

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 11, pp.42195-42199, November, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

DIELECTRIC AND FERROELECTRIC PROPERTIES OF Zn AND Mn DOPED BaTiO₃ : AFTER OPTIMIZING THE CALCINATION TEMPERATURE

*Dr. A. Sobha, Hanna M. Naval V. P and Alpha Shinju Shaji

Department of Physics, Providence Women's College, Calicut

ARTICLE INFO	ABSTRACT	
Article History: Received 07 th August, 2016 Received in revised form 20 th September, 2016 Accepted 21 st October, 2016 Published online 30 th November, 2016	The present work aims to study the effect of calcination temperature on structure and phase formation of BaTiO ₃ powder. Barium Titanate (BaTiO ₃) powder was synthesized by mixing high purity BaCO ₃ and TiO ₂ powder using agate mortar in acetone medium for 6 hours. The powder mixture was dried and kept at 60°C. The soft agglomeration was broken and the sample was divided into three portions each weighing 5gm each. These three samples were calcined at 700°C, 800°C and 900° C for 5 h with heating and cooling rates of 10°C/min. Phase transformation and particle size of the calcined powders	
Key words:	have been investigated as a function of calcination temperature, by room-temperature X-ray diffraction techniques. It was seen that the perovskite-like phase of $BaTiO_3$ was successfully obtained and this was compared with the standard sample. With increasing calcination temperature, $BaTiO_3$	
Ferroelectrics, Ceramic, Ferromagnetic, Barium titanate, Hysteresis, XRD, Curie Temparature.	transformed from the cubic to the tetragonal phase. The X-ray diffraction investigations have revealed that the samples calcined at 900 ^o C perfectly coincide with original spectrum. After finding the optimum calcination temperature, the second aim was to prepare $Ba_{0.95}Zn_{0.05}TiO_3$, $BaTi_{0.95}Mn_{0.05}O_3$ and $Ba_{0.95}Zn_{0.05}Ti_{0.95}Mn_{0.05}O_3$ under the same conditions and compare with pure $BaTiO_3$. The X-ray diffraction analysis was performed to confirm whether the desired samples were formed. P-E hysteresis loop was analyzed and the hysteresis loop was observed for pure $BaTiO_3$ and $BaTiMnO_3$, due to the formation of oxygen vacancies and exchange interaction-induced polarization. The small area of P-E loop indicates better homogeneity and crystallinity of prepared samples. The dielectric constant of Mn doped sample is increased and Curie temperature is lowered. The samples with Zn dopants are behaving in an entirely different way. They do not exhibit a perfect dielectric behavior but shows a semiconducting property which is confirmed from the band gap measurement.	

Copyright©2016, Sobha et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. A. Sobha, Hanna M. Naval V. P. and Alpha Shinju Shaji, 2016. "Dielectric and ferroelectric properties of Zn and Mn doped BaTiO₃: After optimizing the calcination temperature", *International Journal of Current Research*, 8, (11), 42195-42199.

INTRODUCTION

Barium Titanate (BaTiO₃) has been the first piezoelectric ceramics ever discovered and due to its excellent ferroelectric properties and high dielectric constant at room temperature, it is still widely used in capacitors, thermistors, chemical sensors, electro optic devices and piezoelectric devices (Chandler et al., 1993; Millis, 1998; Pena and Fierro, 2001; Potdar et al., 1999; Song Wei Lu et al., 2000; Yuan Ting Wu et al., 2012). It has perovskite structure. Conventional ceramic processing poses problems for the preparation of reproducible high purity BaTiO₃ and for the incorporation of small amount of desired impurities. BaTiO₃ is conventionally produced by solid state reaction between barium carbonate (BaCO₃) and titanium dioxide (TiO₃) at high temperature (700-900⁰C). BaTiO₃ have been synthesized by using hydrothermal method, sol-gel processing, composite-hydroxide-mediated method, flame assisted spray pyrolysis (FASP), radio-frequency plasma

chemical vapour deposition (RF-plasma CVD), one step solprecipitation route and aqueous chemical route (Song Wei Lu et al., 2000; Yuan Ting Wu et al., 2012; Hong Liu et al., 2006; Bhuiyan et al., 2012; Moon et al., 2003; SHEN Zhigang et al., 2006; Testino et al., 2004). Each method has its own advantages and disadvantages. It is known that the properties of BT can be tuned by controlling processing parameter, particle size and doping. Several studies have indicated that the h-Phase could be formed by sintering Barium Titnate in reducing atmosphere or by doping by Mg, Al, Mn, Fe, Zn, Ni, Nb, Ga, Cu etc. It is already reported that the incorporation of Mn in Ti⁴⁺ site of BaTiO₃ lead to decrease the Curie temperature by 10°C/1%Mn when sintered in an air atmosphere. Mn doped BaTiO₃ was found to be most satisfactory dielectric for capacitors. In spite of the fact that zinc components show excellent photoelectric and piezoelectric properties few reports are available on the use of zinc as a dopant in barium titanate. But the detailed studies have not been made. In this paper, we focus on the effect of the calcining temperature, effect of Mn and Zn on phase composition, microstructural evolution,

dielectric properties and ferroelectric properties of barium titanate fine powders synthesized by the solid state method.

MATERIALS AND METHODS

A). Preparation of pure barium titanate

barium titanate powder was synthesized The from commercially available BaCO₃(99% Purity) and TiO₂ (99.9% Purity). The equimolar dried BaCO₃ and TiO₂ powders were weighed accurately and mixed in a agate mortar and pestle for 6h in acetone medium. The powder mixture was dried and kept at 60°C. The soft agglomeration was broken and divides the sample into three batches of 5g each. These three batches were calcined at 700°C, 800°C and 900° C for 5 h with heating and cooling rates of 10°C/min. All the experiments were done in air. The crystalline structure of the calcined powder was investigated by X-ray diffraction (Rigaku Japan/Ultima-IV) using CuK (= 1.5406 Å) in the range 10° to 80° with a scanning step of 0.02°. The pellets with diameter 12 mm and 2 mm thickness were prepared by adding 3% PVA (binder). Pressing is done using a hydraulic press under constant pressure of 250 mpa. The green pellets were heated to 400°C for 3h in a covered Al₂O₃ crucible for binder burnout, and then ramped at 3°C/min to a sintering temperature between 500 to1000°C with a 2h hold time at and a cooling rate of 5°C/min.

(B)Preparation of doped BATIO₃

After selecting the optimum calcinations temperature polycrystalline samples of BaTiO₃, $Ba_{0.95}Zn_{0.05}TiO_3$, BaTi_{0.95}Mn_{0.05}O₃ and Ba_{0.95}Zn _{0.05}Ti_{0.95}Mn_{0.05}O₃ were prepared by the conventional solid state reaction technique. High-purity (99%) BaCO₃, TiO₂, MnCO₃, and ZnCO₃ powders were taken to have stoichiometric quantities according to the formula $BaTiO_3$, $Ba_{0.95}Zn_{0.05}TiO_3$, $BaTi_{0.95}Mn_{0.05}O_3$ and Ba_{0.95}Zn _{0.05}Ti_{0.95}Mn_{0.05}O₃ mixed thoroughly by using agate mortar and pestle mixed powders were calcined in air at 900°C for 5 h. Calcined powders were pressed into pellets and pellets were sintered at 1000°C for 2 h. The circular electrical contact of known diameter was prepared by applying aluminum coating on both sides of the sintered pellets. The dielectric properties of the pellets were determined using Hewlet Packard (Model 4192A) Impedance Analyzer from 100 HZ to 13 MHZ at room temperature. The spontaneous polarization (P_s), coercive field (E_c) and the breakdown voltage (E_b) were obtained from the ferroelectric hysteresis loop observed at 1to10 Hz on an using a ferroelectric tester system (Radiant Technologies, Inc., RT66A)

RESULTS AND DICUSSION

X-ray diffraction

The Figure 1 (a-c) given below shows the X-ray diffraction patterns of the mixture of BaCO₃ and TiO₂ calcined at temperatures 700° C, 800° C and 900° C respectively. The absence of peak at 21.6° C and 26.8° C indicates that there is no intermediate phase like Ba₂Ti₂O₅.CO₃. Crystalline BaTiO₃ is found to form at a temperature of 700° C along with some impurities like BaCO₃ and TiO₂. The gradual decomposition BaCO₃ and subsequent formation of phase pure BaTiO₃ is clearly seen from the XRD pattern in samples calcined at different temperatures. As the calcination temperature increases, the peaks become sharper and the phase pure BaTiO₃

Figure 1 (a-c): X-Ray Diffraction pattern of BaTiO₃ ceramics sintered at various temperatures

Figure 2(a-d) shows X-ray diffraction pattern of the samples (BaTiO₃, Ba_{0.95}Zn_{0.05}TiO₃, BaTi_{0.95}Mn_{0.05}O₃ and Ba_{0.95}Zn_{0.05}TiO₃, BaTi_{0.95}Mn_{0.05}O₃ and Ba_{0.95}Zn_{0.05}TiO₃ has perovskite structure. There are many peaks in the spectrum which indicates the presence of undecomposed precursors. The spectrum of doped BaTiO₃ is exactly similar to that of pure BaTiO₃. So it is evident that the addition of small quantities of dopant will not change the perovskite structure of BaTiO₃. Therefore, doping BaTiO₃ with minute quantity of some suitable elements like Zn, Mn etc can improve their crystal qualities.

Figure 2(a-d): The x-ray diffraction (XRD) patterns of BaTiO₃, Ba_{0.95}Zn_{0.05}TiO₃, BaTi_{0.95}Mn_{0.05}O₃ and Ba_{0.95}Zn_{0.05}Ti_{0.95}Mn_{0.05}O₃

The exhibited peaks can be indexed as tetragonal lattice of pure and doped BaTiO₃. On comparison with the standard XRD pattern of BaTiO₃ powder, the peaks at 22.25° , 31.52° , 38.97° , 45.31° , 50.95° , 56.61° , 66.31° , 70.61° , 75.13° and 79.43° can be attributed to the Miller indices of (001), (110), (111), (200), (210), (211), (202), (212), (310) and (311), respectively.

Dielectric behaviour of samples

The dielectric constant of the phase pure BaTiO₃, formed at a calcination temperature of 900°C, is measured to compared the prepared sample with the standard value. Figure 3 shows the variation of dielectric constant as a function of temperature .Up to 131°C, the dielectric constant of BaTiO₃ increases as the temperature increases. Beyond 131°C, the dielectric constant decreases as the temperature increases. Therefore, the Curie temperature of BaTiO₃ was found to be 131°C. The corresponding value of dielectric constant is 3109. This value of curie temperature and dielectric constant is very much matching with the standard value. Similarly Figure 4 show the effect of dopant on the dielectric property. It is clear from the figure that in pure Mn-doped BaTiO₃, the dielectric constant at all temperatures is lower than that of pure BaTiO₃. For Zndoped BaTiO₃, dielectric constant is not varying with temperature. This implies that Zn-doped barium titanate does not show a perfect dielectric property and from the available data it is assumed to be shifted to semiconductor behaviour.

Figure 3. Variation of dielectric constant as a function of temperature of pure BaTiO₃ sample and is compared with standard value

Table 1(a). Curie temperature and dielectric value of BaTiO₃ and is compared with the standard value

	Curie temperature Dielectric constant	
Standard value	130°C	3225.2814
Obtained value	131°C	3109.0613

Table 1(b). Curie temperature and dielectric value of $BaTiO_3$ and $BaTiMnO_3$

The dielectric constants of all temperatures are noted for all the samples. For pure BaTiO₃, as mentioned before the dielectric constant is increasing with temperature up to 131^{0} C and beyond 131^{0} C, the dielectric constant is decreasing. When it is doped with Mn, sample exhibits the same dielectric behaviour as that of pure BaTiO₃ but with an increased dielectric constant. But the Curie temperature is shifted to a low value of about 62^{0} C. The samples with Zn dopants are behaving in an entirely different way. They do not exhibit a perfect dielectric behaviour, since the plot shows an irregular variation in dielectric constant with temperature. Their measured band gap energy corresponds to that of a semi conductor. Thus, it can be inferred that BaTiO₃ with Zn dopant is no more an insulating material and its further study is going on.

Ferroelectric properties of barium titanate and doped barium titanate

Figure 5 shows the P-E curves of (a) BaTiO3, (b) BaTi_{0.95}Mn_{0.05}O₃ ceramics at room temperature. It is observed that with the addition of Mn the value of maximum polarization decreases as well as the area of the loop also decreases. The details of maximum polarization and coercive field (Ec) for each sample are shown in Table 2. The P-E loop is not observed for the samples with Zn and are typical of a lossy linear dielectric rather than for a ferroelectric material. This behaviour suggests that either the doped ceramics are still in the sub-switching regime or the ferroelectricity is largely suppressed. This may be attributed to the formation of hexagonal phase. Since the hexagonal phase of BTO is not ferroelectric (Moon et al., 2003), the formation of the hexagonal phase weakens the ferroelectricity of BaTiO₃ to a large extent (Du et al., 2010). The stability of the ferroelectric phase can be determined by structural transition with additional factors like incorporation of foreign atoms (Zhao et al., 2004). It is evident that persistence of ferroelectricity results from the long-range polar orders of dipoles (Kuehn and Kliem, 2009). Any disruption in the polar order would affect the ferroelectricity. Generally, reduction of polarization occurs due

to reduction in grain size (Zhao *et al.*, 2004), the presence of structural imperfections such as oxygen vacancies and dislocations (Zhao *et al.*, 2004). It is also observed from Table 2 that the value of coercive field (Ec) remains high and the maximum polarization value reduces sharply (*P*-max). The above fact indicates that all the samples are highly insulator. Here, the reasons for degradation of ferroelectricity may be due to formation of hexagonal phase along with the creation of oxygen loss by co-substitution of Mn.

Table 2. Values of P_r, P_s and E_c for $BaTiO_3$ and $BaTi_{0.95}Mn_{0.05}O_3$ at $7kV_1Hz$

Sample	P _R	Ps	Ec
BaTiO ₃	9.944	9.108	2913.35
BaTiMnO ₃	3.527	2.0527	2349.47

Figure 5. The room temperature P–E loops of (a) BaTiO3, (b) BaTi_{0.95}Mn_{0.05}O₃ ceramic samples

Zn-doped barium titanate and both Mn and Zn-doped barium titanate does not show P-E hysteresis as well as a perfect dielectric behaviour but shows a semiconducting property which is confirmed from the band gap measurement. Further detailed investigation is required and the work is in progress.

Conclusion

In this study, will get a clear picture of calcination temperature at which the phase pure $BaTiO_3$ is formed. Another important

result is the room temperature multiferroicity is observed for the typical composition BaTi_{0.95}Mn_{0.05}O₃. Peculiar magnetic behaviors are shown by Mn-doped ceramic compositions in which magnetic hysteresis loops are narrowed near the origin. Such a magnetic effect may be attributed to the coexistence of antiferromagnetic and ferromagnetic exchange interactions between Mn3+ and Mn4+ ions. Although the ferroelectric polarization decreases in Mn-doped compositions, the ferroelectricity shown by mn-doped compositions is present well above room temperature. This type of ferroelectric behavior observed in Mn-doped BTO is due to the presence of phase. Zn-doped hexagonal structural shows а а semiconducting property which is confirmed from the band gap measurement. Further detailed investigation is required to confirm this.

Acknowledgment

The authors of this paper are grateful to Principal, Providence Womens College for her help and support to carry out this work. We also thank NPL Delhi for P-E study and Calicut university for the XRD study.

REFERENCES

- Bhuiyan, M.R.A., M.M. Alam, M.A. Momin, M.J. Uddin, M. 2012. Islam Synthesis and Characterization of Barium Titanate (BaTiORR3RR) Nanoparticle International Journal of Material and Mechanical Engineering, 1: 21-24 21 Published Online April 2012
- Chandler, C.D., Roger, C., Hampden-Smith, M.J. 1993. "Chemical aspects of solution routes to perovskite-phase mixed- metal oxides from metal-organic precursors", *Chem. Rev.*, 93, 1205.
- Du GP, Hu Z J, Han QF, et al. 2010. Effects of niobium donor doping on the phase structures and magnetic properties of Fe-doped BaTiO3 ceramics. J Alloys Compd., 492: 79-81.
- Hong Liu, Chenguo Hu and Zhong Lin Wang, 2006. Composite-Hydroxide-Mediated Approach for the

Synthesis of Nanostructures of Complex Functional-OxidesNano Lett., 6 (7), pp 1535–1540

- Kuehn M. and Kliem H. 2009. The method of local fields: A bridge between molecular modelling and dielectric theory. *J* of Elctrostatics, 67: 203-208
- Millis, A.J. 1998. "Lattice effects in magnetoresistive perovskites", *Nature*, 392, 147.
- Moon, J., Suvaci, E., Morrone, A., Costantino, S.A., Adair, J.H. 2003. "Formation mechanisms and morphological changes during the hydrothermal synthesis of BaTiO₃ particles from a chemically modified, amorphous titanium (hydrous) oxide precursor", *J. Eur. Ceram. Soc.*, 23,2153.
- Pena, M.A. and Fierro, J.L.G. 2001. "Chemical structures and performance of perovskite oxides", *Chem. Rev.*, 101, 1981.
- Potdar, H.S., Deshpande, S.B., Date, S.K. 1999. "Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders", *Mater. Chem. Phys.*, 58,121.
- SHEN Zhigang *et al.* 2006. Low Temperature One Step Synthesis of Barium Titanate: Particle Formation Mechanism and Large-scale Synthesis *Chinese J. Chem. Eng.*, 14(5) 642–648.
- Song Wei Lu!, Burtrand I. Lee!, Zhong Lin Wang, William D. Samuels. 2000. Hydrothermal synthesis and structural characterization BaTiO3 nanocrystals. Journal of Crystal Growth 219, 269:276
- Testino, A., Buscaglia, M.T., Buscaglia, V., Viviani, M., Bottino C., Nanni, P. 2004. "Kinetics and mechanism of aqueous chemical synthesis of BaTiO3 particles", *Chem. Mater.*, 16, 1536.
- Yuan Ting Wu, Xiu Feng Wang, Cheng Long Yu Er Yuan Li, 2012. Preparation and Characterization of Barium Titanate (BaTiO₃) Nano-Powders by Pechini Sol-Gel Method Materials and Manufacturing Processes Volume 27, Issue 12.
- Zhao Z, Buscaglia V, Viviani M, *et al.* 2004. Grain-siz effects on the ferroelectric behavior of dense nanocrystalline BaTiO₃ ceramics. *Phys Rev B.*, 70: 024-107.
