hybrid methods shows that 
these methods are more precise than existing multistep 
methods. As noted above, if method (9) is stable and has the 

degree p , then 33  kp . So if 6p , then setting 

1k  yields a stable method.  When 2k , one can 

construct stable methods having degree 8p  or 9p . 

Consider method (9) for 1k . In this case, assuming that

101   , system (37) takes the following form: 
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The solution of this nonlinear system yields the following: 
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The same method with degree 6p  takes the following form: 
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To apply hybrid methods to solving of some problems, we 

should know the values of 
10/52/1 n

y  and 
10/52/1 n

y

, and the accuracy of these values should have order at least 

)( 6hO . Note that hybrid method (43) is implicit and that 

when applying it to solving of our initial problem in (1), a 
predictor-corrector scheme containing only one explicit 
method is used. Therefore, we consider the construction of an 
explicit method that (in one variant) has the following form: 
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This method is explicit and has degree 5p . To use method 

(44) we must define 
10

66
n

y  and 
10

66
n

y  . The technique used 

to calculate these quantities determines the properties of the 
block method. Suppose that the approximated values of the 

solution of problem (1) for 2/)5/51( nx  and 

2/)5/51( nx  have been identified by some method. 

Then, (43) may be considered an equation in the unknowns 

1ny , whose solution is usually obtained via iterative 

processes. In contrast, we suggest a predictor-corrector method 
recalling block methods. It is easy to show that one can first 

calculate the values of 1ny  according to method (44) and 

then correct these values by the method (43). We therefore 
construct an algorithm for applying method (44) to solving of 
problem (1). 
 

Construction of an algorithm that uses some hybrid 
methods 
 

In this section, we will construct hybrid procedures for using 

methods having the degree 5,4  pp  and 6p . 

Because these methods are constructed for 1k   (the 

characteristic polynomial is rooted solely at 1 ), all of 
them are stable. Methods (29) and (44) are explicit, whereas 
method (43) is implicit (as mentioned above). However, the 
application of explicit hybrid methods requires some additional 
auxiliary formulas. To this end, we construct an algorithm for 
method (29).  
 

Algorithm 1. Applies method (29) to solving of problem (1).  

Step 1. Calculate lny   and lny 1  by with the following 

block method: 
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Repeat these schemes for .1: ll   
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Step 2. Calculate 
1ny  according to method (29). Here, we 

compute the values of the quantities 1ny  and lny 1  to 

within )( 4hO , which suffices for this algorithm. Now, we 

construct an algorithm for applying method (44). 
Algorithm 2. Applies method (44) to the numerical solution of 

problem (1), assuming that the values 0y and 2/1y  have been 

determined with the required accuracy. 
 

Step I. Set ,ˆ 2/11 
 nnn yhyy  

Step II.  

Set ,6/)4ˆ( 2/111 nnnnn yyyhyy  
 

Step III. Set  
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10

66
  and 

10

66
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Step V. Conclude that  
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Algorithm 3. Calculates the 2/1y . 
 

,
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Algorithm 4. Approximates the solution of the initial-value 
problem 
 

000 )(,),,( yxyXxxyxfy   

at (N+1) equally spaced numbers taken from the interval 

],[ 0 Xx : 
 

INPUT endpoints Xx ,0 ; integer N; 

Initial values 2/10 , yy . 

OUTPUT approximation iy  of )( ixy  at each of the (N+1) 

values of x. 

Step 1. Set ;/)( 0 Nxxh   

Step 2. For each Ni ,...,2,1 , perform Steps 3-6. 

Step 3. Set ;ˆ
2/11   iii hfyy   

;6/)4ˆ( 2/111 iiiii fffhyy    

.6/)2ˆ7( 2/112/12/3 iiiii fffhyy    

Step 4. For  
 

10/)66(,10/)66(  , calculate 
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Step 5. Calculat 

.36/))616(
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Step 6. OUTPUT ( iyi, ). 

Step 7. STOP. 
 

For demonstrate algorithm 1 consider to application of its to 

the solving of the next problem: 0)0(,cos  yxy (Exact 

solution as xxy sin)(  ). 
 

Table 1. Results tabulated   
 

Step size Variable x  Error of the algorithm 4 

05.0h  0.10 
0.40 
0.70 
1.00 

0914.0 E  

0956.0 E  

0993.0 E  

0812.0 E  

 
Conclusion 
 

 We have constructed a multistep hybrid method with constant 
coefficients and some concrete hybrid methods of degree 

64  p  for 1k . It is known that for 1k , the k-step 

method with constant coefficients has maximal degree 

2max p , which yields a trapezoidal method. However, the 

hybrid approach constructed here has maximal degree 

6max p , although the application of the trapezoid method is 

simpler than applying a hybrid procedure. Using the Euler 
explicit method in place of the predictor method, one can 
construct a predictor-corrector scheme for the practical 
application of the trapezoid method. Remark, that for 

constricting stable methods with the degree 22  kp  one 

can be used multistep methods with the second derivatives 
(see, for example Kobza (1975), Areo et al. (2008), Dahlquist 
(1959), Ibrahimov (2002), Mehdiyeva et al. (2012), 
Mehdiyeva et al. (2013), Sekar et al. (2011).  
 
In this paper, we have constructed a block method for the 
construction of exact algorithms. This method, having degree 

4p , was described in algorithm 1, which assumed that the 
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function ),( yxf  is calculated at each step; if necessary, the 

number of calculations of this function may be decreased. Note 
that after some modifications, algorithm 2 may realize for 
using method (43). The auxiliary formula featuring in the 
algorithms has been constructed via a Taylor formula with the 
appropriate accuracy. Therefore, these formulas may be 
simplified or replaced by more precise formulas. Method (9) 
offers a new approach for solving problem (1). Naturally, the 
establishment of relationships between the order and degree of 
a stable method (9), as well as the determination of the stability 
area and other relevant questions, hold scientific interest. We 
offer that hybrid methods are more promising (it is enough to 

remind the methods for 1k ); therefore, there will be some 
necessary corrections and revisions during the course of their 

study. In the end, note that for 2k , we have constructed 

stable methods of type (9) with degree 8p  and 9p . 

Note that can be acquainted with application of hybrid 
methods to numerical solution of Volterra integral equation in 
Mehdiyeva et al. (2011) , with their application to the solution 
of integro-differential equation in Mehdiyeva et al. (2013). 
And in Kobza (1975) constructed hybrid method with degree 

7p  for 3k  by using collocation approach.  

 
Acknowledgment 
 

The authors wish to express their thanks to academician Ali 
Abbasov for his suggestion to investigate the computational 
aspects of our problem and for his frequent valuable 
suggestion.  
 

REFERENSES 
 
Areo, E.A., R.A. Ademiluyi, Babatola P.O. 2008. Accurate 

collocation multistep method for integration of first order 
ordinary differential equations.  J. of Modern Math. and 
Statistics, 2(1): 1-6,  P. 1-6. 

Butcher, J.C. 1965. A modified multistep method for the 
numerical integration of ordinary differential  equations. J. 
Assoc. Comput. Math., v.12, pp.124-135. 

Butcher, J.C.  2008. Numerical methods for ordinary 
differential equations. John Wiley and sons, Ltd, Second 
Edition, P. 463. 

Dahlquist, G. 1956. Convergence and stability in the numerical 
integration of ordinary differential  equations. Math. Scand., 
4, p.33-53. 

Euler, L. 1956. Integral calculus Т.1, Gos.izd of engineering 
and technical literature,  P.415. 

Dahlquist, G. 1959. Stability and Error Bounds in the 
Numerical Integration of Ordinary Differential  Equations. 
Trans. Of the Royal Inst. Of Techn. Stockholm, Sweden, 
Nr. 130, 87pp. 

Gear, C.S. 1965. Hybrid methods for initial value problems in 
ordinary differential equations. SIAM, J. Numer. Anal. v. 2, 
pp. 69-86. 

Gupta G.K. 1979. A polynomial representation of hybrid 
methods for solving ordinary differential equations. 
Mathematics of comp., volume 33, number 148, P.1251-
1256. 

 
 

 
Hammer, P.C., Hollingsworth, J. W. 1955. Trapezoildal 

methods of approximating solution of differential 
equations. MTAC-vol. 9, p.92-96. 

Ibrahimov, V. 2002. On the maximal degree of the k-step 
Obrechkoff’s method. Bulletin of Iranian Mathematical 
Sociaty, Vol.28, №1, p. 1-28. 

Ibrahimov, V.R. 1982. On a nonlinear method for numerical 
calculation of the Cauchy problem for  ordinary differential 
equation. Diff. equation and applications. Pron. of II 
International Conference Russe. Bulgarian, pp. 310-319. 

Ibrahimov, V.R.,  Imanova, M.N. 2014. Hybrid methods for 
solving nonlinear ODE of the first order, Proceedings of 
the International Conference on Numerical Analysis and 
Applied  Mathematics, (ICNAAM-2014) AIP Conf. Proc. 
1648, © 2015 AIP Publishing LLC 

Kobza, J. 1975. Second derivative methods of Adams type. 
Applikace Mathematicky, №20, p.389-405. 

Makroglou, A. 1982. Hybrid methods in the numerical solution 
of Volterra integro-differential equations. Journal of 
Numerical Analysis 2, pp.21-35. 

Mehdiyeva, G., Ibrahimov, V., Imanova, M. 2015. Solving 
Volterra Integro-Differential Equation by the Second 
Derivative Methods Applied  Mathematics and Information 
Sciences,  Volume 9, No. 5, Sep., 2521-2527 

Mehdiyeva, G., Imanova, M., Ibrahimov, V. 2013. A way to 
construct an algorithm that uses hybrid methods. Applied 
Mathematical Sciences,  HIKARI Ltd, Vol. 7, no. 98, 
p.4875-4890.  

Mehdiyeva, G., Imanova, M., Ibrahimov, V. 2012. An 
application of the hybrid methods to the numerical solution 
of ordinary diferential equations of second order. Kazakh 
National University named after Al-Farabi Journal of 
treasury series mathematics, mechanics, computer science, 
Almaty №4 (75) p. 46-54. 

Mehdiyeva, G. Yu., Nasirova, I.I., Ibrahimov, V.R. 2005. On 
some connections between Runge-Kutta and  Adams 
methods Transactions issue  mathematics and mechanics 
series of physical-technical and mathematical science, No5, 
P.55-62. 

Srimani, P.K. and M.C. Roopa 2011. The cumulative effect of 
rotation on the onset of bio-porous-convection (bpc) in a 
suspension of gyrotactic microorganisms in a layer of finite 
depth under adverse temperature gradient   International 
Journal of Current Research Vol.  3, Issue, 9, pp.114-119, 
August. 

Sekar, S. and Kumar, 2011. Numerical investigation of 
nonlinear Volterra-Hammerstein integral equations via 
single-term haar wavelet series International Journal of 
Current Research Vol.  3, Issue, 2, pp.099-103, February. 

Skvortsov, L.M. 2009. Explicit two-step Runge-Kutta methods 
Math. modeling, 21, 9, P. 54-65. 

Subbotin, M.F. 1937. Kurs nebesnoy mekhaniki t.2, ONTI,  
Moskow, 1937, 404p. 

 

******* 

24097    Mehdiyeva et al. A way for constructing hybrid methods with high order of accuracy and their application to solving of ode of  first order 

 


