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ARTICLE INFO ABSTRACT

We have created a formula to calculate the number of primes less than or equal to any given positive
integer ‘ n ‘ . It is denoted by  π (n) . This is a fundamental concept in number theory and it is difficult
to calculate. A prime number can be divided by 1 and the number itself. The set of all primes can be
written as { 2,3,5,7,11,13,17,...............}. The Prime Counting Function was conjectured in the end of
18th century by the famous Mathematician Gauss and Legendre Sir, to be approximately  x/(ln x) .But
in this paper we are presenting the real formula, by applying the modern approach, that is by applying
the basic concept of set theory.
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use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

The main problem in number theory in Mathematics is to understand the distribution of prime numbers.  Let π(n) , denote the
Prime Counting Function, defined as the number of primes less than or equal to positive integer ‘ n ‘. Many Mathematician
worked hard including famous Indian Mathematician, RamanujanSir, and  G.H. Hardy Sir tried to create the formula for the Prime
Counting Function pi(n). A good numbers of deep problem in analytical number theory can be expressed in terms of the Prime
Counting Function π(n). For example, the Riemann hypothesis,  so Gauss and Legendre Sir’s approximation solution  x/ln(x) , in
the sense that the statement is the prime number theorem. So till now,  there is no formula for the Prime Counting Function π(n)
,as we have seen from the end of 18th century to till now. In this paper,  we are presenting the real formula and it’s proof (examine)
by taking examples, we have to find that the formula which I have invented is absolutely correct.

Our perspective:

If we observe, Figures in number theory in Mathematics then we observe those figures often times.

The set consists of all prime numbers { 2,3,5,,7,11,13,17,19,23,29,31,..............} , we observed that there is no distinct common
gaps between two serial prime numbers,  that is we can not find out any common interval to the primes. How can we formulate the
Prime Counting Function π(n), we were so worked hard and hard to formulate it,  as it is originally a basic concept of number
theory (Arithmetic).
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We have done the formula to the Prime Counting Function π(n) , so that we can give lecture and demonstration to our students in a very
understanding and simple way to “the Prime Counting Function π(n).

Creations

In number theory,  here we introduce one new formula to calculate the number of primes less than or equal to any given positive integer
‘n' , by applying a basic concept of set theory to that number theory. We know that there is no such prime,  less than or equal to the
positive integer 1, as the smallest prime is 2. So by keeping it in our mind, let’s start ,

Let π(n) = number of primes less than or equal to the positive integer ‘n'.

Therefore,  π(1)=0

Now, we can introduce the formula for π(n) ,as below.

π(n) = 1 + n [ Zodd \ (AUBUCUUDU.................)]

Where,  Zodd = the set consists of all the positive odd integers less than or equal to n ,which are greater than 2.

A = the set consists of all positive multiples of the prime 3, which are greater than 3 ,and less than or equal to the positive integer n.
B = the set consists of all the positive multiples of the prime 5, which are greater than 5,and less than or equal to the positive integer n.
C = the set consists of all the positive multiples of the prime 7 ,which are greater than 7,and less than or equal to the positive integer n.
D = the set consists of all the positive multiples of the prime 11,which are greater than 11, and less than or equal to the positive integer n.
.........And so on.

Now ,         for n =2 ; π(2) = 1 + n[ {   } \ {    }] ,as there is no odd positive integer less than or equal to 2.

That is  ,   π(2) = 1+ 0 = 1

And , for n=3 ;  π(3) = 1 + n[ Z \ A ] , here Z =:{3} and A = {    }.

= 1 + n[{3} \ {   }]
= 1+1 = 2.

Which is correct,  as the number of primes less than or equal to 3 , are 2 & 3. That is the number of primes 2.

Now,  for n=15 , π (15)=?

Here, Zodd = the set consists of all positive odd integers , less than or equal to 15,and which are greater than 2.

= { 3,5,7,9,11,13,15}

A= the set consists of all the positive multiples of the prime 3,which are greater than 3,and less than or equal to 15.

={6,9,12,15}

B= the set consists of all the positive multiples of the prime 5, which are greater than 5, and less than or equal to 15.

={19,15}

C = the set consists of all the positive multiples of the prime 7,which are greater than 7, and less than or equal to 15.

={14}

Thus , AUBUC ={6,9,10,12,14,15}

Zodd \( AUBUC)={3,5,7,9,11,13,15} \{6,9,10,12,14,15}
={3,5,7,11,13} ; so that n [Zodd \ (AUBUC)] =n {3,5,7,11,13} = 5 .

Thus , π(15)= 1+ n [ Z odd\ (AUBUC)]
= 1 + 5 = 6 ,

Which is correct,  as the prime numbers less than or equal to 15 are 2,3,5,7,11 &13. That is 6.

Now,  for n = 100 ; π(100) = ?

Let,

Zodd = {3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,55,57,59,61,63,65,
67,69,71,73,75,77,79,81,83,85,87,89,91,93,95,97,99}

A1= the set consists of all the positive multiples of the prime 3, say xi, 3<xi <100.
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={6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99}

A2 = the set consists of all the positive multiples of the prime 5,say xi; xi’s are greater than 5 and less than or equal to 100.
={10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100}

A3 = the set consists of all the positive multiples of the prime 7,say xi; 7<xi <100.

= {14,21,28,35,42,49,56,63,70,77,84,91,98}

A4 = the set consists of all the positive multiples of the prime 11,say xi; 11<xi <100.

={22,33,44,55,66,77,88,99}

A5 = the set consists of all the positive multiples of the prime 13,say xi; 13<xi <100.

={26,39,52,65,78,91}

A6 = the set consists of all the positive multiples of the prime 17,say xi; 17<xi <100.

={34,51,68,85}

A7 = the set consists of all the positive multiples of the prime 19,say xi; 19<xi <100.

={38,57,76,95}

A8 = the set consists of all the positive multiples of the prime 23,say xi;23<xi <100.

={46,69,92}

A9 = the set consists of all the positive multiples of the prime 29 ,say xi; 29<xi <100.

={58,87}

A10 = the set consists of all the positive multiples of the prime 31,say xi;31<xi <100.

={62,93}

A11 = the set consists of all the positive multiples of the prime 37,say xi; 37<xi <100.

={74}

A12 = the set consists of all the positive multiples of the prime 41,say xi; 41<xi <100.

={82}

A13 = the set consists of all the positive multiples of the prime 43,say xi; 43<xi <100.

={86}

A14 = the set consists of all the positive multiples of the prime 47,say xi; 47<xi <100.

={94}

Zodd ∩ (( A1 UA2 UA3 UA4 U.............................UA14).

={9,15,21,25,27,33,35,39,45,49,51,55,57,63,65,69,75,77,81,85,87,91,93,95,99}

Thus , n[ Z odd\ ( A1 UA2 UA3 UA4 U.............................UA14).

= n{ Z odd } \ n { Z odd ∩ ( A1 UA2 UA3 UA4 U.............................UA14).

= 49 – 25 =24

Hence (100) = 1 + n[ Z odd \ ( A1 UA2 UA3 UA4 U.............................UA14).

= 1 + 24 =25 .
Which is correct ,actual Counting we have the number of primes less than or equal to the positive integer 100 is 25.

Let us assume that  n= 1000 .
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We have to find out π (1000) .
Let the set  Zodd = the set of all positive odd integers greater than 2 , which are less than or equal to 1000.

={3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,,47,49,51,53,55,57,59,61,63,65,67,69,
71,73,75,77,79,81,83,85,87,89,91,93,95,97,99,101,103,105,107,109,111,113,115,117,119,121,123,125,
127,129,131,133,135,137,139,141,143,145,147,149,151,153,155,157,159,161,163,165,167,169,171,173,175,177,179,181,183,185,187,1
89,191,193,195,197,199,201,203,205,207,209,211,213,215,217,219,221,223,225,227,229,231,233,235,237,239,241,243,245,247,249,O2
51,253,255,257,259,261,263,265,267,
269,271,273,275,277,279,281,283,285,287,289,291,293,295,297,299,301,303,305,307,309,311,313,315,317,319,321,323,325,327,329,3
31,333,335,337,339,341,343,345,347,349,351,353,355,357,359,361,363,365,367,379,371,373,375,377,379,381,383,385,387,389,391,39
3,395,397,399,401,403,405,407,409,411,413,415,417,419,421,423,425,427,429,431,433,435,437,439,441,443,445,447,449,451,453,455,
457,459,461,463,465,467,469,471,473,475,477,479,481,483,485,487,489,491,493,495,497,499,501,503,505,507,509,511,513,515,517,5
19,521,523,525,527,529,531,533,535,537,539,541,543,545,547,549,551,553,555,557,559,561,563,565,567,569,571,573,575,577,579,58
1,583,585,587,589,591,593,595,597,599,601,603,605,607,609,611,613,615,617,619,621,623,625,627,629,631,633,635,637,639,641,643,
645,647,649,651,653,655,657,659,661,663,665,667,669,671,673,675,677,679,681,683,685,687,689,691,693,695,697,699,701,703,705,7
07,709,711,713,715,717,719,721,723,725,727,729,731,733,735,737,739,741,743,745,747,749,751,753,755,757,759,761,763,765,767,76
9,771,773,775,777,779,781,783,785,787,789,791,793,795,797,799,801,803,805,807,809,811,813,815,817,819,821,823,825,827,829,831,
833,835,837,839,841,843,845,847,849,851,853,855,857,859,861,863,865,867,869,871,873,875,877,879,881,883,885,887,889,891,893,8
95,897,899,901,903,905,907,909,911,913,915,917,919,921,923,925,927,929,931,933,935,937,939,941,943,945,947,949,951,953,955,95
7,959,961,963,965,967,969,971,973,975,977,979,981,983,985,987,989,991,993,995,997,999}

Also , A1 = the set consists of all the positive multiples of the prime 3 ,which are greater than 3 and less than or equal to 1000.

={ 6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,87,90,93,96,99,102
,105,108,111,114,117,120,123,126,123,129,132,135,138,141,144,147,150,153,156,159,162,165,168,171,174,177,180,183,186,189,192,1
95,198,201,204,207,210,213,216,219,222,225,228,231,234,237,240,243,246,249,252,255,258,261,264,267,270,273,276,279,282,285,28
8,291,294,297,300,303,306,309,312,315,318,321,324,327,330,333,336,339,342,345,348,351,354,357,360,363,366,369,372,375,378,381,
384,387,390,393,396,399,402,405,408,411,41,417,420,423,426,429,432,435,438,441,444,447,450,453,456,459,462,465,468,471,474,47
7,480,483,486,489,492,495,498,501,504,507,510,513,516,519,522,525,528,531,534,537,540,543,546,549,552,555,558,561,564,567,570,
573,576,579,582,585,588,591,594,597,600,603,606,609,612,615,618,621,624,627,630,633,636,639,642,645,648,651,654,657,660,663,6
66,669,672,675,678,681,684,687,690,693,696,699,702,705,708,711,714,717,720,723,726,729,732,735,738,741,744,747,750,753,756,75
9,762,765,768,771,774,777,780,783,786,789,792,795,798,801,804,807,810,813,816,819,822,825,828,831,834,837,840,843,846,849,852,
855,858,861,864,867,870,873,876,879,882,885,888,891,894,897,900,903,906,909,912,915,918,921,924,927,930,933,936,939,942,945,9
48,951,954,957,960,963,966,969,972,975,978,981,984,987,990,993,996,999}

A2 = the set consists of all the positive multiples of the prime 5 , which are greater than 5 ,and less than or equal to 1000.

={10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100,105,110,115,120,125,130,135,140,145,
150,155,160,165,170,175,180,185,190,195,200,205,210,215,220,225,230,235,240,245,250,255,260,265,270,275,280,285,290,295,300,3
05,310,315,320,325,330,335,340,345,350,355,360,365,370,375,380,385,390,395,400,405,410,415,420,425,430,435,440,445,450,455,46
0,465,470,475,480,485,490,495,500,505,,510,515,520,525,530,535,540,545,550,555,560,565,570,575,580,585,590,595,600,605,610,615
,620,625,630,635,640,645,650,655,660,665,670,675,680,685,690,695,700,705,710,715,720,725,730,735,740,745,750,755,760,765,770,7
75,780,785,790,795,800,805,810,815,820,825,830,835,840,845,850,855,860,865,870,875,880,885,890,895,900,905,910,915,920,925,93
0,935,940,945,950,955,960,965,970,975,980,985,990,995,1000}.

A3 = the set  consists of all the positive multiples of the prime 7 , say xi,where  7 < xi < 1000.

={14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119,126,133,140,147,154,161,168,175,182,189,196,
,203,210,217,224,231,238,245,252,259,266,273,280,287,294,301,308,315,322,329,336,343,350,357,364,371,378,385,392,399,406,413,4
20,427,434,441,448,455,462,469,476,483,490,497,504,511,518,525,532,539,546,553,560,567,574,581,588,595,602,609,616,623,630,63
7,644,651,658,665,672,679,686,693,700,707,714,721,728,735,742,749,756,763,770,777,784,791,798,805,812,819,826,833,840,847,854,
861,868,875,882,889,896,903,910,917,924,931,938,945,952,959,966,973,980,987,994}

A4 = the set consists  of all the positive multiples of the prime 11 ,say xi ,where 11 < xi < 1000.

={22,33,44,55,66,77,88,99,110,121,132,143,154,165,176,187,198,209,220,231,242,253,264,275,286,297,308,319,330,341,352,363,374,
385396,407,418,429,440,451,462,473,484,495,506,517,528,539,550,561,572,583,594,605,616,627,638,649,660,671,682,693,704,715,72
6,737,748,759,770,781,792,803,814,825,836,847,858,869,880,891,902,913,924,935,946,957,968,979,990}

A5 = the set consists of all the positive multiples of the prime 13 , say xi,  where 13 <xi <1000.
={26,39,52,65,78,91,104,117,130,143,156,169,182,195,208,221,234,247,260,273,286,299,312,325,338,

351,364,377,390,403,416,429,442,455,468,481,494,507,520,533,546,559,572,585,598,611,624,637,650,663,676,689,702,715,728,741,7
54,767,780,793,806,819,832,845,858,871,884,897,910,923,936,949,962,975,988}
A6 = the set consists of all the positive multiples of the prime 17, say xi, where 17 < xi < 1000.
={34,51,68,85,102,119,136,153,170,187,204,221,238,255,272,289,306,323,340,357,374,391,408,425,
442,459,476,493,510,527,544,571,588,605,622,639,656,673,690,707,724,741,758,775,792,809,826,843,860,877,894,911,928,945,962,9
79,996}
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A7 = the set consists of all the positive multiples of the prime 19, say xi,  where 19< xi  <1000.
={38,57,76,95,114,133,152,171,190,209,228,247,266,285,304,323,342,361,380,399,418,437,456,475,
494,513,532,551,570,589,608,627,646,665,684,703,722,741,760,779,798,817,836,855,874,893,912,931,950,969,988}
A8 = the set consists of positive multiples of the prime 23, say xi, where 23 < xi  < 1000.
={46,69,92,115,138,161,184,207,230,253,276,299,322,345,368,391,414,437,460,483,506,529,552,575,
598,621,644,667,690,713,736,759,782,805,828,851,874,897,920,943,966,989}
A9 =the set consists of all the positive multiples of the prime 29 ,say xi,  where 29 < xi  < 1000.
={58,87,116,145,174,203,232,261,290,319,348,377,406,435,464,493,522,551,580,609,638,667,696,725,754,783,812,841,870,899,928,9
57,986}

A10 =the set consists of all the positive multiples of the prime 31, say xi  ;31<xi <1000.
={62,93,124,155,186,217,248,279,310,341,372,403,434,465,496,527,558,589,620,651,682,713,744,7775,806,837,868,899,930,961,992}
A11 = the set consists of all the positive  multiples of the prime 37 ,say xi; 37<xi <1000.
={74,111,148,185,222,258,296,333,370,407,444,481,518,555,592,629,666,708,740,777,814,851,888,925,963,889}
A12= the set consists of all the positive multiples of the prime 41, say  xi ; 41<xi <1000.
={82,123,164,205,246,287,328,369,410,451,498,533,574,615,656,697,738,779,820,861,902,943,984}

A13=the set consists of all the positive multiples of the prime 43 , say xi; 43<xi <1000.
={86,129,172,215,258,301,344,387,430,473,516,559,602,645,688,731,774,817,860,903,946,989}
A14= the set of all the positive multiples of the prime47 , say xi; 47<xi <1000.
={94,141,188,235,282,329,376,423,470,517,564,611,658,705,752,799,846,893,940,987}
A15=the set consists of all the positive multiples of the prime 53, say xi; 53<xi <1000.
={ 106,159,212,265,318,371,424,477,530,583,636,689,742,795,848,901,954}
A16= the set consists of all the positive multiples of the prime 59 , say xi; 59<xi <1000.
= { 118,177,236,295,354,413,472,531,590,649,708,767,826,885,944}
A17 =the set of all the positive multiples of the prime 61 ,say xi; 61<xi <1000.
= {122,183,244,305,366,427,488,549,610,671,732,793,854,815,976}
A18 = the set of all the positive multiples of the prime 67 , say xi; 67<xi <1000.
={134,201,268,335,402,469,536,603,670,737,804,871,938}
A19 = the set consists of all the positive multiples of71 ,say xi  ; 71<xi <1000.
= {142,213,284,355,426,497,568,639,710,781,852,923,994}
A20 = the set consists of all the positive multiples of the prime 73 , say xi; 73<xi <1000.
={ 146,219,292,365,438,511,584,657,730,803,876,949}
A21 = the set consists of all the positive multiples of the prime 79 ,say xi; 79<xi <1000.
={ 158,237,316,395,474,553,632,711,790,869,948}
A22 = the set consists of all the positive multiples of the prime 83 , say xi; 83<xi <1000.
= { 166,249,332,415,498,581,664,747,830,913,996}
A23 = the set consists of all the positive multiples of the prime 89 ,say xi; 89<xi <1000.
={ 178,267,356,445,534,623,712,801,890,979}
A24 = the set consists of all the positive multiples of the prime 97, say xi; 97<xi <1000.
= { 194,291,388,485,582,679,776,873,970}
A25 = the set consists of all the positive multiples of the prime 101, say xi; 101<xi <1000.
={ 202,303,404,505,606,707,808,909}
A26 = the set consists of all the positive multiples of the prime 103 ,say xi; 103<xi <1000.
={206,309,412,515,618,721,824,927}
A27 = the set consists of all the positive multiples of the prime 107 , say xi; 107<xi <1000.
={ 214,321,428,535,642,749,856,963}
A28 = the set consists of all the positive multiples of the prime 109, say xi; 109<xi <1000.
= { 218,327,436,545,654,763,872,981}
A29 = the set consists of all the positive multiples of the prime 113 , say xi; 113<xi <1000.
={ 226,339,452,565,678 ,791,904}
A30 = the set consists of all the positive multiples of the prime 127, say xi; 127<xi <1000.
= { 254,381,508,635,762,889}
A31 = the set consists of all the positive multiples of the prime 131 , say xi ; 131<xi 1000.
= { 262,393,524,655,786 ,917}
A32 = the set consists of all the positive multiples of the prime 137 ,say xi; 137<xi <1000.
= { 274,411,548,685,822,959}
A33 = the set consists of all the positive multiples of the prime 139 , say xi ; 139<xi <1000.
= { 278,417,556,695,834,973}
A34 = the set consists of all the positive multiples of the prime 149 , say xi ; 149<xi <1000.
= { 298,447,596,745,894}
A35 = the set consists of all the positive multiples of the prime 151 ,say xi; 151<xi <1000.
={ 302,453,604,755,906}
A36 = the set consists of all the positive multiples of the prime 157 ,say xi; 157<xi <1000.
={ 314,471,628,785,942}
A37 = the set consists of all the positive multiples of the prime 163 , say xi; 163<xi <1000.
= { 326,489,652,815,978}
A38 = the set consists of all the positive multiples of the prime 167 , say xi  ; 167<xi <1000.

17657 International Journal of Current Research, Vol. 13, Issue, 05, pp.17653-17660, May, 2021



= { 334,501,668,835}
A39 = th set consists of all the positive multiples of the prime 173 , say xi; 173<xi <1000.
= { 346,519,692,865}
A40 = the set consists of all the positive multiples of the prime 179 , say xi; 179<xi <1000.
= { 358,537,716,895}
A41 = the set consists of all the positive multiples of the prime 181 ,say xi  ; 181<xi <1000.
= { 362,543,724,905}
A42 = the set consists of all the positive multiples of the prime 191 , say xi; 191<xi <1000.
= { 382,573,764,955}
A43 = the set consists of all the positive multiples of the prime 193 ,say xi; 193<xi <1000.
= {386,579,772,965}
A44 = the set consists of all the positive multiples of the prime 197 ,say xi  ; 197<xi <1000.
= { 394,591,788,985}
A45 = the set consists of all the positive multiples of the prime 199 ,say xi  ; 199<xi <1000.
= { 398,597,796,995}
A46 = the set consists of all the positive multiples of the prime 211 , say xi ; 211<xi <1000.
= { 422,633,844}
A47 = the set consists of all the positive multiples of the prime 223 , say xi, 223<xi <1000.
={ 446,669,892}
A48 =the set consists of all the positive multiples of the prime 227 ,say xi, 227<xi <1000.
= {454,681,908}
A49 = the set consists of all the positive multiples of the prime 229 ,say xi; 229<xi <1000.
={ 458,687,916}
A50 = the set consists of all the positive multiples of the prime 233 , say xi; 233<xi <1000.
= { 466 ,699,932}
A51 = the set consists of all the positive multiples of the prime 239 , say xi ; 239<xi <1000.
= {478,717,956}
A52 = the set consists of all the positive multiples of the prime 241, say xi; 241<xi <1000.
= {482,723,964}
A53 = the set consists of all the positive multiples of the prime 251 ,say xi; 251<xi <1000.
= {502,753}
A54 = the set consists of all the positive multiples of the prime 257, say xi; 257<xi <1000.
= {514,771}

A55 = the set consists of all the positive multiples of the prime 263 , say xi; 263<xi <1000.
= {526,789}
A56 = the set consists of all the positive multiples of the prime 269 , say xi; 269<xi <1000.
= {538,807}
A57 = the set consists of all the positive multiples of the prime 271 , say xi; 271<xi <1000.
= { 542,813}
A58 = the set consists of all the positive multiples of the prime 277 ,say xi; 277<xi <1000.
= {554,831}
A59 =the set consists of all the positive multiples of the prime 281 , say xi;281<xi <1000.
= { 562,843}
A60 = the set consists of all the positive multiples of the prime 283 ,say xi; 283<xi <1000.
={ 566,849}
A61 = the set consists of all the positive multiples of the prime 293 , say xi; 293<xi <1000.
= {586,879}
A62 = the set consists of all the positive multiples of the prime 307 , say xi; 307<xi <1000.
= {614,921}
A63 = the set consists of all the positive multiples of the prime 311, say xi; 311<xi <1000.
={622,933}
A64 = the set consists of all the positive multiples of the prime 313 ,say xi; 313<xi <1000.
={626,939}
A65 = the set consists of all the positive multiples of the prime 317, say xi  ; 317<xi <1000.
={634,951}
A66 = the set consists of all the positive multiples of the prime 331, say xi  ; 331<xi <1000.
={662,993}
A67 = the set consists of all the positive multiples of the prime 337 ,say xi  ; 337<xi <1000.

={674}
A68 = the set consists of all the positive multiples of the prime 347 , say xi  ; 347<xi <1000.

={694}

A69 = the set consists of all the positive multiples of the prime 349 ,say xi  ; 349<xi <1000.
={698}

A70 = the set consists of all the positive multiples of the prime 353 ,say xi  ; 353<xi <1000.
={706}

A71 = the set consists of all the positive multiples of the prime 359 , say xi; 359<xi <1000.
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={718}.
A72 = the set consists of all the positive multiples of the prime 367 , say xi  ; 367<xi <1000.

= {734}
A73 = the set consists of all the positive multiples of the prime 373 , say xi  ; 373<xi <1000.

={746}
A74 = the set consists of all the positive multiples of the prime 379, say xi  ; 379<xi <1000.
={758}

A75 = the set consists of all the positive multiples of the prime 383 ,say xi; 383<xi <1000.
={766}
A76 = the set consists of all the positive multiples of the prime 389 , say xi;383<xi <1000.

={778}
A77 = the set consists of all the positive multiples of the prime 397 ,say xi  ;397<xi <1000.

={794}
A78 = the set consists of all the positive multiples of the prime 401,say xi; 401<xi <1000.

={802}
A79 = the set consists of all the positive multiples of the prime 409, say xi; 409<xi <1000.

={818}
A80 = the set consists of all the positive multiples of the prime 419 ,say xi; 419<xi <1000.

= {838}
A81 = the set consists of all the positive multiples of the prime 421, say xi; 421<xi <1000.

={842}
A82 = the set consists of all the positive multiples of the prime 431, say xi;431<xi <1000.

={862}

A83 = the set consists of all the positive multiples of the prime 433, say xi;433<xi <1000.
={866}

A84 = the set consists of all the positive multiples of the prime 439, say xi;439<xi <1000.
={878}

A85 = the set consists of all the positive multiples of the prime 443, say xi; 443<xi <1000.
={886}

A86 = the set consists of all the positive multiples of the prime 449,say xi;449<xi <1000.
={898}

A87 = the set consists of all the positive multiples of the prime 457,say xi;457<xi <1000.
={914}

A88 = the set consists of all the positive multiples of the prime 461, say xi; 461<xi <1000.
={922}

A89 = the set consists of all the positive multiples of the prime 463, say xi;463<xi <1000.
={926}

A90 = the set consists of all the positive multiples of the prime 467, say xi; 467<xi <1000.
={934}

A91 = the set consists of all the positive multiples of the prime 479, say xi; 479<xi <1000.
={958}

A92 = the set consists of all the positive multiples of the prime 487, say xi; 487<xi <1000.
={974}

A93 = the set consists of all the positive multiples of the prime 491, say xi; 491<xi <1000.
={982}

A94 = the set consists of all the positive multiples of the prime 499, say xi; 499<xi <1000.
={998}.

Therefore,

{Zodd ∩ (A1 UA2 UA3 U..........................UA94)}

9 15 21 25 27 33 35 39 45 49 51 55 57 63 65 69 75 77 81 85
87 91 93 95 99 105 111 115 117 119 121 123 125 129 133 135 141 143 145 147
153 155 159 161 165 169 171 175 177 183 185 187 189 195 201 203 205 207 209 213
215 217 219 221 225 231 235 237 243 245 247 249 253 255 259 261 265 267 273 275
279 285 287 289 291 295 297 299 301 303 305 309 315 319 321 323 325 327 329 333
335 339 341 343 345 351 355 357 361 363 365 369 371 375 377 381 385 387 391 393
395 399 403 405 407 411 413 415 417 423 425 427 429 435 437 441 445 447 451 453
455 459 465 469 471 473 475 477 481 483 485 489 493 495 497 501 505 507 511 513
515 517 519 525 527 529 531 533 535 537 539 543 545 549 551 553 555 559 561 565
567 573 575 579 581 583 585 589 591 595 597 603 605 609 611 615 621 623 625 627
629 633 635 637 639 645 649 651 655 657 663 665 667 669 671 675 679 681 685 687
689 693 695 697 699 703 705 707 711 713 715 717 721 723 725 729 731 735 737 741
745 747 749 753 755 759 763 765 767 771 775 777 779 781 783 785 789 791 793 795
799 801 803 805 807 813 815 817 819 825 831 833 835 837 841 843 845 847 849 851
855 861 865 867 869 871 873 875 879 885 889 891 893 895 897 899 901 903 905 909
913 915 917 921 923 925 927 931 933 935 939 943 945 949 951 955 957 959 961 963
965 969 973 975 979 981 985 987 989 993 995 999

= Total Number 332.
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Thus, n[ Zodd \ ( A1 UA2 UA3 U..........................UA94)}
=n{Zodd\n{ Zodd∩ ( A1 UA2 UA3 U..........................UA94)}
= 449 – 332

=167
Therefore, (1000)=1+n{Zodd ̶ (A1 UA2 UA3 U..........................UA94)}

= 1+ 167
= 168

CONCLUSION
The Prime Counting Function pi (n) has many applications in number theory and it’s related to one of the famous problem in
Mathematics,  for example the Riemann Hypothesis because the Prime Counting Function is related to Riemann Function and it
has many thousands of applications accross Science and Mathematics.
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