

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 12, Issue, 05, pp.11733-11737, May, 2020

DOI: https://doi.org/10.24941/ijcr.38822.05.2020

RESEARCH ARTICLE

NITAZOXANIDE: ANTIVIRAL PROPERTIES RELEVANT TO CURRENT GLOBAL SITUATION

^{1,2,3*}Mauro Geller, MD, PhD, ⁴Vinicius Fontanesi Blum, MD, ³Lisa Oliveira, MS, ⁵Spyros GE Mezitis, MD, PhD ⁶Rafael Nigri, MD, ⁷Mendel Suchmacher Neto, MD, ^{2,8}Carlos Pereira Nunes, MD, ⁸Adenilson de Souza da Fonseca, PhD and ⁹Karin Soares Cunha, PhD

¹Departamento de Microbiologia e Imunologia, Faculdade de Medicina, UNIFESO, Teresópolis, Brazil. ² Instituto de Pós-Graduação Médica Carlos Chagas, Rio de Janeiro, Brazil ³Programa de Pós-Graduação em Clínica Médica, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil

⁴Disciplina de Gastroenterologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil

⁵Medicine/Endocrinology, New York-Presbyterian Hospital/Weill-Cornell Medical Center, New York, USA ⁶Department of Medicine, Rutgers New Jersey Medical School, Newark, USA

⁷Santa Casa de Misericórdia do Rio de Janeiro, Rio de Janeiro, Brazil

⁸Centro de Ciências da Saúde, Centro Universitário Serra dos Órgãos, UNIFESO, Teresópolis, Brazil
⁹Programa de Pós-Graduação em Patologia, Departamento de Patologia, Faculdade de Medicina, Universidade
Federal Fluminense, Niteroi, Brazil

Nitazoxanide is a broad-spectrum, orally active anti-infective initially developed for the treatment of

protozoal disease. However, nitazoxanide and its active metabolite, tizoxanide, have demonstrated

antiviral activity against a variety of viruses in preclinical and clinical settings. This review of the

literature aims to present the pharmacological profile of nitazoxanide, mechanisms of antiviral action,

ARTICLE INFO

ABSTRACT

Article History: Received 19th February, 2020 Received in revised form 24th March, 2020 Accepted 28th April, 2020 Published online 31st May, 2020

Key Words:

Nitazoxanide, Tizoxanide, Antiviral, Viral Infections.

Copyright © 2020, *Mauro Geller et al.* This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

and its demonstrated and potential antiviral applicability.

Citation: *Mauro Geller, MD, PhD, Vinicius Fontanesi Blum, MD, Lisa Oliveira, MS, Spyros GE Mezitis, MD, Rafael Nigri et al.* 2020. "Nitazoxanide: antiviral properties relevant to current global situation", *International Journal of Current Research*, 12, (05), 11733-11737.

INTRODUCTION

Nitazoxanide is a broad-spectrum, orally active nitrothiazolysalicylamide anti-in fective drug targeting extracellular and intracellular classes of pathogens including protozoa, helminths, anaerobic and microaerophilic bacteria, and viruses. It is approved by the US Food and Drug Administration and other health agencies worldwide as a first-line, standard treatment of *Cryptosporidium parvum* or *Giardia lamblia* infection in healthy subjects (Anderson & Curran, 2007). Nitazoxanide is also used in the treatment of patients with HIV coinfect ed with intestinal classes of parasites such as protozoa or helminths, in addition to enteroviruses (Shakya *et al.*, 2017).

*Corresponding author: Mauro Geller, MD, PhD

Departamento de Microbiologia e Imun ologia, Faculdade de Medicina, UNIFESO, Teresópolis, Brazil.

Indications and Applications: Although originally developed and commercialized for treatment of protozoal disease, the antiviral properties of nitazoxanide and its metabolite, tizoxanide, have generated increasing interest in recent years due to its demonstrated ability to act as a broad-spectrum antiviral agent, through multiple mechanisms of action that appear to vary by virus type but that in general interfere with host-regulated pathways - including interferon or mTORC1 signalling pathways - involved in viral replication (Rossignol, 2014; Rossignol, 2016). These antiviral mechanisms include actions triggering inhibition of viral RNA and DNA replication, direct inhibition of viral protein expression, interference in host cellular metabolism, as well as circumvention of viral immune evasion mechanisms (Rossignol, 2014; Hickson et al., 2018). Importantly, the antiviral effect of nitazoxanide in triggering host immune functions rather than on the virus directly may represent a

INTERNATIONAL JOURNAL OF CURRENT RESEARCH barrier to development of drug resistance (Keefe & Rossignol, 2009). Nitazoxanide appears to modulate the innate immune response after a pathogen has entered a susceptible cellular target, a time at which amplification of the host immune control of viral proliferation is critical, especially for viruses that employ immune avoidance mechanisms to avoid triggering the innate immune response (Rossignol, 2016). Use of nitazoxanide has also been suggested in strategies aimed at preventing viral infection or eradication of viral reservoirs, which can potentially persist for varying periods of time (Jasenosky *et al.*, 2019).

Safety Profile: The safety profile of nitazoxanide is wellknown, having been evaluated in extensive pharmacological testing in animals and humans. It is considered to be a generally well-tolerated drug, especially in comparison to other drugs used in the treatment of intestinal parasitic infections, such as metronidazole (Rosenthal, 2017). Post-marketing surveillance studies estimate that more than 75 million adults and children have been exposed to nitazoxanide since its registration in the United States, and no significant drugrelated safety concerns have emerged (Rossignol, 2014). Of particular not e, Taubel et al. (2014) noted no effect on cardiac repolarization in a clinical study evaluating cardiac safety of nitazoxanide. Known side effects include systemic effects (asthenia, fever, pain, allergic reactions), central nervous system effects (dizziness, somnolence, insomnia). gastrointestinal effects (vomiting, dyspepsia, anorexia), urogenital effects (urine discoloration, dysuria, amenorrhea), metabolic side effects (increased SGPT), hematological effects (anemia, leukocytosis), dermatologic (rash, pruritis), respiratory, and cardiovascular effects, among others (Wishart et al., 2017). These side effects occur at a rate o f < 1%.

Absorption, Distribution, Metabolism, Elimination: Following oral administration and gastrointestinal absorption, nitazoxanide is rapidly hydrolyzed by plasma esterases to form tizoxanide, its active plasma protein-bound circulating metabolite, which then is glucurono-conjugated in the liver (Rossignol, 2014) and eliminated in the urine and bile. Nitazoxanide absorption is significantly improved when administered with food and this factor, together with the relatively short half-life of tizox anide in plasma (1.3h) and the potential impairment of oral drug absorption in seriously ill or hospitalized patients, must be taken into consideration when the drug is used in clinical trials of conditions other than intestinal infections (Rossignol, 2014, Gamiño-Arroyo et al., 2019).

Antiviral Mechanisms of Nitazox anide: In contrast to the direct mode of action in the setting of its initial indication an antiparasitic drug, nitazoxanide antiviral mechanisms act selectively at the post-translational level and interfere with viral intracellular trafficking and insertion into the host plasma membrane, rather than exerting a direct effect on the virus (Pizzorno et al., 2019). Several mechanisms have been proposed for the observed action of nitazoxanide against specific viruses, and most of them are likely derived from inhibition of mitochondrial oxidative phosphorylation (Rossignol & Bréchot, 2019). Proposed antiviral mechanisms based on the results of cell-based assays include enhancement or induction of IFN-stimulated gene (ISG), depletion of ATPsensitive intracellular Ca(2+) stores, and studies point to a weak association between nitazoxanide and PKR activation (Ashiru et al., 2014; Elazar et al., 2009; LaFrazia et al., 2013; Li *et al.*, 2017; Piacentini *et al.*, 2018; Rossignol *et al.*, 2009b; Sekiba *et al.*, 2018). Nitazoxanide also appears to decrease pro-inflammatory cytokine levels in peripheral blood mononuclear cells (McKimm-Breschkin *et al.*, 2018).

Various authors have reported viral inhibition in tissue culture and small animal models by nitazoxanide and its circulating metabolite tizoxanide, at concentrations ranging between 0.2-1.5µg/ml (Rossignol et al., 2009a, Ashton et al., 2010, Belardo et al., 2011, Sleeman et al., 2014, Gubareva et al., 2014). These include respiratory viruses such as influenza A and B (Influenza A subtypes H1N1, H3N2, H3N2v, H3N8, H5N9, H7N1, H1N1-PR8, and H5N9; Influenza B subtype Parma/3/04), hepatitis B, hepatitis C, ebola, and viral infections of the gastrointestinal tract. In the case of flaviviruses, nitazoxanide has been shown in cell cultures to inhibit the protease activity of the MBP-NS3 and His-NS2B heterocomplex in zika virus and Japanese encephalitis virus=(Li et al., 2017; Shi et al., 2014). Antiviral action of nitazox anide against paramyxovirus es has been attributed to the targeting of F protein folding by ERp57 inhibition. ERp57 is a member of the protein disulfide isomerase family located in the endoplasmic reticulum; silencing of this protein's expression in cell cultures has been reported to decrease viral replication (Piacentini et al., 2016; McKimm-Breschkin et al., 2018). In vitro tests evaluating the action of nitazoxanide on chikungunya virus indicated its ability to suppress cell-to-cell viral transmission, block the cytopathogenic effects induced by the virus, and limit viral entry, genome synthesis, and viral release (Wang *et al.*, 2016). Importantly, the antiviral IC_{50} concentrations observed in preclinical settings can be achieved in humans following oral administration of nitazoxanide, with respective peak and trough plasma concentrations of 4.6 and 0.8μ g/ml (Rossignol, 2016)

Viral Respiratory Tract Infections

Influenza: Nitazoxanide has been evaluated in the treatment of influenza viruses, which remain a public health problem despite the development of new antivirals. The emergence of new circulating strains, in addition to the emergence of resistant strains to classic antivirals, necessitates the development of new treatments or the identification of existing treatments that may be effective (Pizzorno et al., 2019). It is here that nitazoxanide is one candidate drug that showed promise among candidates for drug repurposing. Advantages include long-time market use and availability of postmarketing surveillance d at together with an acceptable safety profile. In the case of influenza, the mechanism of action of the tizoxanide metabolite is proposed to result from selective blockade of influenza viral hemagglutinin maturation, thus impairing viral hemagglutinin intracellular trafficking and insertion of the viral protein into the host membrane (Rossignol et al., 2009). Tilmanis et al. (2017) demonstrated the in vitro susceptibility of influenza virus strains to tizoxanide, reporting on the results of 210 circulating in fluenza A and B strains. Nitazoxanide has also demonstrated synergistic effects in combination with neuraminidase inhibitors oseltamivir and zanamivir in cell culture assays of influenza A, including amantadine-resistant and oseltamivirresistant strains (Belardo et al., 2015). Early results from placebo-controlled phase II studies showed promise in time-toresolution outcomes of symptomatic treatment of viral respiratory in fection in children using twice-daily oral doses of 100-200mg (Lopez-Chegne et al., 2011a); similar results were

reported among adoles cents and adults at oral dose of 500mg (Lopez-Chegne *et al.*, 2011a). A 2014 study comparing the 5day use of 600mg and 300mg dosing regimens with placebo in the treatment of acute uncomplicated in fluenza in fection reported reduction of symptom duration in the 600mg treatment group with minor adverse events (Haffizulla *et al.*, 2014). While these studies showed promising results, further confirmatory studies are warranted, especially in light of a recent study that reported duration o fhospitalization with nitazoxanide 600mg twice daily vs. placebo was similar among children and adults infected with influenza A and B strains and other respiratory viruses (Gamiño-Arroyo *et al.*, 2019).

Other respiratory viruses: Tizoxanide has been shown in vitro to inhibit replication of canine coronavirus (S-378), in addition to murine, bovine and human strains of coronavirus, specifically by inhibition of viral N protein expression (Cao *et al.*, 2015). Both nitazoxanide and tizoxanide also inhibit MERS-CoV in vitro, with respective IC50 of 0.92 and 0.83 μ g/ml (Rossignol, 2016). Preclinical data demonstrating inhibition of pro-inflammatory cytokine production (including TNF- α , IL-2, IL-4, I-5, IL-6, IL-8 and IL-10) suggest that nitazoxanide could improve clinical outcomes of MERS-CoV infections in humans by suppression of overproduction of these pro-inflammatory cytokines, particularly IL-6 (Rossignol, 2016).

Gastrointestinal Tract Viral Infections

Nitazoxanide has shown effectiveness and has been increasingly used empirically in the treatment of acute pediatric gastroenteritis of varying etiologies, including Giardia, Entamoeba, Bacteroides, Clostridium, Cryptosporidium, Rotavirus *and* Norovirus (Rossignol *et al.*, 2012). It is especially used in remote and low-in come settings, given the advantages of oral administration, thermal stability, and known safety and tolerability in children (Waddington *et al.*, 2018).

Rotavirus: A cell culture assay on antiviral activity of nitazoxanide and tizoxanide against two different rotaviruses, simian SA11-G3P[2] and human Wa-G1P[8], resulted in viral inhibition with EC₅₀ between 0.3-2µg/ml and CC₅₀s above 50µg/ml (La Frazia et al., 2013). In the case of noroviruses, nitazoxanide and other thiazolides interfere with viral replication by disrupting the interaction between the nonstructural proteins NSP5 and NSP2, thus reducing the size and altering viroplasmal architecture and decreasing rotavirus dsRNA formation (La Frazia et al., 2013). In the treatment of pediatric rotavirus diarrhea, Rossignol et al. (2006) reported results of a 3-day treatment utilizing 7.5 mg/kg nitazoxanide as an oral suspension, which significantly reduced the duration of rotavirus disease in hospitalized pediatric patients. A clinical trial is currently underway evaluating outcomes of oral nitazoxanide for the empiric treatment of acute gastroenteritis among Australian Aboriginal children (Waddington et al., 2018).

Norovirus: Dang *et al.* (2018) reported on the mechanism by which nitazoxanide and its metabolite tizoxanide inhibited human norovirus replication in vitro: tizoxanide-activated cellular antiviral response and stimulated the expression of a subset of interferon-stimulated genes (ISGs), particularly interferon regulatory factor 1 (IRF-1). Overexpression of exogenous IRF-1 inhibited noroviral replication, whereas

knockdown of IRF-1 largely attenuated the antiviral activity of nitazoxanide, suggesting that IRF-1 mediates nitazoxanide induced inhibition of human norovirus. Nitazoxanide induced antiviral response independently of the classical JAK-signal transducers and activators of transcription (JAK-STAT) pathway. Furthermore, TZD and ribavirin synergized to inhibit HuNV replication and completely depleted the replicons from host cells after long-term treatment. In the clinical setting, nitazoxanide has been success fully employed in the treatment of norovirus diarrhea among immunocompromised individuals, and is suggested as a safe therapeutic alternative, for cases in which a reduction in immunosuppression is not a viable option (Morris *et al.*, 2013; Siddiq *et al.*, 2011; Woodward *et al.*, 2017).

Adenovirus: Nitazoxanide has been suggested as a treatment alternative for adenovirus infection, presenting a more favorable tolerability profile in comparison to antivirals such as cidofovir (Esquer Garrigos *et al.*, 2018). Further investigation into this indication is needed with well controlled studies, because although data in the literature shows promise, to date they are limited to case reports (Esquer Garrigos *et al.*, 2018).

Hepatitis

Hepatitis B: In cell cultures, nitazoxanide and tizoxanide inhibited viral replication of Hepatitis B virus (HBV), reducing the levels of extracellular HBV surface and e antigens (HBsAg, HBeAg), as well as the levels of intracellular HBV nucleocapsid core antigen (HBcAg) in a dose-dependent manner (Korba et al., 2008). Nitazoxanide also displayed synergistic anti-HBV activity when combined with lamivudine or adefovir dipovoxil (Korba et al., 2008). Nitazoxanide was reported to inhibit expression of HBV cccDNA and HBV RNA transcription by interference with hepatitis B X protein (HBx)damage-specific DNA-binding protein 1(DDB1) interaction (Sekiba et al., 2019). A recently published proof-of-concept clinical trial evaluating use of nitazoxanide in the treatment of chronic hepatitis B reported rapid decrease of serum HBV DNA following twice-daily oral treatment with 500 mg nitazoxanide (Rossignol & Bréchot, 2019). Clinical trials are currently underway evaluating nitazoxanide in combination with oral nucleos(t)ide analogues (NUCs) in the treatment of chronic hepatitis B.

Hepatitis C: In cell cultures, both nitazoxanide and tizoxanide selectively reduced intracellular Hepatitis C virus (HCV) replication in AVA5 cells. Nitazoxanide exhibited synergistic inhibitory activity in combination with interferon (IFN) or 2 CmeC (2 -C-methyl cytidine) against HCV, and was an effective inhibitor of an NS5B and two NS3 drug-resistant mutants in Huh7 cells.

Pre-treatment of HCV replicon cells with nitazoxanide potentiated the effect of subsequent treatment with combinations containing IFN, but not 2 CmeC, suggesting an interesting complementary activity with IFN (Korba *et al.*, 2008). Clinical studies of hepatitis C employing nitazoxanide as monotherapy or as add-on have been carried out on hepatitis C genotype 1 or 4, with varying results, and further well-designed, robust, randomized trials are needed to better evaluate the potential benefit of nitazoxanide in the treatment of chronic hepatitis C (Nikolova *et al.*, 2014).

Negative-Strand RNA Viruses

Nitazoxanide has been reported to counteract virus-specific immune evasion mechanisms, through enhancement of RNA sensing and the interferon axis that is triggered by exposure to foreign cytoplasmic RNA (Jasenosky et al., 2019). Although this premise has yet to be tested in the clinical setting, Ebola virus replication is inhibited by nitazoxanide in vitro, in addition to exerting a host innate immune response amplification that improves viral detection. The mechanisms by which nitazoxanide has demonstrated efficacy in Ebola virus infection inhibition include enhancement of retinoic-acidinducible protein I (RIG-I)-like-receptor, mitochondrial antiviral signaling protein, interferon regulatory factor 3, interferon activities and transcription induction of the antiviral phosphatase GADD34. In human cells, nitazoxanide inhibits Ebola virus replication through enhancement of RIG I and PKR, and consequently enhancement of viral detection and circumvention of the virus's ability to block these specific sensing mechanisms. In the case of vesicular stomatitis virus (VSV), nitaxozanide appears to act in a manner similar to that of Ebola virus in circumventing viral immune evasion mechanisms, through RIG-I and GADD34 (but not PKR).

Potential for Sars-Cov-2:

Monotherapy and/or Combination Therapy: To date, a number of authors have suggested that use of nitazoxanide at dose regimens previously employed in randomized controlled clinical trials of SARS CoV-2 whether as monotherapy or in combination with other drugs, including azithromycin and hydroxychloroquine. These propositions take into account previous studies of nitazoxanide monotherapy in the treatment of in fluenza and aim to assess the potential of nitazoxanide alone or in combination to decrease SARS CoV-2 morbidity and mortality (Kelleni *et al.*, 2020; Padmanabhan, 2020). We support these suggestions based on the urgent need for an easily accessible, safe, and effective treatment in light of the current pandemic.

CONCLUSION

This review highlights the potential therapeutic role of nitazoxanide as an antiviral, having shown inhibitory activity in a variety of viral species and strains through a number of mechanisms. In the current scenario, we await the results of clinical trials using nitazoxanide in the treatment of SARS-Cov-2. Given the promising preclinical results reported previously, it may be that potential positive results will offer a greatly needed therapeutic option in the global response to the coronavirus pandemic.

REFERENCES

- Anderson VR, Curran MP. 2007 Nitazox anide: a review of its use in the treatment of gastrointestinal infections. Drugs., 67(13):1947-67.
- Ashiru O, Howe JD, Butters TD. 2014. Nitazoxanide, an antiviral thiazolide, depletes ATP-sensitive intracellular Ca(2+) stores. Virology. 462-463:135-148. doi:10.1016/j.virol.2014.05.015
- Ashton L.V., Callan R.L., Rao S., Landoldt G.A. 2010. In vitro susceptibility of canine in fluenza A (H3N8) virus to

nitazoxanide and tizoxanide. Vet. Med. Int. 2010 (article ID 891010).

- Belardo, G., La Frazia, S., Cenciarelli, O., Carta, S., Rossignol, J.F., Santoro, M.G., 2011. Nitazoxanide, a novel potential anti-influenza drug, acting in synergism with neuraminidase inhibitors. Poster presented at: 49th Infectious Disease Society of America Annual Meeting, Oct 20–23, 2011, Boston, Massachusetts.
- Dang W, Xu L, Ma B, *et al.*, 2018. Nitazoxanide Inhibits Human Norovirus Replication and Synergizes with Ribavirin by Activation of Cellular Antiviral Response. Antimicrob Agents Chemother. 62(11):e00707-18. Published 2018 Oct 24. doi:10.1128/AAC.00707-18
- Elazar M, Liu M, McKenna SA, *et al.*, 2009. The anti-hepatitis C agent nitazoxanide induces phosphorylation of eukaryotic initiation factor 2 alpha via protein kinase activated by double-stranded RNA activation. Gastroenterology.137(5):1827-1835. doi:10.1053/j.ga stro.2009.07.056
- Esquer Garrigos Z, Barth D, Hamdi AM, Abu Saleh OM, Sohail MR. 2018. Nitazoxanide Is a Therapeutic Option for Adenovirus-Related Enteritis in Immunocompromised Adults. Antimicrob Agents Chemother. Nov 26;62(12):e01937-18. doi: 10.1128/AAC.01937-18
- Gamiño-Arroyo AE, Guerrero ML, McCarthy S, *et al.*, 2019. Mexico Emerging Infectious Diseases Clinical Research Network (LaRed). Efficacy and Safety of Nitazoxanide in Addition to Standard of Care for the Treatment of Severe Acute Respiratory Illness. *Clin Infect Dis.* Nov 13;69(11):1903-1911. doi: 10.1093/cid/ciz100. PMID: 30753384; PMCID: PMC6853643.
- Gubareva, L.V., Marjuki, H., Mishin, V.P., Sleeman, K., Tamura, D., Chesnokov, A., De La Cruz, J., Villaneuva, J., Davis, T. 2014. Susceptibility of avian in fluenza A(H7N9) viruses to FDA approved and investigational antiviral drugs. Programme & Abstract Book, Influenza and Other Respiratory Virus Infections: Advances in Clinical Management. Third ISIRV-Antiviral Group Conference. Abstract P57, 83.
- Jasenosky LD, Cadena C, Mire CE, *et al.*, 2019. The FDA-Approved Oral Drug Nitazoxanide Ampli fies Host Antiviral Responses and Inhibits Ebola Virus. iScience. 19:1279-1290. doi:10.1016/j.isci.2019.07.003
- Keeffe EB, Rossignol JF. 2009. Treatment of chronic viral hepatitis with nitazoxanide and second generation thiazolides. *World J Gastroenterol*.15(15):1805-1808. doi:10.3748/wjg.15.1805
- Kelleni MT. 2020. Nitazoxanide/Azithromycin combination for COVID-19: A suggested new protocol for COVID-19 early management. Pharmacol Res. Apr 30:104874. doi: 10.1016/j.phrs.2020.104874. Epub ahead of print. PMID: 32360581; PMCID: PMC7192107.
- Korba, B. E., Montero, A. B., Farrar, K., Gaye, K., Mukerjee, S., Ayers, M. S., & Rossignol, J.F. 2008. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication. Antiviral Research, 77(1), 56–63. doi:10.1016/j.antiviral.2007.08.005
- La Frazia S, Ciucci A, Amoldi F, Coira M, Gianferretti P, Angelini M, Belardo G, Burrone OR, Rossignol JF, Santoro MG. 2013. Thiazolides, a new class of antiviral agents effective against rotavirus infection, target viral morphogenesis, inhibiting viroplasm formation. *J Virol*. Oct;87(20):11096-106. doi: 10.1128/JVI.01213-13
- Lopez-Chegne N, Julcamoro LM, Carrion M, Bardin M. 2011. Randomized, double blind, pilot study of nitazoxanide (NTZ)

versus placebo (PCB) for the treatment of symptoms associated with viral respiratory in fection (VRI) in children. Oral abstract 1341. In: Program and abstracts of the 49th Annual Meeting of the Infectious Diseases Society of America, Boston, MA, 20–23 October.

- Morris J, Brown W, Morris CL. 2013. Nitazoxanide is effective therapy for norovirus gastroent eritis after chemotherapy and hematopoietic stem cell transplantation (HSCT). Blood 122 (21): 4581.
- Nikolova K, Gluud C, Grevstad B, Jakobsen JC. 2014. Nitazoxanide for chronic hepatitis C. Cochrane Database Syst Rev.(4):CD009182. doi:10.1002/ 14651858. CD009182.pub2
- Padmanabhan S. 2020. Potential dual therapeutic approach against SARS-CoV-2/COVID-19 with Nitazox anide and Hydroxychloroquine.
- Piacentini S, La Frazia S, Riccio A. *et al.*, 2018. Nitazoxanide inhibits paramyxovirus replication by targeting the Fusion protein folding: role of glycoprotein-specific thiol oxidoreductas e ERp57. *Sci Rep.*, 8(1):10425. doi:10.1038/s41598-018-28172-9
- Pizzorno A, Padey B, Terrier O, Rosa-Calatrava M. 2019. Drug Repurposing Approaches for the Treatment of Influenza Viral Infection: Reviving Old Drugs to Fight Against a Long-Lived Enemy. Front Immunol.10:531.
- Rosenthal PJ. 2017. Antiprotozoal Drugs. In: Katzung BG, editor. Basic & Clinical Pharmacology, 14e. McGraw-Hill Education; New York, NY.
- Rossignol J.F., La Frazia S., Chiappa L., Ciucci A., Santoro M.G. 2009. Thiazolides, a new class of anti-influenza molecules targeting viral hemagglutinin at post-translational level. J. Biol. Chem. 284:29798–29808.
- Rossignol JF, Abu-Zekry M, Hussein A, Santoro MG. 2006. Effect of nitazoxanide for treatment of severe rotavirus diarrhoea: randomised double-blind placebo-controlled trial. Lancet. 368(9530):124-129. doi:10.1016/S0140-6736(06)68852-1
- Rossignol JF, Ayoub A, Ayers MS. 2001. Treatment of diarrhea caused by Cryptosporidium parvum: a prospective randomized, double-blind, placebo-controlled study of nitazoxanide. *J Infect Dis.*, 184:103–6.
- Rossignol JF, Bréchot, C. 2019. A Pilot Clinical Trial of Nitazoxanide in the Treatment of Chronic Hepatitis B. Hepatol Commun; 3: 744-747. doi:10.1002/hep4.1339
- Rossignol JF, Lopez-Chegne N, Julcamoro LM, Carrion ME, Bardin MC. 2012. Nitazoxanide for the empiric treatment of pediatric in fectious diarrhea. Trans R Soc Trop Med Hyg. Mar; 106(3):167-73.
- Rossignol JF. 2016. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. *J Infect Public Health.*, 9:227–30.
- Rossignol JF. 2014. Nitazoxanide: a first-in-class broadspectrum antiviral agent. *Antiviral Res.* Oct;110:94-103. doi: 10.1016/j.antiviral.2014.07.014.

- Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T. *et al.*, 2019. Inhibition of HBV transcription from cccDNA with nitazoxanide by targeting the HBX-DDB1 interaction. *Cell Mol Gastroenterol Hepatol*, 7: 297-312.
- Shakya A, Bhat HR, Ghosh SK. 2017. Update on Nitazoxanide: A Multifunctional Chemotherapeutic Agent. Curr Drug Discov Technol. Jul 27. pii: CDDT-EPUB-85034.
- Shi Z, Wei J, Deng X, *et al.*, 2014. Nitazoxanide inhibits the replication of Japanese encephalitis virus in cultured cells and in a mouse model. *Virol J*, 11:10.
- Siddiq DM, Koo HL, Adachi JA, Viola GM. 2011. Norovirus gastroenteritis successfully treated with nitazoxanide. J Infect. Nov;63(5):394-7. doi: 10.1016/j.jinf2011.08.002
- Sleeman K., Mishin V.P., Guo Z., Garten R.J., Balish A., Fry A.M., Villanueva J., Stevens J., Gubavera V. 2013. Antiviral susceptibility of variant influenza A (H3N2)v viruses isolated in the United States during 2011. Antimicrob. Agents Chemother. 2014;58:2045–2051.
- Taubel J., Lorch U., Rossignol J.F., Ferber J., Camm A. 2014. Analyzing the relationship of QT interval and exposure to nitazoxanide, a prospective candidate for influenza antiviral therapy-A formal TQT study. *J. Clin. Pharmacol.* (Epub ahead of print)
- Tilmanis D, van Baalen C, Oh DY, Rossignol JF, Hurt AC. 2017. The susceptibility of circulating human influenza viruses to tizoxanide, the active metabolite of nitazoxanide. Antiviral Res.147:142-148. doi:10.1016 /j.antiviral. 2017.10.002
- Waddington CS, McLeod C, Morris P, Bowen A, Naunton M, Carapetis J, Grimwood K, Robins-Browne R, Kirkwood CD, Baird R, Green D, Andrews R, Fearon D, Francis J, Marsh JA, Snelling T. 2018. The NICE-GUT trial protocol: a randomised, placebo controlled trial of oral nitazox anide for the empiric treatment of acute gastroenteritis among Australian Aboriginal children. BMJ Open. Feb 1;8(2):e019632. doi: 10.1136/bmjopen-2017-019632. PMID: 29391385; PMCID: PMC5829923.
- Wang YM, Lu JW, Lin CC, Chin YF, Wu TY, Lin LI, Lai ZZ, Kuo SC, Ho YJ. 2016. Antiviral activities of niclosamide and nitazoxanide against chikungunya virus entry and transmission. *Antiviral Res.* Nov;135:81-90. doi: 10.1016/j.antiviral.2016.10.003.
- Wishart DS, Feunang YD, Guo AC, *et al.* 2018. DrugBank 5.0: a major update to the DrugBank database for. Nucleic Acids Res. 2017 Nov 8. doi:10.1093/nar/gkx1037.
- Woodward J, Gkrania-Klotsas E, Kumararatne D. 2017.
 Chronic norovirus infection and common variable immunodeficiency. Clin Exp Immunol. Jun;188(3):363-370.
 doi: 10.1111/cei.12884. Epub 2016 Nov 16. PMID: 27753065; PMCID: PMC5422859
