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INTRODUCTION 
 
Preliminaries: An algebraic structure (N, +, .) is said to be a 
seminear-ring if i) (N, +) is a semigroup ii) (N, .) is a 
semigroup. iii) (a + b)c = ac + bc for all a, b, c 
an additive semigroup and Г a nonempty set. Then M is called 
a right Г-seminear-ring if there exists a mapping M × 
M satisfying the following conditions: i) (
	bγc	ii) (aγb)βc = aγ(bβc) for	all	a, b, c ∈ M	and 
be a Г-seminear-ring under the mapping f : M × 
A Subsemigroup A of M is called a sub Г-seminear
if A is a Г-seminear-ring under the restriction of f to  A × 
A → A. Let S and Г be two nonempty sets. Then S is called a 
Г- Semigroup if there exists a mapping from S × 
which maps (a, �, b)→a�b satisfying the condition: (
a�(b�c) for all a, b, c	∈ S and �, � ∈	Г. A nonempty subset A 
of a Г-semigroup S is called a Г-subsemigroup of S if AГA
	A. A right Г- seminear-ring M is said to have an absorbing 
zero ‘0’ if i) a + 0 = 0 + a = a ii) a�0 = 0�
a	∈ M and � ∈ Г. (M, +, .) is a Г-seminear-field  if i) (M, +) is a 
semigroup ii) (M*, Г) is a group (M* is M without addition 
zero, if it has one) iii) (a + b)γc = aγc	 + 	b
M	and � ∈	Г. M� = {m ∈ M/mγ0 = 	0for	all
the zero-symmetric part of M. A Г-seminear
zero-symmetric, if M = M�. 
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ABSTRACT 

concept of bi-ideals for near- rings was introduced by T.Tamizh Chelvam and N.Ganesan
Subsequently the notion of quasi ideals and bi-ideals in Г-near-
Chelvam and N.Meenakumari [7]. An interesting special case of bi
of Steinfeld [5]. The concept of Г-seminear-rings was introduced by Kyung Ho Kim
we introduce the notion of semigamma quasi-ideals, semigamma bi
rings. Using the notion of semigamma bi-ideals, we show that the set of all semigamma bi

seminear-ring form a moore system. Also we proved that the intersection of a semigamma bi
ideals of Г- seminear-ring M and sub- Г- seminear-ring S is again a semigamma bi
define b-simple Г- seminear-ring and prove certain equivalent conditions of Г
Throughout this paper, by a Г- seminear-ring M we shall mean a zero symmetric Г
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An algebraic structure (N, +, .) is said to be a 
ring if i) (N, +) is a semigroup ii) (N, .) is a 

semigroup. iii) (a + b)c = ac + bc for all a, b, c ∈ N. Let M be 
an additive semigroup and Г a nonempty set. Then M is called 

if there exists a mapping M × Г × M → 
(a + b)γc = aγc	 +
and γ, β ∈	Г. Let M 

ring under the mapping f : M × Г × M → M. 
seminear-ring of M 

ring under the restriction of f to  A × Г × 
Г be two nonempty sets. Then S is called a 

Semigroup if there exists a mapping from S × Г × S → S 
b satisfying the condition: (a�b)�c = 

Г. A nonempty subset A 
subsemigroup of S if AГA	⊆

ring M is said to have an absorbing 
�a = 0, hold for all 

field  if i) (M, +) is a 
semigroup ii) (M*, Г) is a group (M* is M without addition 

bγc for	all	a, b, c ∈
all	γ ∈ Г} is called 

seminear-ring M is called 
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In a Г-seminear-ring M if there exists an 
aγe = eγa = a	for	all	a ∈ M	then M is called a Г
with identity element. An element a
idempotent if a�a = a ∀	� ∈Г. 
 
Semigamma bi- ideals in Г-seminear
 
In this section, we introduce the notion of  semig
ideals in Г-seminear-ring. Also we study the properties of 
semigamma bi-ideals. 
 
Definition 2.1 
 
A Г-subsemigroup Q of (M, +) is said to be a semigamma 
quasi-ideal of M if  
 
(QГM)	∩	(MГQ) ⊆ Q. 
 
Definition 2.2 
 
A Г-subsemigroup B of (M, +) is said to be a  semigamma bi
ideal of M if BГMГB ⊆ B. 
 
Example 2.3 
 
Consider the Г-seminear-ring defined by the Klien’s four group 
{0, �, �, �} with Г=	{��, ��} where 
schemes 7: (0,7,11,1) and 12: (0,7,0,7) (see p.408, Pilz [4])
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rings was introduced by Kyung Ho Kim [3]. In this paper 

ideals, semigamma bi-ideals and b-simple Г- seminear-
ideals, we show that the set of all semigamma bi-ideals of a 

ring form a moore system. Also we proved that the intersection of a semigamma bi-
ring S is again a semigamma bi- ideal of S. We 
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0 a b c 

 0    0 0 0 0 
 a 0 a 0 a 
 b 0 0 b b 
 c 0 a b c 

 

 
0 a b c 

 0    0 0 0 0 
 a 0 a 0 a 
 b 0 0 0 0 
 c 0 a 0 a 

 
In this Г-seminear-ring, {0,a} and {0, b} are semigamma bi- 
ideals. 
 

Proposition 2.4 
 

The set of all semigamma bi-ideals of a Г-seminear-ring M 
form a Moore system on M. 
 

Proof 
 

Let {��}�∈� be a set of semigamma bi-ideals  in M. Let B = 
∩�∈� �� . Then BГMГB ⊆	B�ГMГB�	, ∀	i. Therefore B is a 
semigamma  bi-ideal of M. 
 

Remark 2.5 
 

Every semigamma quasi-ideal is a semigamma bi- ideal. 
 

Proof 
 

For, if Q is a semigamma quasi-ideal, then (QГM)∩(MГQ) ⊆ 
Q. Now, QГMГQ = QГ(M∩ M)ГQ = (QГM) ∩ (MГQ) ⊆ Q. 
Therefore Q is a semigamma bi- ideal. But the converse is not 
true. 
 

Example 2.6 
 
Consider the Г-seminear-ring M defined by the Klien’s four 
group {0, a, b, c} with Г=	{��, ��}	where ��, �� are given by the 
schemes 1: (0, 13,0,13) (see p.408, Pilz [4]) and (0,13,0,0) 
 

     
0 a b c 

 0    0 0 0 0 
 a 0 b 0 b 
 b 0 0 0 0 
 c 0 b 0 b 

 

 
0 a b c 

 0     0 0 0 0 
 a 0 b 0 0 
 b 0 0 0 0 
 c 0 b 0 0 

 
In this Г-seminear-ring M, {0,a} and {0, c} are semigamma bi- 
ideal but not semigamma quasi-ideal. 
 

Proposition 2.7 
 

Let M be a Г-seminear-ring  in which every semigamma quasi-
ideal is idempotent. Then for left Г-subsemigroup L and right 
Г-subsemigroup R of N, RГL = R∩L	⊆ �Г� is true. 
 

Proof:  
 
Let A and B be two semigamma quasi-ideals in M. Then by 
proposition 2.4, A∩B is also a semigamma quasi-ideal. By the 
assumption on semigamma quasi-ideals we have A∩ B =

(A ∩ B)Г(A ∩ B) ⊆ (AГB) ∩ (BГA). On the other hand, we 
have (AГB) ∩ (BГA) ⊆ (AГM) ∩ (MГA) ⊆ A and 
analogously, (AГB) ∩ (BГA) ⊆ B. Hence (AГB) ∩ (BГA) ⊆
A ∩ B. Hence A ∩ B = (AГB) ∩ (BГA). Since one sided Г-
subsemigroup are always semigamma quasi-ideals, we have 
R∩ L = (RГL) ∩ (LГR) ⊆ RГL for a left Г-subsemigroup L 
and right Г-subsemigroup  of M. Trivially RГL ⊆ R∩ � and so 
RГL = R∩ L = 	LГR 
 
Proposition 2.8 
 
Let R and L be respectively right and left Г-subsemigroups of  
M. Then any subsemigroup B of M such that RГL ⊆ B ⊆ R∩L 
is a semigamma bi- ideal of M. 
 

Proof: 
 

For a subsemigroup B of (M, +) with RГL ⊆ B ⊆ R∩L, we 
have BГMГB ⊆ (R∩L)ГMГ(R∩L) ⊆ RГMГL ⊆ RГ L ⊆ B 
and so B is a semigamma bi- ideal of M. 
 

Proposition 2.9  
 
If B is a semigamma bi-ideal of M and S is a sub Г-seminear-
ring of M, then B∩S is a semigamma bi- ideal of S. 
 
Proof: 
 

Since B is a semigamma bi- ideal of M, BГMГB ⊆ B. Let C = 
B∩S. Now, CГSГC = (B∩S)ГSГ(B∩S) ⊆  (BГSГB)∩S ⊆ B∩S 
= C. Hence C is a semigamma bi-ideal of S. 
 

Proposition 2.10 
 
Let M be a Г-seminear-ring. If B is a semigamma bi- ideal of 
M, then B�n and n’�B for all � ∈	Г are semigamma bi- ideal of 
M where n, n’∈ M and nꞌ is distributive. 
 
Proof: 
 
Clearly B�n is a subsemigroup of (M, +) ∀	� ∈Г. Also 
(B�n)ГMГ(B�n) ⊆ BГMГ(B�n) ⊆ B�n and so we get that 
B�n is a semigamma bi- ideal of M. Since nꞌ is distributive, 
nꞌ�B is a subsemigroup of (M, +) for all � ∈Г and hence nꞌ�B 
is a semigamma bi- ideal of M. 
 
Corollary 2.11 
 
If B is a semigamma bi- ideal of M and b is a distributive 
element in M, then b�B�c is a semigamma bi- ideal of M for 
c	∈ M and for all � ∈	Г. 
 
Proposition 2.12 
 
If B is a semigamma bi- ideal and sub Г-seminear-ring of  a Г-
seminear-ring M and C is a semigamma bi- ideal of the Г-
seminear-ring B such that C� = C, then C is a semigamma bi- 
ideal of the Г-seminear-ring M. 
 
Proof: 
 
Since C is a semigamma bi- ideal of the Г-seminear-ring B we 
have, CГBГC ⊆ C Now, CГMГC = C�ГMГC�=CГ 
(CГMГC)ГC ⊆ CГ(BГMГB)ГC ⊆ CГBГC ⊆ C. Hence C is a 
semigamma bi- ideal of the Г-seminear-ring M. 
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Theorem 2.13 
 
Let M be a Г-seminear-ring. Let B be a semigamma bi- ideal of 
the Г-seminear-ring M and A be a non-empty subset of M, then 
following are true. 
 

 BГA is a semigamma bi- ideal of the Г-seminear-ring 
M. 

 AГB is a semigamma bi- ideal of the Г-seminear-ring 
M. 
 

Proof 
 

 We see that (BГA)Г(BГA) = (BГAГB)ГA and 
(BГA)ГMГ(BГA) = (BГAГMГB)ГA. Since B is a 
semigamma bi-ideal of the Г-seminear-ring M, 

⊆(BГA)Г(BГA) = (BГAГB)ГA  BГA and 
⊆(BГA)ГMГ(BГA) = (BГAГMГB)ГA  (BГMГB)ГA 

⊆ BГA. Therefore BГA is a semigamma bi- ideal of the 
Г-seminear-ring M. 

 Similar to i). 
 

b-simple Г-seminear-ring 
 
Definition 3.1 
 
A Г-seminear-ring M is said to be b-simple, if it has no proper 
semigamma bi- ideals. 
 
Example 3.2 
  
Consider the Г-seminear-ring (��, +,Г) under Г = 
{��, ��}	where ��, �� are given by the schemes 2:(0,1,0,0,0) and 
3:(0,1,1,0,0).(see p.408, Pilz [4]) 
 

     
0 1 2 3 4 

0 0 0 0 0 0 
1 0 1 0 0 0 
 2 0 2 0 0 0 
3 0 3 0 0 0 
4 0 4 0 0 0 

 
 

 
0 1 2 3 4 

0     0 0 0 0 0 
1 0 1 1 0 0 
2 0 2 2 0 0 
3 0 3 3 0 0 
4 0 4 4 0 0 

 
Since (��, +) has no proper Г-subsemigroup, the above Г-
seminear-ring is b-simple. 
 
Lemma 3.3 
 
Let M be a Г-seminear-ring. Then the following conditions are 
equivalent. 
 

 M is a Г-seminear-field 
 M� ≠{0} and for all m	∈	M*, M�m = M for all � ∈Г. 

 
Proof:  
 
i)⇒ii) Since M is a Г-seminear-field, it contains the identity 
element, which is also distributive. Clearly M�m ⊆ M. For 
m	∈ M, m = e�m 	∈	M�m implies M ⊆ M�m. Thus M = M�m. 

ii)⇒i) For all a, b	∈	M*, there exists aꞌ, bꞌ	∈	M* such that bꞌ��b 
= a and aꞌγ

�
a = bꞌ for all ��,γ

�
 of Г. Thus aꞌγ

�
(a��b) = 

(aꞌγ
�
a)	��b = bꞌ��b = a	≠	0 so a��b	≠	0. Hence M contains no 

zero divisors. Let d	≠	0	∈ M be a distributive element. Then 
there exists e	∈	M such that e�d = d ∀	� ∈Г. Now (d�� − �)�d 
= 0⇒ d�e = d. Let n	∈	M*. Then d�(e�n-n) = (d�e)�n-d�n = 
d�n-d�n = 0. This implies e�n = n	∀� ∈Г. Similarly n�e = 
n	∀	� ∈Г. Therefore ‘e’ becomes two-sided identity in M. 
Finally for all n	∈ M*, there exists nꞌ	∈ M* such that nꞌ�n = e. 
Hence M is a Г-seminear-field. 
 
Remark 3.4 
 
It is clear that any Г-seminear-field is b-simple. However, any 
b-simple Г-seminear-ring is not in general a Г-seminear-field 
and in the following theorem we obtain the necessary and 
sufficient condition for a b-simple Г-seminear-ring to a Г-
seminear-field. 
 
Lemma 3.5 
 
Let M be a Г-seminear-ring with more than one element and an 
absorbing zero. Then the following conditions are equivalent. 
 

 M is a Г-seminear-field 
 M is b-simple, M� ≠{0} and for 0	≠	n	∈ M, there exists 

nꞌ	∈	M such that nꞌ�n	≠	0 for every � ∈	Г 
 
Proof 
 
i) ⇒ii) If  M is a Г-seminear-field, then {0} and M are the only 
semigamma bi-ideals of M. For if {0}	≠	B is a semigamma bi-
ideal of M, clearly MГb ⊆ M. On other hand, n ∈	M, n = n�e = 
n�(bꞌ�b) = (n�bꞌ)�b ∈	MГb implies M ⊆ MГb. Hence M = 
MГb. Similarly, M = bГM. Now, M = M� = MГM = 
(bГM)Г(MГb) ⊆  bГMГb ⊆ B. Therefore M = B. Hence M is 
b-simple and the identity in M satisfies the required conditions. 
 
ii)⇒i) Since M� ≠{0}, there exists d ∈ M� and d�dꞌ = d�(dꞌ + 
0) =  d�dꞌ + d�0. This implies that d�0 = 0. We know that M� 
is a semigamma bi-ideal of M and since M is b-simple, we get 
M = M�. Let 0 ≠	n ∈	M, then by proposition 2.10, M�n is a 
semigamma bi-ideal of M and 0	≠	nꞌ�n	∈	M�n for some nꞌ ∈
	M. Since M is b-simple, M = M�n. Therefore by lemma 3.3, 
M is a Г-seminear-field. 
 
Theorem 3.6 
 
Let M be a Г-seminear-ring then M is b-simple Г-seminear-
ring iff  M = mГMГm ∀	m	∈ M. 
 
Proof: 
 
Let M be a b-simple Г-seminear-ring. Let m	∈ M. Then by 
theorem 2.13, mГMГm is a semigamma bi-ideal of M. Then M 
= mГMГm. Let B be a semigamma bi-ideal of M. Let b	∈	M, 
then M = bГMГb ⊆ BГMГB ⊆ B ⇒ M ⊆ B ⇒ M = B. 
Therefore M is a b-simple Г-seminear-ring. 
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