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INTRODUCTION 
 

Spaces with additional structures which arise in theoretical Physics play an important part in the theory of Riemannian space
Such spaces are, in particular, “Classical” Kaehlerian and Sasakian spaces as well as hyperbolically Kaehlerian and Hyperb
Sasakian spaces. 
 
Definition (1.1): An odd-dimensional Riemannian space 

��� , a complex structure tensor 	��
� satisfies the following conditions:

 
��	

���	
� = ��

� - Xh Xi  , 
 

��
���  = 0,  

 
 ���� = 1, 
 
 

�����
� + �����

� =  0, 

 

  ��,�
�   =  ����� -  ��	

��� , 

 
Where �� = �����  is some vector. 
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ABSTRACT 

Tachibana (1967) have studied on the Bochner Curvature tensor. Singh (1971
Kaehlerian recurrent and Ricci-recurrent space of second order. Negi and Rawat (1999) studied some 

recurrent and bi-symmetric properties in a Kaehlerian space. Fur
(2012) studied some bi-recurrent and bi-symmetric properties in hyperbolically Kaehlerian space.
In the present paper, we have been studied Hyperbolically Sasakian
second order. Several theorems also have been established and proved therein.
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Spaces with additional structures which arise in theoretical Physics play an important part in the theory of Riemannian space
Such spaces are, in particular, “Classical” Kaehlerian and Sasakian spaces as well as hyperbolically Kaehlerian and Hyperb
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Tachibana (1967) have studied on the Bochner Curvature tensor. Singh (1971-72) studied on 
recurrent space of second order. Negi and Rawat (1999) studied some 

symmetric properties in a Kaehlerian space. Further, Rawat, Kumar and Uniyal 
symmetric properties in hyperbolically Kaehlerian space. 

In the present paper, we have been studied Hyperbolically Sasakian recurrent and symmetric space of 
second order. Several theorems also have been established and proved therein. 
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Differentiating (1.1), it is easy to establish that ��
� =  �,	�

� . This definition of Sasakian spaces is over determined. 

The Riemannian curvature tensor field ����
�  is defined as 

 

 ����
�  =  �� �

ℎ
�			�

� - �� �
ℎ

�			�
� + �

ℎ
�			�

� �
�

�			�� -  �
ℎ

�			�
� �

�
�			�

�  , 

 

where �� = 
�

���  and  {��} denotes the real local coordinates. 

 
The Ricci tensor and the Scalar curvature are respectively given by  
 
��� =  ����

�  and  R = ������  

 
If we define a tensor ���  by 

 
���  = ��

� ��� ,                                                                                            (1.6) 

 
Then, we have 
 
���  = −��� ,  

 (1.7)  
 
��

� ��� = −���	��
�  , (1.8) 

 
And 
 
��

����,� = ���,� - ���,�                                                                                 (1.9) 

 
It has been verified in Yano ([5]) pages 63, 68 that the metric tensor ��� and the Ricci-tensor denoted by ��� are hybrid in i  and  j. 

Therefore, we get 
 
��� = �����

���
�,                                                                                                                                                                                (1.10) 

 
And 
 
 ��� = �����

���
� ,                                                                                                                                                                              (1.11) 

 

The Holomorphically Projective curvature tensor ����
�  is given by 

 

����
�  =  ����

�  +  
�

(���)
 ����	��

� − �����
� + �����

� − �����
� + 2�����

�� ,                                                                                            (1.12) 

 
The Tachibana H-Concircular curvature tensor and the Weyl-Conformal curvature tensors are respectively give by 
 

����
�  = ����

�  + 
�

�(���)
  ����	��

� − �����
� + �����

� − �����
� + 2�����

�� ,                                                                                           (1.13) 

 
and  
 

����
� =����

� + 
�

(���)
������

� − �����
� + �����

� − �����
�� - 

�

(���)(���)
 ������

� − �����
��,                                                                (1.14) 

 
There is a Weyl-Concircular curvature tensor given by (Sinha, 1971) 
 

����
�  = ����

�  + 
�

�(���)
  ����	��

� − �����
�� ,                                                                                                                                       (1.15) 

 
If, we put 
 

��� = 	 ��� −
�

�
���                                                                                                                                                                           (1.16) 

 
and  
 

��� = ��
���� = ��� −

�

�
��                                                                                                                                                              (1.17) 

53490                                 Rawat and Sandeep Chauhan, Study on hyperbolically Sasakian recurrent and symmetric spaces of second order 



Then from (1.12), (1.13), (1.16) and (1.17), we get  
 

 ����
� = 	 ����

� +
�

(���)
������

� − 	 �����
� + �����

� − �����
� + 2�����

�� ,                                                                                         (1.18) 

 
and with the help of (1.14), (1.15), (1.16), and (1.17), we have 
 

����
� = 	 ����

� +
�

(���)
������

� 	− 	�����
� + �����

� 	− 	�����
�� ,                                                                                                           (1.19) 

 
Now, we shall use the following: 
 
Definition(1.3). A hyperbolically Sasakian space �� is said to be recurrent space of second order, if we have  
 

����,��
� − 	�������

� = 0,  or , equivalently �����,�� − 	�������� = 0.                                                                                              (1.20) 

 
For some non-zero tensor field ���, and is known as recurrence tensor field. 
 
A hyperbolically Sasakian space whose Ricci-tensor ��� satisfies the equation 

 
���,�� − 	������ = 0,                                                                                                                                                                      (1.21) 

 
For some non-zero tensor ���, is called hyperbolically Sasakian Ricci-recurrent space of second order.  
 
Multiplying the above equation by ��� , we have 
 
�,�� 	 −	 ���� = 0.                                                                                                                                                                          (1.22) 
 
Hyperbolically Sasakian Recurrent Spaces of second order 
 
Definition(2.1). A hyperbolically Sasakian space satisfying the relation 
 

����,��		�
� 		�������

� = 0,  or, equivalently �����,�� 	− 	�������� = 0.                                                                                                   (2.1) 

 
For some non-zero tensor field ��� , will be called hyperbolically Sasakian projective recurrent space of second order. 
 
Definition (2.2). A hyperbolically Sasakian space satisfying the relation 
 

����,��		�		
� �������

� = 0, or , equivalently �����,�� 	 − 	�������� = 0.                                                                                                    (2.2) 

 
For some non-zero tensor field ��� , will be called hyperbolically Sasakian space with Tachibana H-Concircular recurrent 
curvature tensor of second order. 
 
Definition (2.3). A hyperbolically Sasakian space satisfying the relation 
 

����,��		�	
� 	�������

� = 0, or, equivalently �����,�� 	− 	�������� 	 = 0.                                                                                                   (2.3) 

 
 
For some non-zero tensor field 	��� , will be called hyperbolically Sasakian space with Weyl-conformal recurrent curvature tensor 
of second order. 
 
Definition (2.4). A hyperbolically Sasakian space satisfying the relation 
 

����,��	�
� 	�������

� = 0, or , equivalently �����,�� − �������� = 0.                                                                                                    (2.4) 

 
For some non-zero recurrence tensor field 	��� , will be called hyperbolically Sasakian space with Weyl-Concircular recurrent 
curvature tensor of second order. 
 
Now, we have the following: 
 
Theorem (2.1): If a hyperbolically Sasakian space satisfying any two of the following properties: 
 

 the space is hyperbolically Sasakian Ricci-recurrent of second order, 
 the space is hyperbolically Sasakian projective recurrent of second order, 
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  the space is hyperbolically Sasakian Tachibana H-Concircular recurrent of second order, then it must also satisfy the third. 
 
Proof. Differentiating (1.18) covariantly w.r.to �� , again differentiate the result thus obtained covariantly w.r.to �� , we have 
 

����,��
� = ����,��

� + 	
�

(���)
 ����,����

� − ���,����
� + ���,����

� − ���,����
� + 2���,����

��,  (2.5) 

 
Multiplying (1.18) with 	��� and subtracting the result thus obtained from (2.5), we have  
 

����,��
� − �������

� = ����,��
� − �������

� +
�

(���)
[(���,�� − ������)��

� − ����,�� − ���������
�  

 

          +����,�� − ���������
� − ����,�� − ���������

� + 2����,� − ���������
�]  (2.6) 

 
The statement of the above theorem follows in view of equations (1.21), (1.22), (2.1), (2.2), (1.16), (1.17) and (2.6). 
 
Theorem(2.2). If a hyperbolically Sasakian space satisfying any two of the following properties: 
 

 the space is hyperbolically Sasakian Ricci-recurrent of second order, 
 the space is hyperbolically Sasakian space with Weyl-Conformal recurrent    curvature tensor of second order, 
 the space is hyperbolically Sasakian space with Weyl-Concircular recurrent    curvature tensor of second order, then it must 

also satisfy the third. 
 
Proof. A Hyperbolically Sasakian Ricci-recurrent space of second order, a Hyperbolically Sasakian space with Weyl-Conformal 
recurrent curvature tensor of second order and hyperbolically Sasakian space with Weyl-Concircular recurrent curvature tensor of 
second order are respectively characterized by the equations (1.21), (2.3) and (2.4). 
 
Differentiating (1.19) covariantly w.r.to �� , again differentiate the result thus obtained covariantly w.r.to �� , we have 
 

����,��
� = ����,��

� +
�

(���)
 (���,����

�	 − ���,����
�	 + �����,��

�	 − �����,��
�	 ),                (2.7) 

 
Multiplying (1.19) with ��� and subtracting the result thus obtained from (2.7), we have 
 

����,��
� − �������

� = ����,��	
� − �������

� +
�

(���)
[����,�� − ���������

� − ����,�� − ���������
�  

 

 +���,��
� − �����

����� − (��,��
� − �����

�)	���],   (2.8) 

 
The statement of the above theorem follows in view of (1.16), (1.17), (1.21), (2.3), (2.4) and (2.8). 
 
Theorem (2.3). Every hyperbolically Sasakian recurrent space of second order is a hyperbolically Sasakian space with Tachibana 
H-Concircular recurrent space of second order. 
 
Proof. Differentiating (1.13) covariantly w.r.to ��, again differentiate the result thus obtained covariantly w. r .t. ��, we have  
 

����,��
�  = ����,��

�  + 
�,��

�(���)
(�����

� − �����
� + �����

� − �����
� + 2�����

�)                        (2.9) 

 
Multiplying (1.13) by ���	and subtracting the result thus obtained from (2.9), we have  
 

����,��
� − �������	

�  = ����,��
� − �������

�  + 
��,��������

�(���)
 (�����

� −	 �����
� + 	�����

� − �����
� + 2�����

�),                                          (2.10) 

 
Now, let the space be hyperbolically Sasakian recurrent space of second order, then equations (1.20), (1.21) and (1.22) are 
satisfied. 
 

Making use of equations (1.20) and (1.21) in (2.10), we have 
 

����,��
� − �������

� = 0, 

 
Which shows that the space is hyperbolically Sasakian space with Tachibana H-Concircular recurrent space of second order. 
 
 
Hyperbolically Sasakian Symmetric Spaces of second order  

 
Definition (3.1).  A hyperbolically Sasakian space is said to be symmetric space of second order, if it satisfies the relation  
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����,��
� = 0,	 or, equivalently �����,�� = 0,                                                                                                                                    (3.1) 

 
Obviously, a hyperbolically Sasakian symmetric space of second order is said to be hyperbolically Sasakian Ricci-symmetric 
space of second order, if 
 
���,�� = 0,  (3.2) 

 
Multiplying the above equation by ���  , we get 
 
�,�� = 0,  (3.3) 
 
Definition (3.2).  A hyperbolically Sasakian space  satisfying the relation  
 

����,��
� = 0,	 or, equivalently �����,�� = 0,                                                                                                                                       (3.4) 

 
is called a hyperbolically Sasakian projective symmetric space of second order, 
 
Definition (3.3).  A hyperbolically Sasakian space  satisfying the relation  
 

  ����,��
� = 0,	 or, equivalently �����,�� = 0,  (3.5) 

 
will be called hyperbolically Sasakian space with Tachibana H-Concircular symmetric space of second order. 
 
Definition (3.4).  A hyperbolically Sasakian space  satisfying the relation  
 

 ����,��
� = 0,	 or, equivalently �����,�� = 0,  (3.6) 

 
will be called hyperbolically Sasakian space with Weyl-Conformal symmetric curvature tensor of second order. 
 
Definition (3.5).  A hyperbolically Sasakian space  satisfying the relation  
 
    ����,��

� = 0,	 or, equivalently �����,�� = 0, (3.7) 

 
is called hyperbolically Sasakian space with Weyl-Concircular symmetric curvature tensor of second order.  Now, we have the 
following: 
 
Theorem (3.1). If a hyperbolically Sasakian space satisfies any two of the following properties: 
 
 

 The space is hyperbolically Sasakian Ricci-symmetric of second order, 
 the space is hyperbolically Sasakian projective symmetric of second order, 
 the space is hyperbolically Sasakian Tachibana H-Concircular symmetric of second order, then it must also satisfy the third. 

 
Proof. A hyperbolically Sasakian Ricci-symmetric space of second order, a hyperbolically Sasakian projective symmetric space of 
second order and hyperbolically Sasakian  space with Tachibana H-Concircular symmetric space of second order are respectively 
characterized by (3.2), (3.4) and (3.5).  
 
     The statement of the above theorem follows in view of (2.5), (3.2), (3.4) and (3.5). 
 
Theorem (3.2). If a hyperbolically Sasakian space satisfies any two of the following properties: 
 

 the space is hyperbolically Sasakian Ricci-symmetric of second order. 
 the space is hyperbolically Sasakian With Weyl-Conformal symmetric curvature tensor of second order, 
 the space is hyperbolically Sasakian space with Weyl-Concircular symmetric curvature tensor of second order, then it must 

also satisfy the third. 
 
Proof. A hyperbolically Sasakian Ricci-symmetric space of second order, a Hyperbolically Sasakian space with Weyl-Conformal 
symmetric curvature tensor of second order and hyperbolically Sasakian  space with Weyl-Concircular symmetric curvature tensor 
of second order are respectively characterized by (3.2), (3.6) and (3.7).  
 
The statement of the above theorem follows in view of (2.7), (3.2), (3.6) and (3.7). 
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Theorem (3.3). Every hyperbolically Sasakian symmetric space of second order is a hyperbolically Sasakian space with 
Tachibana H-Concircular symmetric space of second order. 
 
Proof. From (2.9), it follows that in a hyperbolically Sasakian symmetric space of second order, the Tachibana H-Concircular 
curvature tensor satisfies   
 

     ����,��
� = 0,  

 
 
Which shows that the space is hyperbolically Sasakian space with Tachibana H-Concircular symmetric space of second order.  
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