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INTRODUCTION 
 

The solid transportation problem (STP) is a generalization of the well
properties (supply, demand and conveyance) are taken into account in the constraint set instead of two (supply and demand), and 
its of great use in public distribution systems. The STP was first stated by Shell (1955). Although STP was forgotten for long 
because of the new existing solution methodologies, recently it is receiving the attention and the interest of the researcher
field (Ida et al. 1995; and Bit et al. 1993). Haley (1962) introduced the solution procedure of STP which is an extension of the 
modified distribution method. Patel and Tripathy (1989)developed a computationally superior method for a STP with mixe
constraints. Vajda (1988) proposed an algorithm for a multi
distribution method. Basu et al. (1994) provided an algorithm for finding the optimum solution of solid fixed charge linear 
transportation problem. Li et al. (1997) designed a neural network approach for multicriteria STP. Jimenez and Verdegay (1996) 
developed a parametric approach for solving fuzzy STPs by an evolutionary algorithm (EA). Pandian and Natarajan (2010) are 
introduced the zeropoint method for finding an optimal solution to a classical TP. Pandian and Auradha
method using the principle of zero point method introduced by Pandian and Natarajan (2010) for finding an optimal solution of
STP. Ojha et al. (2010) formulated a STP with discounted costs, fixed charges and vechicle costs as a linear programming 
problem. Qualitative analysis of some basic notions such as the set of feasible parameters, the solvability set and the stabi
of the first kind and the stability set of the second kind are introduced by Osman (1977). Luhandjula (1987) deals with multi
objective programming problems with possibilistic coefficients. Hussein (1998) introduced the complete solutions of multi
objective transportation problems with possibilistic coefficients. Sakawa and Yano
optimality of fuzzy parametric programs. Kassem
possibilistic variables and without differentiability for the considered objective functions. Ammar and Youness (2005) introduced 
the solution of multi-objective TP with fuzzy objectives, fuzzy sources, and fuzzy destinations.
objective solid transportation problem (Poss MOSTP) with possibilistic coefficients, possibilistic supply values, possibilistic 
demand values, and possibilistic conveyances.
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ABSTRACT 

Solid Transportation Problem (STP) arises when bounds are given on three item properties. 
Usually, these properties are supply, demand, and type of product or mode of transport (conveyance). 
In this paper, the efficient solutions and stability of multiobjective solid transportation problem (Poss 
MOSTP) with possibilitic coefficients r

i j kc  and / or possibilistic supply quantities 

possibilistic demand quantities 
jb  and / or possibilistic conveyances 

the problem by incorporating possibilistic data into the objective functions coefficients, supplies, 
demands and conveyances. The concept of α-possibly efficient is specified in which the ordinary 
efficient solution is extended based on the α-cut of a possibilistic variables. A solution of the 
weighting problem of Poss MOSTP is deduced. A necessary and sufficient condition for such a 
solution is established. The basic notions like the solvability set and the stability set of t
are defined and characterized that's to characterize the parametric optimal solution for the auxiliary 
problem. An algorithm for the determination of the stability set is proposed. Finally, a numerical 
example is given to illustrate the aspects of the developed results. 
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Ammar and Khalifa (2014) studied the multiobjective solid transportation problem with fuzzy numbers. 

The concept of  -possibly efficient and  -parametric efficient solution are introduced. The relation between the above two 
concept of solutions is established. A parametric analysis is introduced to characterize the set of all  -parametric efficient 
solutions. An algorithm to determine the stability set of the first kind corresponding to one parametric efficient solution of Poss 
MOSTP is presented. A numerical example is given to illustrate and clarify the obtained results.  
 
Preliminaries 
 
In this section, we recall some definitions and lemma needed through the paper (Zadeh, (1970)). 
 

Definition 1.A possibilistic variable y on
nT R  is a variable characterized by a possibility distribution on ( )y t .  

 

This means that, if y is a variable taking values in T, then a possibility distribution y  associated with y may be viewed as a fuzzy 

constraint on the values that may be assigned to y. such a distribution is characterized by a possibility distribution function 

: [0, 1]y T   which associated with each t T  the degree of compatibility of the variable y with the realization t T . 

 

If T is a Cartesian product of 1 2, , ..., nT T T , then 1 2( , , ..., )y nt t t  is an n-array possibility distribution, i.e., 

1 21 2( ) ( ( ), ( ), ..., ( ) )
ny y y y nt t t t    . 

 

Definition 2. The  -cut of a possibilistic variable y is { : ( ) }yy t T t     . 

 

Definition 3.A possibility distribution y  on T is said to be convex if 

 
1 2 1 2 1 2

y y y( (1 ) ) min ( ( ), ( ) ) , , , [ 0, 1]t t t t t t T           . 

 

It is appropriate to define the support of a possibilistic variable y in the case of 
nT R . 

 
Definition 4. The support of a possibilistic variable y is 
 

y
( )

sup ( ) : sup ( ( ) ) 0 for all 0
u N t

y t T u


 


 
    

 
, 

where, ( ) { : || || }N t u T u t     . 

 

Lemma 1.Sup( )y is a closed set in T. 

 
Proof. See, Hussein (1998). 
 
Problem formulation 
 
Consider the general possibilistic multiobjective solid transportation problem with possibilistic coefficients in the objective 
functions, possibilistic supplies, possibilistic demands, and possibilistic conveyances (Poss MOSTP) 
 

(Poss MOSTP) 

1 1 1

min ( , ) ; 1, ...,
m n

r r
r i j k i j k

i j k

Z x c c x r q
  

   


   

subject to 
 

1 1

( , , ) : ; 1, ..., ;
n

m n
i j k i

j k

x G a b e x R x a i m 

 


    


 


    
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1 1 1 1

, 1, ..., ; ,
m m n

i j k j i j k k
i k i j

x b j n x e
   

     


   

1 1 1

1, ..., ; , and
m n

i j k
i j k

k a b e
  

    


   

0, 1, ..., ; 1, ..., ;i j kx i m j n    

1, ...,k


 


 , 

where, ( 1, ..., ), , 1, ..., ; , 1, ..., ; , 1, ...,r
i j k i j kc r q a i m b j n e k        are possibilistic variables on R 

characterized by possibility distributions ,r
ii j k

ac
  

, 
jb

   and 
ke  , respectively. For all outcomes it is assumed that all 

possibility distributions involved in Poss MOSTP are convex ones with compact (i.e., bounded and closed) supports and 

0 sup( )y y  (see, Definitions 2-4). 

 

Efficiency aspects 
 

Definition 5. (-possibly feasible actions):Let 1 11 12 1( , , ..., )m    , 1 [ 0, 1]iB  , 1, 2, ..., ;i m

2 21 22 2( , , ..., )n    , 2 [0, 1],j  1, 2, ...,j n ; and 3 31 32 3( , , ..., ),     3 [0, 1], 1, 2, ...,k k    . 

Then ( , , ) { :m nx G a b e x R       0, 1, 2, ..., ; 1, 2, ..., ; 1, 2, ..., }i j kx i m j n k      is said to be  -

possibly feasibly actions for problem (Poss MOSTP) if: 
 

Poss 2
1 1 1 1

sup( ( ) ) ,
j

m m

i j k j j j i j k jb
i k i k

x b b x b 
   

 
    

 
   

 


 , 

1, 2, ...,j n ; 

and 

Poss 3
1 1 1 1

sup ( ( ) ) ,
m n m n

i j k k e k k k i j k k
i j i j

x e e x e 
   

 
     

 
    , 

1, 2, ...,k   , 

 
where Poss denotes possibility.  
 

Definition 6. (-possibly efficient): A point 
* ( ) ( , , )x c G a b e     is said to be  -possibly efficient to Poss MOSTP if there 

is no ( ) ( , , )x c G a b e     such that: 
 

Poss
1 * 1 1 * 1

1 1 1 1( ( , ) ( , ), ..., ( , ) ( , )r r
r rz x c z x c z x c z x c 

      , 

* 1 * 1
1 1( , ) ( , ), ( , ) ( , ), ...,r r r r

r r r rz x c z x c z x c z x c 
       

*( , ) ( , ) )q q
q qz x c z x c    ,                                                                                                            ……………………(1) 

 

On account of the extension principle, 
 

Poss
1 * 1 1 * 1

1 1 1 1( ( , ) ( , ), ..., ( , ) ( , )r r
r rz x c z x c z x c z x c 

      , 

* 1 * 1
1 1( , ) ( , ), ( , ) ( , ), ..., ( , )r r r r q

r r r r qz x c z x c z x c z x c z x c 
        

1 2 1
1 2

* 1 2 1

( , , ..., )

( , ) ) sup min ( ( ), ( ), ..., ( )r
q

q r
q c c c

c c c C

z x c c c c   




 
  

 , 

1
1( ), ( ), ..., ( ) )r r q

r r q

c c c
c c c  



  
,                                                                                                    …………………….(2) 

 

11944                     International Journal of Current Research, Vol. 7, Issue, 01, pp.11942-11953, January, 2015 
 



where, 
 

1 2 ( ) 1 * 1 1
1 1 1{( , , ..., ) : ( , ) ( , ), ..., ( , )q q m n r

rC c c c R z x c z x c z x c  
  

 

* 1 * 1 * 1
1 1 1( , ), ( , ) ( , ), ( , ) ( , ),r r r r r

r r r r rz x c z x c z x c z x c z x c  
      

*..., ( , ) ( , )}q q
q qz x c z x c

                                                                                                                ……………………..
(3) 

 
For characterizing the  -possibly efficient solution for Poss MOSTP, let us consider the following  -parametric multi objective 
solid transportation problem ( -PMOSTP) 
 

( -PMOSTP)

1 1 1

min ( , ) , 1, ...,
m n

r r
r i j k i j k

i j k

z x c c x r q
  

   


                                                   …………………..(4) 

subject to 
 

( , , ), ( ) , 1, ..., ; 1, ..., ; 1, ..., ;r r
i j k i j kx G a e c c i m j n k       

1, ..., ; ( ) , 1, ..., ; ( ) , 1, ..., ;i i j jr q a a i m b b j n       

1 1 1

( ) , 1, ..., , ( ) ( ) ( )
m n

k k i j j
i j k

e e k a b b   
  

     


    

1

( )k
k

e 


 


 , and  

0, 1, ..., ; 1, ..., ; 1, ..., ,i j kx i m j n k                                                                                         ………………….(5) 

 

where ( ) , ( ) , ( )r
i j k i jc a b  

   and ( )ke   denote the  -cut of the possibilistic variables , ,r
i j k i jc a b   and ke , respectively. 

By the convexity assumption, ( ), 1, 2, ..., ; 1, ..., ; 1, ..., ; 1, ..., ;r
i j k

r
i j kc

c r q i m j n k    


 ( )
ia ia  , 1, ..., ;i m

( ), 1, ..., ; ( ), 1, ...,
kj

j e kb
b j n e k      are real intervals that will be denoted as 

[ ( ), ( ) ], [ ( ), ( ) ], [ ( ), ( ) ], [ ( ), ( ) ]r r r r r r r r
i j k i j k i i j j k kc c a a b b e e              

. 

 

Definition 7.A point 
* ( ) ( , , )x c G a b e  is said to be  -parametric efficient solution for  -PMOSTP found only if there 

( , , )x G a b e  and ( )r r
i j k i j kc c   such that 

*( , ) ( , )r r
r rz x c z x c  for all 1, ...,r q  and strict inequality 

holds for at least one r. 
 

Theorem 1. A point 
* ( ) ( , , )x c G a b e  is an  -possibly efficient solution for Poss MOSTP if and only if 

* ( ) ( , , )x c G a b e  is an  -parametric efficient solution for  -PMOSTP. 

 

Proof: (Necessity). Let 
* ( ) ( , , )x c G a b e  be an  -possibly efficient solution for Poss MOSTP and 

* ( ) ( , , )x c G a b e  be not an  -parametric efficient solution for  -PMOSTP. Then there are 

1 ( ) ( , , ), ( ) , 1, ..., ;r r
i j kx c G a b e t c r q   1, ...,i m ; 1, 1, ..., ; 1, ...,j n k    such that 

1 *( , ) ( , )s s
s sz x t z x t , for all {1, ..., }s q and {1, ..., }r q , 

 
such that 

1 *( , ) ( , )r r
r rz x t z x t . 

 

As [ ] , 1, ...,r r
i j kt c r q  , we have 
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Poss 
1 1 * 1 1 1 * 1

1 1 1 1( ( , ) ( , ), ..., ( , ) ( , )r r
r rz x c z x c z x c z x c 

      , 

1 * 1 1 * 1
1 1( , ) ( , ), ( , ) ( , ), ...r r r r

r r r rz x c z x c z x c z x c 
      , 

1 *( , ) ( , ) , [0, 1]q q
q qz x c z x c      . 

 

This contradicts the  -possibly efficient of 
* ( ) ( , , )x c G a b e  for Poss MOSTP and the necessity part is established. 

 

Sufficiency: Let 
* ( ) ( , , )x c G a b e  be  -parametric efficient solution for  -PMOSTP and 

* ( ) ( , , )x c G a b e  be 

not an  -possibly efficient solution for Poss MOSTP. Then there are 
2 ( , , )x G a b e  and 1, ...,r q  such that  

 

Poss
2 1 * 1 2 1 * 1

1 1 1 1( ( , ) ( , ), ..., ( , ) ( , )r r
r rz x c z x c z x c z x c 

      , 

2 * 2 1 * 1
1 1( , ) ( , ), ( , ) ( , ), ...r r r r

r r r rz x c z x c z x c z x c 
      , 

2 *( , ) ( , )q q
q qz x c z x c    , 

 
i.e., 
 

1 1 1
1

1 1 1

( , ..., )

sup min ( ( ), ..., ( ), ( ), ( ), ...,r r r
q

r r r

c c c c
c c C

c c c c    
 


   

 

( ) )q
q

c
c 


,                                                                                                                                            ……………………...(6) 

 
where 
 

Poss
1 ( ) 2 1 * 1 2 1

1 1 1{( , ..., ) : ( , ) ( , ), ( , )q q m n r
rC c c R z x c z x c z x c  

   
, 

* 1 2 * 2 1
1 1( , ), ( , ) ( , ), ( , )r r r r

r r r rz x c z x c z x c z x c 
   , 

* 1 2 *
1 ( , ), ..., ( , ) ( , )}r q q

r q qz x c z x c z x c
  . 

 

For the supremum to be existed, there is 
1 2( , , ..., )qP P P C  with 

1 2
1 2min ( ( ), ( ), ( ) )q

q

P P P
P P P      , then 

1 2
1 2

1 2

( , , ..., )

sup min ( ( ), ( ), ( ) )q
q

q

P P P
P P P C

P P P   


   . 

 

This contradicts (8). Then there is 
1 2( , , ..., )qP P P C  satisfying 

1 2
1 2min ( ( ), ( ), ( ) )q

q

P P P
P P P      (5) 

 
i.e., 
 

( ) , 1, ..., ; 1, ..., ; 1, ..., ; 1, ...,r r
i j kP c r q i m j n k       

 

From (4) and (6) we arrive to the contradiction of the efficiency of 
* ( )x c  for  -PMOSTP at certain [ 0, 1]  . 

 
Problem ( -PMOSTP) will be treated using the weighting approach (see, Chanas et al. (1984), i.e., defining the following 
problem (STP (w)) 
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1

1 1

1

(STP ( ) ) min ( , )

subject to

( ) ( , , ), ( ) , 1, ..., ; 1, ..., ;

1, ..., ; 1, ..., ; ( ) , 1, ..., ; ( ) ,

1, ..., ; ( ) , 1, ..., , ( ) ( )

( ) ,

q
r

r r
r

r r
i j k i j k

i i j j

m n

k k i j
i j

k
k

w w z x c

x c G a b e c c r q i m

j n k a a i m b b

j n e e k a b

e w



 

  





 



   

    

    





 








 

1

: 1, 0 ,

1, ..., ; 1, ..., ; 1, ...,

q

r r
r

W w R w w

i m j n k



  
    

  

  





 

 

It is clear that problem STP( )w  is a single objective solid transportation problem which is considered as a parametric nonlinear 

programming problem since the possibilistic parameters will be treated as decision variables. 
 

Definition 7. The set of  -parametric optimal solutions of STP ( )w  is defined as: 

 

* ( ) * * *

1 1

( ) { : ( , ) ( , )
q q

q m n r r
r r r r

r r

E w x R w z x c w z x c 

 

    , for each 

* * * * * * * *( ) ( , , ), ( ) , ( ) , ( ) , ( )x c G a b e c c a a b b e e          and 0,rw 
1

1, ..., , 1}
q

r
r

r q w


  . 

Remark 1.A point 
*x  is said to be a proper  -parametric efficient solution of  -PMOSTP problem if and only if there exists 

* 0w   such that 
* *( )x E w . 

 
Parametric analysis 
 
Definition 8. The solvability set of  -PMOSTP problem is defined by: 
 

{ :qB w R  there exists  -parametric efficient solution 
*x  of  -PMOSTP problem, 

* ( )}x E w . 

 

Definition 9. Suppose that 
*w B  with a corresponding  - parametric optimal solution 

* *( )x E w , then the stability set 

of the first kind of  -PMOSTP problem corresponding to 
*x , denoted by 

*( )S x  and is defined by: 

 
* * *( ) { : ( )S x w B x E w   is an  -parametric optimal solution of STP ( )w  problem }. 

. 

For the sake of parametric analysis and for 0  , STP ( )w  problem can be written as in the following form (Bazara et al. 

(1990) and Steuer (1986)) 
 

(STP ( ) )w  min 

1 1 1 1 1

( , ) min ( (0) (0) )
q q m n

r L r ur
r r r i j ki j k i j k

r r i m k

w z x c w c c x
    

     


 

 
subject to 
 

1 1

( , ) ( (0 ) (0) ) 0, 1, ..., ;
n

L U
i i i j k i i

j k

g x a x a a i m
 

     


 

1 1

( , ) ( (0 ) (0) ) 0, 1, ..., ;
m

L U
j j i j k j j

i k

h x b x b b j n
 

     

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1 1

( , ) ( (0 ) (0 ) ) 0, 1, ..., ;
m n

L U
k k i j k k k

i j

f x e x e e k
 

        

0 0 0
1 1 1

( ) ( ) ( )
m n

L u L u L u
i i j j k k

i j k

a a b b e e      
  

      


 

0, 1, ..., ; 1, ..., ; 1, ..., ;i j kx i m j n k      

w W and [0, 1]  . 

Let 
*w B  with 

*x  is an  -parametric efficient solution of  -PMOSTP problem, then the Kuhn-Rucker necessary 

optimality conditions corresponding to (STP ) )w   problem will take the form: 
 

1 1 1 1

0
q m n

j ur i
r i j k

r i j k

h fz g
w

x x x x   

  
     

   
       

   


,                                                          …………………(7) 

1 1 1 1

0
m n

j ur i
r i j k

r i j k

h fz g
w



  
         

   
       

   


,                                                              ………………...(8) 

1 1

(0) (0), 1, ...,
n

L U
i j k i i

j k

x a a i m
 

   


,                                                                                 ………..………(9) 

1 1

( 0) (0), 1, ...,
m

L U
i j k j j

i k

x b b j n
 

   


,                                                                                ………….……(10) 

1 1

(0) (0), 1, ...,
m n

L U
i j k k k

i j

x e e k
 

     ,                                                                                  ……………… (11) 

0 0 0
1 1 1

( ) ( ) ( )
m n

L U L U L U
i i j j k k

i j k

a a b b e e      
  

      


,                                                   ……………….. (12) 

( , ) 0, 1, ...,i i ig x a i m   ,                                                                                 …………….. (13) 

( , ) 0, 1, ...,j j jh x b j n   ,                                                                                   …………….(14) 

( , ) 0, 1, ...,k k kf x e k    ,                                                                                    ……………  (15) 

,i j  and , k ,0 (16) 

where ( 1, ..., ), ( 1, ..., )i ji m j n   , and ( 1, ..., )k k    are the Lagrange multipliers and the above expressions 

are evaluated at 
** *, , ,r

i j k ii j kx c a *
jb and

*
ke . According to whether any of the variables 

( 1, ..., ), ( 1, ..., )i ji m j n   , and ( 1, ..., )k k    are zero or positive, the stability of the first kind 
*( )S x  of 

(STP( ) )w   problem can be determined. 
 

Proposed algorithm 

The steps of the proposed algorithm to determine the stability set of the first kind 
*( )S x  can be summarized as in the following 

steps: 

Step 1: Start with an initial degree of 0  . 

Step 2: Constrict (STP ( ) )w   problem. 

Step 3: Ask the DM to specify the initial value of (0 1)   . 

Step 4:Choose a certain 
*w B  and solve (STP ( ) )w   problem using any available computer package (say, WINQSB 

Package). Let 
*x  be 0- parametric optimal solution of (STP ( ) )w   problem with the corresponding parameters 

* * * * * * * *( , , , , , , , )r L r u L U L U L Uc c a a b b e e .  
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Step 5: Substituting with 
* * * * * * * * *, , , , , , , ,r L r u L U L U L Ux c c a a b b e e  into the  

Kuhn-Tucker necessary optimality conditions (7) (16) , and solve the resulted system. 

Step 6: Determine the stability set of the first kind 
*( )S x  according to the values of the Lagrange multipliers ,i i  and 

k . 

Step 7: Set 
*( ) [ 0, 1]      and go to step 2. 

Repeat the above procedure until the interval [0, 1]  is fully exhausted. Then stop. 

The flow chart of the proposed algorithm can be characterized as in the following figure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Numerical example 
 
Consider the following  

(Poss MOSTP)    
2 3 2

1
1

1 1 1

min i j k i j k
i j k

z c x
  

     , 

 
 

Fig. 1. Flowchart for proposed algorithm 

 

 Start 

Select the initial value of 0   

Elicit supports for possibilistic variables , ,r
i j k i jc a b  , 

and ( 1, ..., ; 1, ..., ;ke r q i m   

1, ..., ; 1, ..., )j n k  

Construct the STP (w) problem 

Choose *w  and solve (STP *( ) )w   problem using 

WINQSB computer package 

Is a  solution satisfactory? 

 

Determine *( )S x  

End 

No 

Yes 
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2 3 2
2

2
1 1 1

min i j k i j k
i j k

z c x
  

      

subject to 

3 2 3 2
12

1 1 2 2
1 1 1 1

, : ,j k j k
j k j k

x G x R x a x a
   


    


     , 

2 2 2 2 2 2

1 1 2 2 3 3
1 1 1 1 1 1

, ,i k i k i k
i k i k i k

x b x b x b
     

          , 

2 3 2 3

1 1 2 2
1 1 1 1

,i j i j
i j i j

x e x e
   

      , 

0, 1, 2; 1, 2, 3; 1, 2i j kx i j k


    


 

 

In this example, two objective are simultaneously satisfied: the first and second are the minimization of possibilistic transportation 
costs. 
 

Also, the possibilistic variables 
1 2, , ,i j k i j k i jc c a b   , and ke  are characterized by possibility distributions 

1 2( ), ( ), ( ), ( )
i ji j k i j k

a bc c
       

 and ( )
ke  , respectively. 

 
 

The supports of the possibilistic variables 
1 2, , ,i j k i j k i jc c a b   , and ke  are [9, 13], [10, 14], [ 20, 24], [15, 19]  and 

[ 22, 29] , respectively. it is appropriate to characterize these supports by parametric functions beginning by the points of 

maximum possibility of 
1
i j kc and

2
i j kc . Hence, the parametric functions of   to the supports for 0 1   are: 

 

Table 1. The supports of 
1
i j kc  and the corresponding possibly distributions 

 

Support (
1
i j kc ) 

1 ( )i j kc   

1
111sup ( ) 9 4c    1 1

111 111
(9 ) (13) 0

c c
  

 
 

1
211sup ( ) 14 4c    1 1

211 211
(14) (10) 0

c c
  

 
 

1
121sup ( ) 18 4c    1 1

121 121
(18) ( 22) 0

c c
  

 
 

1
221sup ( ) 9 4c    1 1

221 221
( 9 ) (5) 0

c c
  

 
 

1
131sup ( ) 13 4c    1 1

131 131
(13) (17 ) 0

c c
  

 
 

1
231sup ( ) 7 4c    1 1

231 231
( 7 ) (11) 0

c c
  

 
 

1
112sup ( ) 10 4c    1 1

112 112
(10 ) ( 6 ) 0

c c
  

 
 

1
212sup ( ) 7 4c    1 1

212 212
( 7 ) (3) 0

c c
  

 
 

1
122sup ( ) 11 4c    1 1

122 122
(11) (15) 0

c c
  

 
 

1
222sup ( ) 18 4c    1 1

222 222
(18) (14) 0

c c
  

 
 

1
132sup ( ) 5 4c    1 1

132 132
(15) (9) 0

c c
  

 
 

1
232sup ( ) 2 4c    1 1

232 232
( 2 ) (6) 0

c c
  

 
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Table 2. The supports of 
2
i j kc  and the corresponding possibly distributions 

 

Support (
2
i j kc ) 

2 ( )i j kc   

2
111sup ( ) 14 4c    2 2

111 111
(14) (10) 0

c c
  

 
 

2
211sup ( ) 5 4c    2 2

211 211
(5) (9 ) 0

c c
  

 
 

2
121sup ( ) 7 4c    2 2

121 121
( 7 ) (3) 0

c c
  

 
 

2
221sup ( ) 7 4c    2 2

221 221
( 7 ) (11) 0

c c
  

 
 

2
131sup ( ) 2 4c    2 2

131 131
( 2 ) (6 ) 0

c c
  

 
 

2
231sup ( ) 6 4c    2 2

231 231
( 6 ) (10) 0

c c
  

 
 

 

2
112sup ( ) 6 4c    2 2

112 112
( 6 ) ( 2 ) 0

c c
  

 
 

2
212sup ( ) 14 4c    2 2

212 212
(14) (18) 0

c c
  

 
 

2
122sup ( ) 10 4c    2 2

122 122
(10) ( 6) 0

c c
  

 
 

2
222sup ( ) 5 4c    2 2

222 222
(5) (9 ) 0

c c
  

 
 

2
132sup ( ) 7 4c    2 2

132 132
( 7 ) (3) 0

c c
  

 
 

2
232sup ( ) 7 4c    2 2

232 232
( 7 ) (11) 0

c c
  

 
 

 

Table3. The supports of ,i ja b  and ke and the corresponding possibly distributions 

 

Support ( )ia  ( )
ia   

1sup( ) 20 4a    
1 1

( 20) (16) 0a a     

2sup( ) 16 4a    
2 2

(16) ( 20) 0a a     

Support ( )jb  ( )
jb

   

1sup ( ) 16 4b    
1 1

(16) (12) 0
b b

     

2sup ( ) 7 4b    
2 2

(7 ) (11) 0
b b

     

3sup ( ) 11 4b    
3 3

(11) (15) 0
b b

     

Support ( )ke  ( )
ke   

1sup( ) 22 4e    
1 1

( 22) ( 26 ) 0e e     

2sup( ) 14 4e    
2 2

(14) (10) 0e e     

 

At 0  , the corresponding 0-PMOSTP problem is  

1 111 211 121 112min ( ) (9 4 ) (14 4 ) (18 4 ) (10 4 )z x x x x             

212 122 222 212(7 4 ) (11 4 ) (18 4 ) (5 4 )x x x x            

232(11 4 ) x   
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subject to 
 

12
111 121 131 112 122 132{ : 20 4 ,x G x R x x x x x x            

211 221 231 212 222 232 16 4 ,x x x x x x         

111 211 112 212 16 4x x x x      , 

121 221 122 222 7 4x x x x      , 

131 231 132 232 11 4x x x x      , 

111 211 121 221 131 231 22 4x x x x x x        , 

112 212 122 222 132 232 14 4x x x x x x        , 

0, 1, 2; 1, 2, 3; 1, 2; 0 1}i j kx i j k        

2 111 211 121 221min ( ) (14 4 ) (5 4 ) (7 4 ) (7 4 )z x x x x             

131 231 112 212( 2 4 ) (6 4 ) (6 4 ) (14 4 )x x x x            

122 222 132 232(10 4 ) (5 4 ) (7 4 ) ( 7 4 )x x x x            

 
subject to 
 

x G . 

For 
* * *

1 2( , ) (0.4, 0.6 )w w w  and 0.5  . 

(STP (w) ) 111 211 121 221 131 112min (11.6 9 14 8.2 11.6 5.6x x x x x x      

212 122 222 132 23211.6 10 10.6 5.8 9.8 )x x x x x      

 
subject to 
 

111 121 131 112 122 132 18x x x x x x      , 

211 221 231 212 222 232 18x x x x x x      , 

111 211 112 212 14x x x x    , 

121 221 122 222 9x x x x    , 

131 231 132 232 13x x x x    , 

111 211 121 221 131 231 24x x x x x x      , 

112 212 122 222 132 232 12x x x x x x      , 

0, 1, 2; 1, 2, 3; 1, 2i j kx i j k    . 

The solution is 

111 211 121 221 131 231 112 212 122 222 132 232( , , , , , , , , , , , )x x x x x x x x x x x x   

(0, 2, 0, 9, 6, 7, 12, 0, 0, 0, 0, 0, ) ,  

min 237z  , 
 
and 

* 2
1 2 1 2 1 2 1 2( ) { : 2 0, 5 0, , 0, 1}S x w R w w w w w w w w         . 

 

Conclusion 
 

The main objective of this paper is to present a solution procedure for multiobjective solid transportation problem with possibilistic 
variables (Poss MOSTP). A multi-objective solid transportation problem with possibilistic objective functions coefficients, 
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possibilistic supplies, possibilistic demands and possibilistic conveyances has been introduced. The relation between the                    
 -possibly for  -PMOSTP problem has been given. A parametric analysis to characterize the set of all  -parametric efficient 
solution for  -PMOSTP problem has been given. An algorithm to determine the stability set of the first kind corresponding to 
one of the parametric efficient solution of  -PMOSTP problem has been presented. A numerical example has been included in 
the sake of the paper for illustration. However, WINQSB computer package has been used to obtain the results. 
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