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the presence of uniform vertical rotation. Following the linearized stability theory and normal mode 
analysis, the paper 
which may be neutral or unstable, for rigid boundaries at the top and bottom of the fluid. It is 
established that all non
fluid of infinite horizontal extension and finite vertical depth, which is acted upon by uniform vertical 
rotation in a porous medium, opposite to gravity and a constant vertical adverse temperature gradient, 

are necessarily non

and lP  is the medium permeability. The result is important since it hold for all wave numbers and for 

rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact 
solutions of the problem investigated in closed form, is not

 

INTRODUCTION 
 

Right from the conceptualizations of turbulence, 
fluid flows is being regarded at its root. The thermal instability 
of a fluid layer with maintained adverse temperature gradient 
by heating the underside plays an important role in 
Geophysics, interiors of the Earth, Oceanography and 
Atmospheric Physics, and has been investigated by several 
authors and a detailed account of the theoretical and 
experimental study of the onset of Bénard Convection in 
Newtonian fluids, under varying assumptions of 
hydrodynamics and hydromagnetics, has been given
Chandrasekhar (1981) in his celebrated monograph. The use 
of Boussinesq approximation has been made throughout, 
which states that the density changes are disregarded in all 
other terms in the equation of motion except the external force 
term. There is growing importance of non-Newtonian fluids in 
geophysical fluid dynamics, chemical technology and 
petroleum industry. Bhatia and Steiner (1972)have considered 
the effect of uniform rotation on the thermal instability of a 
viscoelastic (Maxwell) fluid and found that rotation has a 
destabilizing influence in contrast to the stabilizing effect on 
Newtonian fluid. In another study Sharma (1975) has studied 
the stability of a layer of an electrically conducting Oldroyd 
fluid (1958) in the presence of magnetic field and has found 
that the magnetic field has a stabilizing influence. There are 
many  elastico-viscous  fluids  that  cannot be characterized by
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ABSTRACT 

A layer of Rivlin-Ericksen viscoelastic fluid heated from below in a porous medium is considered in 
the presence of uniform vertical rotation. Following the linearized stability theory and normal mode 
analysis, the paper mathematically established the condition for characterizing the oscillatory motions 
which may be neutral or unstable, for rigid boundaries at the top and bottom of the fluid. It is 
established that all non-decaying slow motions starting from rest, in a Riv
fluid of infinite horizontal extension and finite vertical depth, which is acted upon by uniform vertical 
rotation in a porous medium, opposite to gravity and a constant vertical adverse temperature gradient, 

are necessarily non-oscillatory, in the regime 
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  ,  where 

is the medium permeability. The result is important since it hold for all wave numbers and for 

rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact 
solutions of the problem investigated in closed form, is not obtainable.  
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Right from the conceptualizations of turbulence, instability of 
fluid flows is being regarded at its root. The thermal instability 
of a fluid layer with maintained adverse temperature gradient 
by heating the underside plays an important role in 
Geophysics, interiors of the Earth, Oceanography and 

eric Physics, and has been investigated by several 
authors and a detailed account of the theoretical and 
experimental study of the onset of Bénard Convection in 
Newtonian fluids, under varying assumptions of 
hydrodynamics and hydromagnetics, has been given by 
Chandrasekhar (1981) in his celebrated monograph. The use 
of Boussinesq approximation has been made throughout, 
which states that the density changes are disregarded in all 
other terms in the equation of motion except the external force 
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Maxwell’s constitutive relations or Oldroyd’s (1958) 
constitutive relations. Two such classes of fluids are Rivlin
Ericksen’s and Walter’s (model B’) fluids.  Rivlin
(1955) has proposed a theoretical model for such one class of 
elastico-viscous fluids. Kumar et al  (2006) considered effect 
of rotation and magnetic field on Rivlin
viscous fluid and found that rotation has stabilizing effect; 
where as magnetic field has both stabilizing and destabilizing 
effects. A layer of such fluid heated 
action of magnetic field or rotation or both may find 
applications in geophysics, interior of the Earth, 
Oceanography, and the atmospheric physics. With the growing 
importance of non-Newtonian fluids in modern technology 
and industries, the investigations on such fluids are desirable.

In all above studies, the medium has been considered to be 
non-porous with free boundaries only, in general. In recent 
years, the investigation of flow of fluids through porous media 
has become an important topic due to the recovery of crude oil 
from the pores of reservoir rocks. When a fluid permeates a 
porous material, the gross effect is represented by the Darcy’s 
law. As a result of this macroscopic law, the usual viscous term 
in the equation of Rivlin-Ericksen fluid motion is replaced by 

the resistance term 
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are the viscosity and viscoelasticity of the Rivlin

fluid, 1k  is the medium permeability and 
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Ericksen viscoelastic fluid heated from below in a porous medium is considered in 
the presence of uniform vertical rotation. Following the linearized stability theory and normal mode 

mathematically established the condition for characterizing the oscillatory motions 
which may be neutral or unstable, for rigid boundaries at the top and bottom of the fluid. It is 

decaying slow motions starting from rest, in a Rivlin-Ericksen viscoelastic 
fluid of infinite horizontal extension and finite vertical depth, which is acted upon by uniform vertical 
rotation in a porous medium, opposite to gravity and a constant vertical adverse temperature gradient, 

where AT  is the Taylor number; 

is the medium permeability. The result is important since it hold for all wave numbers and for 

rigid boundaries of infinite horizontal extension at the top and bottom of the fluid, and the exact 
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constitutive relations or Oldroyd’s (1958) 
constitutive relations. Two such classes of fluids are Rivlin-
Ericksen’s and Walter’s (model B’) fluids.  Rivlin-Ericksen 
(1955) has proposed a theoretical model for such one class of 

r et al  (2006) considered effect 
of rotation and magnetic field on Rivlin-Ericksen elastico-
viscous fluid and found that rotation has stabilizing effect; 
where as magnetic field has both stabilizing and destabilizing 
effects. A layer of such fluid heated from below or under the 
action of magnetic field or rotation or both may find 
applications in geophysics, interior of the Earth, 
Oceanography, and the atmospheric physics. With the growing 
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(filter) velocity of the fluid. The problem of thermosolutal 
convection in fluids in a porous medium is of great importance 
in geophysics, soil sciences, ground water hydrology and 
astrophysics. Generally, it is accepted that comets consist of a 
dusty ‘snowball’ of a mixture of frozen gases which, in the 
process of their journey, changes from solid to gas and vice-
versa. The physical properties of the comets, meteorites and 
interplanetary dust strongly suggest the importance of non-
Newtonian fluids in chemical technology, industry and 
geophysical fluid dynamics. Thermal convection in porous 
medium is also of interest in geophysical system, 
electrochemistry and metallurgy. A comprehensive review of 
the literature concerning thermal convection in a fluid-
saturated porous medium may be found in the book by Nield 
and Bejan (1992). Sharma et al (2001) studied the 
thermosolutal convection in Rivlin-Ericksen rotating fluid in 
porous medium in hydromagnetics with free boundaries only. 
 
Pellow and Southwell (1940) proved the validity of PES for the 
classical Rayleigh-Bénard convection problem. Banerjee et al 
(1981) gave a new scheme for combining the governing 
equations of thermohaline convection, which is shown to lead 
to the bounds for the complex growth rate of the arbitrary 
oscillatory perturbations, neutral or unstable for all 
combinations of dynamically rigid or free boundaries and, 
Banerjee and Banerjee (1984) established a criterion on 
characterization of non-oscillatory motions in hydrodynamics 
which was further extended by Gupta et al. (1986). However 
no such result existed for non-Newtonian fluid configurations 
in general and in particular, for Rivlin-Ericksen viscoelastic 
fluid configurations. Banyal (2012) have characterized the 
oscillatory motions in Rivlin-Ericksen viscoelastic fluid in the 
presence of rotation. Keeping in mind the importance of non-
Newtonian fluids, as stated above, this article attempts to study 
Rivlin-Ericksen viscoelastic fluid heated from below in the 
presence of uniform vertical rotation in a porous medium. It 
has been established that the onset of instability in a Rivlin-
Ericksen viscoelastic fluid heated from below in a porous 
medium, in the presence of uniform vertical rotation, cannot 
manifest itself as oscillatory motions of growing amplitude if 

the Taylor number AT  and the medium permeability lP  satisfy 

the inequality
l

l
A

P

P
T

)2( 
 , for all wave numbers and rigid 

boundaries of infinite horizontal extension at the top and 
bottom of the fluid.  
 

Formulation Of The Problem And Perturbation Equations 
 
 

Here we Consider an infinite, horizontal, incompressible 
Rivlin-Ericksen viscoelastic  fluid layer, of thickness d, heated 
from below so that, the temperature and density at the bottom 

surface z = 0  are 0T  and 0 , and  at the upper surface z = d 

are dT  and d  respectively, and that a uniform adverse 

temperature gradient 









dz

dT
  is maintained. The gravity 

field  gg 


,0,0  and uniform vertical rotation  


,0,0  

pervade on the system. This fluid layer is assumed to be 
flowing through an isotropic and homogeneous porous 

medium of porosity  and medium permeability 1k . 

Let p ,  , T, , , g  and  wvuq ,,


 denote respectively the 

fluid pressure, fluid density temperature, thermal coefficient of 
expansion, gravitational acceleration and filter velocity of the 
fluid.  Then the momentum balance, mass balance, and energy 
balance equation of Rivlin-Ericksen fluid through porous 
medium, governing the flow of Rivlin-Ericksen fluid in the 
presence of uniform vertical vertical rotation (Rivlin and 
Ericksen (1955); Chandrasekhar (1981) and Sharma et al 
(2001)) are given by 
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 , stand for the convective 

derivatives. Here 
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constant and while s , sc and 0 , ic , stands for the 

density and heat capacity of the solid (porous matrix) material 

and the fluid, respectively,    is the medium porosity and

),,( zyxr


.                                                                                                                                         

The equation of state is 

  00 1 TT   ,                                                  (4) 

Where the suffix zero refer to the values at the reference level 
z = 0. In writing the equation (1), we made use of the 
Boussinesq approximation, which states that the density 
variations are ignored in all terms in the equation of motion 

except the external force term. The kinematic viscosity , 

kinematic viscoelasticity
' , thermal diffusivity , and the 

coefficient of thermal expansion   are all assumed to be 
constants. The steady state solution is 

 0,0,0


q  , )1(0 z  , 0TzT   ,   (5)                                                           

 
Here we use the linearized stability theory and the normal 
mode analysis method. Consider a small perturbations on the 

steady state solution, and let , p ,  and  wvuq ,,


 denote 

respectively the perturbations in density  , pressure p, 

temperature T and velocity )0,0,0(


q . The change in density

 , caused mainly by the perturbation    in temperature is 

given by    

)(0   .                                                                  (6) 
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Then the linearized perturbation equations of the Rinlin-
Ericksen fluid reduces to  
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Normal Mode Analysis   
 
                              

Analyzing the disturbances into two-dimensional waves, and 
considering disturbances characterized by a particular wave 
number, we assume that the Perturbation quantities are of the 
form 

        zZzzWw ,,,,  exp  ntyikxik yx  , 
 

                                                                                             (10)                                                                                                             

Where yx kk ,  are the wave numbers along the x- and y-

directions, respectively,  2

1
22

yx kkk  , is the resultant 

wave number, n is the growth rate which is, in general, a 

complex constant; 
y
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   denote the z-

component of vorticity, )(),( zzW   and Z(z) are the 

functions of z only. Using (10), equations (7)-(9), within the 
framework of Boussinesq approximations, in the non-
dimensional form transform to 
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And    WEpaD  1
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Where we have introduced new coordinates  ',',' zyx  = (x/d, 

y/d, z/d) in new units of length d and '/ dzdD  . For 
convenience, the dashes are dropped hereafter. Also we have 

substituted ,,
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1p  is the thermal 

Prandtl number; 
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Pl   is the dimensionless medium 

permeability, 
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  is the dimensionless viscoelasticity 

parameter of the Rivlin-Ericksen fluid;  


 4dg
R   is the 

thermal Rayleigh number; and  
22

424



d
TA


  is the Taylor 

number. Also we have Substituted  WW , 
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2
 and dDD  ,  and dropped    for 

convenience. 
 
We now consider the case where both the boundaries are rigid 
and are maintained at constant temperature and then the 
perturbations in the temperature is zero at the boundaries. The 
appropriate boundary conditions with respect to which 
equations (11)-(13), must possess a solution are 
 

W=DW=0, 0 andZ=0,atz=0andz=1.                            (14)                                                        
 
 

Equations (11)--(13), along with boundary conditions (14), 
pose an eigenvalue problem for   and we wish to 

characterize i , when 0r .  

 

MATHEMATICAL ANALYSIS 
 
We prove the following lemma 
  

Lemma 1: For any arbitrary oscillatory perturbation, neutral 
or unstable 
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Proof: Multiplying equation (12) by 
Z  (the complex 

conjugate of Z), integrating over the range of z and equating 
the real part on both sides, it follows that 
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This gives that   
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Inequality (15), gives  
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(16) 
This completes the proof of lemma.  

We prove the following theorems 

Theorem 1: If  R  0 , F  0, AT 0, 0lP , 01p , 0r  

and 0i  then the necessary condition for the existence of 

non-trivial solution   ZW ,,  of  equations  (11) – (13), 



together with boundary conditions (14)  is that                                  
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Proof: Multiplying equation (11) by  
W  (the complex 

conjugate of W) throughout and integrating the resulting 
equation over the vertical range of z, we get 
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Taking complex conjugate on both sides of equation (13), we 
get 
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Therefore, using (18), we get  
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Also taking complex conjugate on both sides of equation (12), 
we get 
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Therefore, using (20) and making use of appropriate boundary 
conditions (16), we get  
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Substituting (19) and (221), in the right hand side of equation 
(19), we get 
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Integrating the terms on both sides of equation (22) for an 
appropriate number of times and making use of the 
appropriate boundary conditions (14), we get  
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Now equating the imaginary parts on both sides of equation 

(23), and cancelling )0(i  throughout, we get 
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Now R   0, 0  and AT  0, utilizing the inequalities (16), 

the equation (24) gives,  
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Is positive definite, and therefore, we must have 
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Hence, if 

0r  and 0i , then 
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And this completes the proof of the theorem. Presented otherwise 
from the point of view of existence of instability as stationary 
convection, the above theorem can be put in the form as follow:- 
 
Theorem 2: The sufficient condition for the onset of 
instability as a non-oscillatory motions of non-growing 
amplitude in a Rivlin-Ericksen viscoelastic fluid in a porous 
medium heated from below, in the presence of uniform 

vertical magnetic field and rotation is that, 
l
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P
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 , 

where AT  is the Taylor number and lP is the medium 

permeability, when both the boundaries are rigid. 
 

or 

The onset of instability in a Rivlin-Ericksen viscoelastic fluid 
in a porous medium heated from below, in the presence of 
uniform vertical magnetic field and rotation, cannot manifest 
itself as oscillatory motions of growing amplitude if the Taylor 

number AT  and the medium permeability lP , satisfy the 

inequality 
l
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  , when both the bounding surfaces 

are rigid. 
 
The sufficient condition for the validity of the ‘PES’ can be 
expressed in the form 
 

Theorem 3: If  ,,,,, XZKW  , ir i  , 

0r  is a solution  of  equations  (11) – (13),  with R  0  

and,                                   
l
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  ,Then 0i .  

In particular, the sufficient condition for the validity of the 

‘exchange principle’ i.e., 00  ir   if

l
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P
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 . 

In the context of existence of instability in ‘oscillatory modes’ 
and that of ‘overstability’ in the present configuration, we can 
state the above theorem as follow:- 
 
Theorem 4: The necessary condition for the existence of 
instability in ‘oscillatory modes’ and that of ‘overstability’ in a 
Rivlin-Ericksen viscoelastic fluid in a porous medium heated 
from below, in the presence of uniform vertical rotation is that 
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the Taylor number AT  and the medium permeability lP , must 

satisfy the inequality
l

l
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T

)2( 
 , when both the bounding 

surfaces are rigid. 
 

Conclusions 
 

This theorem mathematically established that the onset of 
instability in a Rivlin-Ericksen viscoelastic fluid in the 
presence of uniform vertical rotation cannot manifest itself as 
oscillatory motions of growing amplitude if the Taylor number 

AT  and the medium permeability lP , satisfy the inequality

l

l
A

P

P
T

)2( 
 , when both the bounding surfaces are rigid. 

The  essential  content  of  the  theorem, from the point of view 
of linear stability theory is that for the configuration of Rivlin-
Ericksen viscoelastic fluid of infinite horizontal extension 
heated form below, having rigid boundaries at the top  and 
bottom of the fluid, in the presence of uniform vertical rotation, 
parallel to the force field of gravity, an arbitrary neutral or 
unstable modes of the system are definitely non-oscillatory in 

character if
l
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P
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 , and in particular PES is valid. 
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