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ARTICLE INFO                                    ABSTRACT 
 
The purpose of the present paper, we have studied GF-structure motivate the mathematical space 
of circle in one dimensional manifolds. A manifold is a mathematical space in which every point 
has a neighborhood which resembles Euclidean space, but in which the global structure may be 
more complicated. In the present paper, we have discussed the manifolds, the idea of dimension is 
important. For example lines are one dimensional, and planes two dimensional. In a one 
dimensional manifold, every point has a neighborhood that looks like a segment of a line. 
Examples of one manifold include a line, a circle and two separate circles. In a two manifold, 
every point has neighborhood that looks like a disk. Examples include a plane, the surface of a 
sphere, and the surface of tours. The trivial example of an n- dimensional manifold is nM . It is 
assumed that, in section one contains a brief introduction to GF-Structure of mathematical 
manifold and modeling of GF-structure manifold, while in section two, defines the special 
quadratic F-structure and proves some theorems. In section three, we have defined the 
mathematical modeling in one or more dimensional manifold. In section four, we discussed the 
motivational examples of manifold and construct the figures. In section five, we obtains the 
geometrical projection and define the slope of the geometrical equations with point (1, 0) and            
(-1, 0). In section six, we calculated the Nijenhuis tensor with GF-structure and proved some 
theorems .In the end; we are discussion the important role of mathematical space. 
 
 
 
 

 
 
 

INTRODUCTION 
 

Let us consider n-dimensional differentiable manifold 
nM of class 

C  in which there exists a vector valued linear function F of 

differentiability of class 
C  satisfying 

(1.1) XaXF 22  , 

(1.2) FXX  , for an arbitrary value of X . 

Where ''a  is a complex number, then the manifold 
nM  is said to be 

GF-structure manifolds.  GF-Structure arise the cases as 

(i) If ia  , then it is almost complex structure. 

(ii) If 1a , then it is almost product structure. 

(iii) If 0a , then it is almost tangent. 

(iv) If  0a ,  then it is  -structure.  

If the GF-structure is endowed with Hermite metric tensor g  , such 

that 

(1.3) ),(),( 2 YXgaYXg  , 

Then ],[ gF  gives 
nM , a Hermite structure or H-structure 

subordinate to GF-structure.  Let a tensor F'  of the type (0,2) in 
nM  equipped with H-structure is define as 

(1.4)                         
(1.4) 

),(),(' YXg
def

YXF
 

                       
),(),(' YXg

def
YXF 

. 

. 
 
It is easy to very the following results  

(1.5) ),('),(' YXFaYXF  . 

 

2.  SPECIAL QUADRATIC F-STRUCTURE. The manifold 
nM  

is defined the special quadratic F-structure and prove some theorems. 
 

THEOREM 2.1- The rank of F in the special quadratic F-structure 
is equal to have dimension of the manifold, we have 

    nFrank )(  

PROOF.  Assuming 00 2  XFX  
 

                                    0 X  

So from equation (1.1) it follows that 002  XXa . 

Hence 0X  has only trivial solution 0X . 

Consequently nFrank )( . And If V  denotes the nullity 

of 0, VF . If   be the rank ofF , then from a well known 

theorem of linear algebra 

(2.1) nV   

Since 0 , hence nF  . 

This proves the theorems. 
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THEOREM 2.2- The dimension of the manifold 
nM  equipped with 

the special quadratic F-structure for )(41 2 Ia   is even. 

 

THEOREM (2.3). The dimension of manifold 
nM  equipped with 

the special quadratic F-structure for
21 4( )a I   is even.  

PROOF. Let   be the Eigen value of F  and V  the corresponding 

Eigen vector. Then  

  VV   
This yield  

  VV 2  or 
2 2F V V  

Substituting these values of V & V  in (1.1) & (2.2), we have  

  
2 2V a V   and V I      which 

gives  
 

(2.2)   2 2a    and I   

Adding, we have  

              
2 2   - (a   I) 0     

The roots of the above quadratic equation are given by  
     

21 1 4.1.( )

2

a I


   
  

(2.3)                

21 1 4( )

2

a I


   
  

If 
21 4(a 1),   the Eigen value of F  one of the form                

2 2( ( )) , , ' ( , , ) ( ( , ), )
def

F X a X Y B X Y Z g B X Y Z  , 

Where 

1

2
    & 

21 4( )

2

a I


 
  

 Since the complex Eigen values occur in pairs, 
therefore, the dimension n of the manifold must be even.  
 
THEOREM (2.4). In an equation with real coefficients, complex 
roots occur in conjugate pair.  

PROOF. Let ( )  0nF X   be the equation with real coefficients 

and let  i  be complex roots of this equation, where   &   

are real quantities and 0.  b   

 Now we are to prove that  i-  is also a root of 

the equation  F (X) 0,n   

Let the polynomial ( )nF X be divided by 

2 2[( ) ]X       i.e. 

 
2 2 2[( ) ]X i      i.e.  

[(X-  X         

Let   be the quotient &  R)(RX ' be the remainder, if any 

Then 2 2( ) {( ) } ( ')nF X X RX R        or                                    

2.4)                   ( )  {(X- i -i ( ')nF X X RX R            

 

Putting  iX   we find that X- -i   vanishes and also F-

structure vanishes as  i  is root of the equation 0F(X)   

From (2.4), we have  

R ( i ) 'R      or  'R R i R        

Equating real & imaginary parts on both sides of this relation  

We have    RR' R   

          0  so we have  0 R' & 0R       

  From (2.4), we have  

  ))(()( iXiXXFn      

F-structure vanishes when X  -i     

 i.e.  i-  is a root of the equation  

  0(X)Fn  . 

 
THEOREM (2.5). The special quadratic F-structure is not unique. 
PROOF. Let us put 

(2.5)  ))(())(( ' XFXF    

Where F'  is a tensor field of type (1, 1) and m is a non singular 

vector function on 
nM  .Then  

 

(2.6)                  
' 2( ( )) '( '( ))F X F F X   

        2

2

( ( '( )))

( ( ))

( ( ))

( )

F F X

F F X

F X

a X

















 

Thus we have 

  
2 2{ ' ( )}F X a X   

 

  
2 2( ( ))F X a X   

 
By virtue of the equation (1.1), we obtain 

2 2'F a  

Where   is a non singular. Hence 'F gives the special quadratic F-

structure on the manifold
nM . 

 
3.  MATHEMATICAL MODELING 

 If   is a map of M  into N  and   of a map 

of P  into T , then   will denote their combination, that is, 

  is   followed by  . Here TPNM ,,,  are any sets and we 

understand that the domain of   is MP  )(1 . The same 

sort of convention, namely, that the domain is the largest meaningful 
set, will be used in the formation of sums, products, and other 
combinations of  map 

 
Fig.-(3.1)- model of manifold 

 

A manifold is a mathematical space which is not fixed shape and size 
and in other word we can say that extended to n-dimensional space in 
a covering area.  
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Let us consider a topological manifold is defined the top half of the 

unit circle, 122 YX , where Y-coordinate is positive and X-
coordinate is negative. So projection onto the first coordinate is a 
continuous and invertible to the open interval (-1,1). 

 
 

Fig. (3.2) circle to an open interval 
 

(3.1)    (a) XYXFtop ),( , 

           (b) YYXFbottom ),( , 

 then the cover of the whole circle of the map and 
mathematical modeling of a circle of 1-dimensional manifold. 
 
PROBLEM 3.1- A modeling of 1-dimensional manifold based on 
slope define a function is a covering all but one point of a circle in 
transition map.  
SOLUTION. The top and right maps overlap: their intersection lies in 
the quarter of the circle where both the X-coordinates and Y-

coordinates are positive. The two map topF   and rightF  structure each 

map of this part into the interval (0,1). Thus the function T   from 
(0,1) to itself can be constructed, which first uses the inverse of the 
top map to reach the circle and then follows the right map back to the 
interval. Let a be any number in (0,1), then 
 

(3.2)  ))(()( 1 aFFaT topright
  

           
2

2

1

)1,(

a

aaFright




 

Such a mathematical modeling of a function is called a transition map. 
Hence the mathematical modeling of manifold can do extended to one 
or more dimension.  
 
4. MOTIVATIONAL EXAMPLE OF MATHEMATICAL 
SPACE 
 
 GF-structure defines a motivational example in a mathematical 
modeling of a circle manifold based on slope, covering all but one 
point of the circle. 
 
PROBLEM 4.1- Let the circle is the simplest example of a 
topological manifold after a line. 
 
SOLUTION. Let the unit circle, 

 
Fig.(4.1)- unit circle in one dimensional manifold 

 There are map for bottom, left, top and right part of the circle. 

The topF   and rightF  exacts map this part into the interval (0,1) and 

using the equation (3.1) and (3.2), then such a  function is called a 
transition map. Thus top, bottom, left, and right show that the circle is 
a one-dimensional manifold. 
 

PROBLEM 4.2- Show that a 
C  map is a necessarily continuous. 

SOLUTION. A covering map FM :  is continuous map such 

that for every Fn  there is a neighborhoodsU   of n such that 

)(1 U is a disjoint union of neighborhoods of points of )(1 n  

such that  is a homomorphism on each such neighborhood.  is said 

to evenly cover U and U  is said to be a distinguished neighborhood 

of 0  when M  and N  are 
C  manifolds, then M  is said to be 

a
C  covering of N if  is a 

C  maps. 

 

PROBLEM 4.3- Prove that if FM :  is a covering map and 

F  has a 
C  structure, then there is a unique 

C  structure on M  

such that M  is a 
C  covering of N . 

 

PROBLEM 4.4- Prove that if FM :  is a covering map and 

M  has a 
C  structure such that for every iU  , jU  open set in 

M  on which   is a homeomorphism and )()( ji UU    we 

have ( 1)jU  is a 
C  map on iU , then N  has a unique 

C  structure such that M is a 
C  covering of F . 

 

PROBLEM 4.5- Prove that if N  is a connected 
C  manifold, then 

there exists an essentially unique simply connected 
C  covering 

ofF . 
 
5. GEOMETRICAL PROJECTION 

Let ordinary sphere },1)({ 21   XuRXS i
dd

and 

define ,)}1,0,..,0{(: dd RS   

dd RS  )}1,0,...,0{(:

,)}1,0,...,0{(: dd RS  by stereographic projection from 

)1,0,.....,0(),1,0,....,0(  , respectively. Then },{ F  is a 

basis for a  
C  structure on

dS . The projection )(X  is the point 

where the straight line from )1,0,....,0( through X  

intersects
d

d Ru 
 )0(1
1 . 

 
Fig.(5.1)-projection in d-space 
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Let
dP  be a real projective d-space, that is, the collection of straight 

lines through the origin in 
1dR   

. The natural covering map PSd : , which takes X  into the 

line through X , induces a 
C  structure on 

dP , that is, there is a 

unique 
C  structure on 

dP  such that   is a 
C  map with local 

C  inverses. Let us consider the projection of the slope 

(5.1)       sYXF us ),(min , 

(5.2)       tYXFplus ),(  where 

(5.3)(a)       ,
1 n

Y
s


  

        (b)       
n

Y
t




1
. 

Here s  is the slope of the line through the point at 

coordinate ),( YX and the fixed pivot point (-1,0); t  is the mirror  

image, with pivot point (+1,0). The inverse mapping from s  to 

),( YX  is given by 

(5.4)(a)       
2

2

1

1

s

s
X




 , 

        (b)        
21

2

s

s
Y


 . 

It can easily be confirmed that 122 YX   for all values of the 
slope s . These two maps provide a second atlas for the circle, with 

(5.5)                         
s

t
1

 . 

Each map omits a single point, either (-1,0) for s or (+1,0) for t , so 
neither map alone is sufficient to cover the whole circle. It is clear that 
it is not possible to cover the full circle with the single point. For 
example although it is possible to construct a circle from a single line 
interval by overlapping and ‘glueing’ ends, this does not produce a 
map. A portion of the circle will be mapped to both ends once, losing 
invertibility. 
 
6.  MATHEMATICALLY CALCULATE NIJENHUIS TENSOR 
WITH GF-STRUCTURE 
  
In what follows that we shall study some theorems of Nijenhuis tensor 
with GF-structure. Mathematically calculate of Nijenhuis tensor with 

respect to F is a vector valued bilinear function N  and B  given by 
(6.1) 
 

 ( , ) , , ,N X Y X Y X Y X Y X Y                

Or equivalently  
(6.2)   
 

       YXYXYXaYXYXN ,,,,),( 2   

 

If arbitrary vector field ,X Y  will be complex then, 

 

 (6.3)  Y)N(X, = Y)N(X,  

 
THEOREM (6.1). We have  
 

(6.4)  ),(),( YXNYXN   

(6.5)               4 2( , ) , , , ,N X Y a X Y X Y X Y a X Y             
 

 

(6.6)              YXaYXaYXaYXaYXN ,,,,),( 4442   

 

(6.7)      ],[],[],[,),( 4442 YXaYXaYXaYXaYXN   

 
Consequently   
 

(6.8)                            ),(),( YXNYXN 42 { [ , ] [ , ]}.a X Y X Y    

 

(6.9) 2 2( , ) ( , ) 2 {[ , ] [ , ]}N X Y N X Y a X Y a X Y    

 
(6.10)               ],[)1()1](,[),(),( 222 YXaaaYXYXNYXN   

                                                ],)[1(],)[1( 2222 YXaaYXaa   

 
(6.11)  

.],)[1(

],)[1(],)[1(],)[1(),(),(
22

22222

YXaa

YXaaYXaaYXaYXNYXN



  

 

(6.12) ]}.,[],[],{[]},[2],{[),(),( 24 YXYXYXaYXYXaYXNYXN   

 

(6.13) ]},[],[],{[),(),( 2 YXYXYXaYXNYXN   

                                                          ].,[]},[],{[ 64 YXaYXYXa   

 
PROOF.  Barring X and Y in equation (6.2) separately and using 
(1.1), we get (6.3). Barring X and Y both in (6.2) and using (1.1), we 
obtain (6.4). Barring X and Y in equation (6.2) separately in two times 
and using equation (1.1), we get (6.6) and (6.7) respectively. On 
adding and subtracting one by one equation (6.6) and (6.7) separately 
we get (6.8) and (6.9) respectively. On adding and subtracting one by 
one from equation (6.3) and (6.5) separately, we get (6.10) and (6.11) 
respectively. And barring (6.4) and (6.3), then adding we get 
(6.10).Barring (6.5) and (6.3) and using (1.1), we get (6.13). 
 
THEOREM (6.2). If we put 

                             Y) B(X,  = ],[],[ YXYX   

                                            Or 
(6.14)  

 
2( , ) [ , ] [ , ]

def
B X Y X Y a X Y                

 then  

(6.15)  
2( , ) [ , ] [ , ]B X Y X Y a X Y   

     
2 2[ , ] [ , ]a X Y a X Y   

    
2 2[ , ] [ , ]a X Y a X Y   

                              
2{[ , ] [ , ]}a X Y X Y    

(6.16) ],[],[),( 22 YXaYXaYXB   

 

(6.17) ],[],[),( 24 YXaYXaYXB   

    

(6.18)  ),(),( YXBYXB   

 

(6.19) ]}.,[],{[),( 64 YXaYXaYXB   

 

(6.20) ]}.,{[]},{[),( 42 YXaYXaYXB   
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(6.21) 
2 4( , ) {[ , ]} {[ , ]}B X Y a X Y a X Y    

 

(6.22) 
6 4( , ) [ , ] [ , ]B X Y a X Y a X Y    

 

(6.23) 
6 8( , ) [ , ] [ , ]B X Y a X Y a X Y    

Consequently 

(6.24) ],[2),(),( 2 YXaYXBYXB   

 

(6.25) 
2( , ) ( , ) 2 [ , ]B X Y B X Y a X Y   

 

(6.26) 2 4( , ) ( , ) ( 1)[ , ]B X Y B X Y a a X Y     

 

(6.27) ].,[2),(),( 2 YXaYXBYXB   

 

(6.28) ],[2),(),( 2 YXaYXBYXB   

 

(6.29)    ],)[1(],)[1(),(),( 4244 YXaaYXaaYXBYXB   

 

(6.30)    ]}.[],[){1(),(),( 242 YXYXaaaYXBYXB   

 

(6.31) ( , ) ( , ) ( , ) ( , )B X Y B X Y B X Y B X Y   . 

 
PROOF. Barring X and Y in (6.14) separately and using (1.1), we get 
(6.15) and (6.16) respectively. Barring X and Y both in (6.14) and 
using (1.1), we obtain (6.17). Barring (6.17) and using (1.1), we get 
(6.19). Barring X and Y in (3.2) and (3.3) separately and using (1.1), 
we get (3.7) and (3.8) respectively. Barring (6.17) and using (1.1), we 
get (6.22). Barring (6.22) and using (1.1) we get (6.23). Adding & 
subtracting (6.15) and (6.16) separately, we get (6.24) and (3.12) 
respectively. Again adding equation (6.19) and (6.17), adding & 
subtracting (6.20) and (6.21) , adding (6.23) and (6,21) , subtracting 
(6.23) and (6.20) and using (6.29) and (6.30) separately , we get (6.26) 
, (6.27) ,(6.28),(6.29),(6.30) and (6.31) respectively.  
 
THEOREM (6.3). We have  

(6.32) ),(),(
1

),(
2

YXBYXB
a

YXN   

 

(6.33)  ),(),(),( YXBYXBYXN   

 

(6.34)  ),(),(),( YXBYXBYXN   

 

(6.35)  ),(),(),( YXBYXBYXN   

 
PROOF. Barring (6.14), adding the resulting equation obtains in 
(6.15) and using (6.2), we get (6.32). Barring (6.14) and subtracting 
the resulting equation from (6.16) and (6.18) separately, we get (6.33). 
Barring (6.14) and subtracting the resulting equation from (6.16) and 
(6.18) separately, we get (6.34). Barring X and Y both in (2.6) and 
subtracting the resulting equation from (6.17) and barring (6.15), we 
get (6.35). 
 
THEOREM (6.4). If we put  

(6.36)  ( , ) [ , ] [ , ].
def

W X Y X Y X Y  

Then  

               Y) W(X,-Y) B(X,  Y) N(X,   

 

(6.37) ],[],[),(),( 2 YXaYXYXWYXN   

 

(6.38)  ),(),( 2 YXWaYXW   

 

(6.39)  ),()1(),(),( 2 YXWaYXWYXW   

 

(6.40)  0),(),(  YXWYXW  

 
Consequently 

(6.41) ),(),(),( YXWYXBYXN   

(6.42) ),(),(
1

),(
2

YXWYXW
a

YXN   

 

(6.43) ),(),(),( YXWYXWYXN   

 

(6.44)    ),(),(),( YXWYXWYXN   

 

(6.45)                          ),(),(),( YXWYXWYXN   

 
PROOF. Barring in X and Y in (6.36) and using equation (1.1), we 
get (6.37) and solving Nijenhuis tensor, we get (6.2).Barring X and Y 
in (6.36), using (1.1) and then adding & subtracting the resulting 
equation in (6.36), we get (6.39) and (6.40) respectively. The relation 
(6.41) is the consequence of (6.14), (6.36) and (6.2).The equation 
(6.42), (6.43), (6.44) and (6.45) follow from the equations (6.2), 
(6.36), (6.39), (6.40), and (1.1). 
 
COROLLARY (6.5). We have  
 
(6.46)         ]}.,[],[],{[],[),(),( 2 YXYXYXaYXYXBYXW   

 

(6.47) 
2 4( , ) ( , ) [ , ] [ , ].W X Y B X Y a X Y a X Y    

 

(6.48)   ],[2],[2),(),( 2 YXYXaYXBYXW   

 

(6.49)  0),(),(  YXBYXW  

 

(6.50)    2 2 2( , ) ( , ) (1 )[ , ] ( 1 )[ , ].W X Y B X Y a a X Y a X Y        

  

(6.51)  0),(),(  YXBYXW  

   

(6.52)       ),()1(),(),( 22 YXWaaYXBYXW   

 

(6.53)         ),()1(),(),( 22 YXWaaYXBYXW   

 

(6.54)  ),(2),(),( 2 YXWaYXBYXW   

 
PROOF. The above equation immediately follow from (6.14), (6.36) 
& (1.1) by simple manipulations. 
 
THEOREM (6.6). Let we put 
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(6.55)  'N(X,Y,Z,) g(N(X,Y),Z).
def

 

Then )Z,Y,(X, N'  is skew-symmetric in Y & X i.e. 

 

(6.56)   Z)X,N(Y,-' Z)Y,N(X,'     

and  
(6.57) 

 
2' ( , , ) ' ( , , )N X Y Z a N X Y Z   

 

(6.58)  ),,('),,(' 2 ZYXNaZYXN   

PROOF. Relation (6.55) obviously holds. From the theorem of [1], 
we have  
 

(6.59)  ),(),( YXNYXN   

 

(6.60)  ),(),( 2 YXNaYXN   

 
Then using (6.55), (1.4), (1.5) and (1.3) in (6.59) and (6.60) 
respectively, we have (6.59). Relation (6.58) is obtained by using 
(6.55), (1.4) and (1.5) in (6.60). 
 
REMARK. Let us put  

' ( , , ) ( ( , ), )
def

B X Y Z g B X Y Z  

 

 ' ( , , ) ( ( , ), ).
def

W X Y Z g W X Y Z  

Then  
 

 'N(X,Y,Z) 'B(X,Y,Z)-'W(X,Y,Z) . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

DSCUSSION 
 
Manifold  are important role of dealing the extended  the  n-
dimensional space of modeling heavenly body because it is construct 
the higher dimensional space and they allow more complicated 
structures. We can easily calculate all structures and spaces of 
manifold form GF-structure manifold and discuss the motivational 
examples of manifold. Examples of Mathematical space with 
additional structure include the differentiable manifold then the unit 
circle is the fixed point (1,0), (0,1), (-1,0) and (1,-1) respectively. 
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