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INTRODUCTION

Difference equations occur as a natural description of observed evolution phenomena. The aim ofthis paper is to present a criteria

. x| . . .
for the existence ofat least one ¥ -bounded solution ofthe system of fizzy non- homogenous first order di fference equation

xln+1) = Alndxnd + by (1.1)

where A is a ( %K) discrete matrix and ¥ is a ¥-vector. P is a columnmatrix offirst order

K We assume that the system (1.1) has atleast one ¥ bounded solution on V¥ for every ¥ summable matrix function Zn on V.

Existence of ¥-bounded solutions of linear system of differential equations on time scales are established in [Charyulu et al.,
2019]. This theory infact uni fies both continuous and discrete systems in a single frame work. Our main goal in this p aper is to

establish ¥“-bounded solutions of fuzzy linear system of first order difference equations and obtain the existing results as a
particular case [ Diamandescu, 2014]. We also present a set o f sufficient conditions for the fizzy first order difference system to
completely controllable and observable. The main advantage of our approach is difference inclusions and hence is unique of its
kind. The results established in [Negotia, 1975]are used as a tool to establish ourmain results in this paper
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Note that 1)* is a matrix function which is similar to the concept of dichotomy introduced by Coppel as well as in [Murty. 2008

and Murty. 2009]. In the year 2004, Diamandescu [Diamandescu A. 2004] used the idea of bounded solutions for a non-
homogenous first order matrix system (1.1) on N.

PRELIMINARIES

In this section, we introduce notations, definitions and preliminary facts which are used throughout the paper.

Definition 2.1: Let * be a non-empty set. Afuzzy set ® =¥ s characterized by its membership function.

Arx =[01] gpg A s interpreted as the degree o fthe membership ofelement nin A for each * & X

The value O(zero) is used to represent complete non-membership, the value 1 is used to represent complete membership and the
values in between are used to represent the immediate degrees of membership. The mapping ! is also called the membership

fanction of fuzzy set 1.

Example: The membership function ofthe fuzzy set o freal numbers close to one can be defined as
Alt) = exp (B(t — 1))

where # is a positive real number.

The membership function close to 0 is defined as

1
Alr) = F.

Using this function, we can determine the membership grade of each real number in the fuzzy set, which signi fies the degree to
which that number is close to zero. For instance, the number 2 is assigned a grade 0.025, the number 1 a grade of 0.5 and the
number 0 a grade of1. See[Sailaja, 2019]

In the case o fdiscrete systems we have the following notions.

A X

is characterized by its membership function Aix = [tot]nd
0=ag=1

Definition 2.2: Let * be a non-empty set. A fuzzy seton “* in

A (n) is interpreted as a degree o fthe membership ofelements ™ in fuzzy set A fpreach ™ €N For we define

] ={neN:yln) = ”} it follows that the ®level sets Y1 € E” Itisa well known fact that
[g(y.701° = gly®.7"]

forall »FEELO=a =1aq Fig a discrete function. The Fuzzy set A the membership function o fthe fizzy set of natural
numbers close to one can be defined as

Aln) = exp —B(n — 1)

L

where ™ € Nand Bis a positive real number. The membership close to zero is defined as Ak = 1+n* Using this function, we

can detemmine the membership grade o f each natural number in the fuzzy set, which signi fies the degree o fwhich the number is
0

close to

Definition 2.3: Let %7 (™) be the level set of u:(n) thenwe define

uf(n) = fufln), uflnl.... . uf(n)}

Definition 2.4: Afuzzy number in parametric ©orm is represented by (¥z uz ), where
uzy = min[u]® 4 uz = max[u]® 0=a=<1
Definition 2.5: We define the zadeh’s extention principle by definition

Alwv]® = Alu®v*l0=a =1

Definition 2.6 : Let #:(n) € E*(i = 1,2, ... k) and define
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G = (uy (), uz(n), .. ug(n))

= {(a, ), i, (n), .. i) )} = @%(0), @ € [0.1]
= {ulﬁl{n].u;w{n]. ....ul;_.al{n]}for a € [01]
For the proofo fthe next theorem, we refer to Negotia and Relescu [2009].

Theorem 2.1:If %i € E¥ ' then

o [ E BN e 0sast
2. [l e [u]"gran 0 S =1

3. If “kis a non-decreasing sequence converging to & = @ then [u]® =Ny (4]

Conversely, if A0 e =1ljg, family ofsubsets of & ksatisfying (1) - (3) above then there exists a #i € £ ¥ such that
[ul]* = A% 0= =1y

U] = ugd®c A, O0=a=1
Let E¥ be the Euclidian X. space for ¥ = (X1, x3)7 € EF

Let Il be the normal of * denoted by
lxll = max{lx,Llx.l ... 2z}

where T denotes transpose of the column matrix.

Let ¥itN = (0,00),i = L2.....% 414 the matrix function

p& =diag iyt pflosas1
then ¥:i(n}is invertible for each 1 EN

Definition 2.7: Let function f NV = E¥ is saidto be IIE"ﬁsummable on Vif Zaatlly® G f ()l is convDefinition 2.8: A function
F:N - E¥ saidto be ¥“ummableon Vif Za=:ll@® G F(n)ll i convergent for all [0:1]

Now, we consider the two-point inclusions

yin+1) € Alndy(n) + b, .1
My(ng) + Ny(nf) € a, 2.2)

or ™€ [0.N] where M and N are constant square matrices oforderk and let ¥*"and ¥ be the solution sets of (2.1) satisfying
(2.2), then

i +1) € A 0) + b,
M§Eng) + Ny (ns) € ay
and

7+ 1) € AlF*=0) + b,
My®2(ng) + Ny (nf) € a,

Clearly ¥4 € ¥ gnd hence ¥ ) © ¥¥2(n)

Lemma 2.1: Let < @k = be non-decreasing sequence converging to & = 0 then
FEn) = Niay 55 ()
e A

e - o .
Proof Let fln) = G * %, XX and argent.

tagy

i%(n) = 4% » 4f x.. % {if
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Consider the inclusions

¥in + 1) € Aln)¥(n) + byii%(n) (2.3)

Fin + 1) e Aln)y¥n) + b, 4%(n) (2.4)

Let ¥**and ¥“be the solution sets of (2.3) and (2.4) respectively. Since #i("}isa fuzzy set and from Theorem 2.1, we have

o e
uy = Mgy U

Consider

"‘R’{ :] —_ Pt rl Fad e

u®ln) = 4§ = af = ..0ox 4
Xy Xy Al

= Mpay By 0 X A, XX A

2 Nysy 4% (0)
and the rest ofthe proof follows [9 Yan Wu, 2020 ].

Theorem 2.2: Let A0 € E¥** e invertible forall ™ € N Then the difference equation

wln + 1) = Aln) x(n) + b, (2.5)

Z

has atleast one ¥ -bounded solution of ¥ for every ¥*ummable finction Zon N if and only if for any findamental m atrix

¥(n) ofequation.

xln + 1) = Aln) x(n) (2.6)

there exists a positive constant ¥ such that

) yupoytk + Dyt ()| =k 0=k+1 =n @7
and PPy TR+ Dy R sk 0sn k41

Proof. For the proofo fthe theorem, we refer [#8] [Han Y 2007 and Kasi Viswanadh V. Kanuri 2020]

Theorem 2.3: Suppose thata) th_e fundamental matrix y(n) of (2.6) satisfies the condition (2.7) for some k= 0and
Further the function ¥ : N = E*ig ¥“summable on N. Then every ¥“-bounded solution
e of(2.5) satisfies

lim lp(n)x,ll =0
For the proofo fthe theorem, we refer to [Z-Murty, K. N., 2013 and Murty, K N., 2011]

MAIN RESULT

In this section we shall be concemed with our main result namely the existence of ¥ bounded solutions of matrix fuzzy
difference system in addition to establishing existence and uniqueness criteria for two-point boundary value problems. We
consider

fln+ 1) = Aln)xln) + b, (3.1)
and

Mx(ng) + Nx(n;) = a 32)

where M and N are constant matrices oforderk. we assume that the homogenous boundary value problem, has a trivial solution.
This will enable us that the characteristic matrix.

D=M Z__=Dt,f:{n[, —j-1+ N Z-‘:nt#{nf —j—1)
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is non-singular. Hence we have
#n) e xlng) + Z D:Iz.-{n — j = Du(j)
=

Substituting the general form of * () in the boundary condition matrix, we get
Dx(ng) + [M Zypwlng —j— 0+ N Z,p(ny —j — 1)]u;(a) (3.3)

x(ng JE — D'Ln'_i-+ D_, [M Zin:,f:{nn —j—11+ N Zian:{nf —-j- J.}] u_i-{n']

= a €
;II‘I‘ (k)f(k)llﬁﬁ

for =My,

lim I () x(m)ll = 0

Hence and hence ¥“(M)x(n)g ¥ symmable

Thisistrue forall @ € [0:1]and the proofis complete.
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