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Laminar free and forced  convective fully developed flow of a viscous incompressible fluid between two infinitely 
long vertical plates heated asymmetrically embedded in porous medium has been studied. It is observed that the 
fluid velocity decreases near the channel walls whereas a it increases at the middle region of the channel with an 
increase in porosity of the medium. The expressions for wall shear stresses, critical Grashof number and the bulk 
temperature are also derived. It is observed that the bulk temperature increases with increase in either Grashof 
number or porosity parameter. Further, the critical Grashof number for which there is no flow reversal near the 
cold wall increases with an increase in temperature ratio parameter while it decreases with an increase in porosity 
of the medium. 
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INTRODUCTION 
 
Flow through porous media has been a topic of longstanding interest 
in many areas of science and engineering. Due to its broad range of 
applications in science and industry, this field has gained extensive 
attention lately. In a broader sense, the study of porous media 
embraces fluid and thermal sciences, geothermal, petroleum and 
combustion engineering. The flows through porous media have 
importance to the petroleum engineering concerned with the 
movement of oil and gas through the reservoir. The topic of porous 
medium has been well surveyed by (Nield and Bejan 1992; Bejan 
1994; Kaviany 1995; Ingham and Pop 2002; Kaviany 1985)  has 
presented an analytical solution for laminar flow through a porous 
channel bounded by isothermal parallel plates based on the 
Brinkman-extended Darcy law. Vafai and Kim (1989)  have reported 
a closed-form solution for forced convection flow in a porous channel 
with isoflux boundaries using the Brinkman-Forchheimer-extended 
Darcy law. (Poulikakos and Renken 1987; Renken and Poulikakos 
1988) have studied, respectively, numerically and experimentally 
forced convection in a channel filled with a porous medium using the 
Brinkman-Forchheimer-extended Darcy model with variable porosity 
and allowing for viscosity variations. Kou and Lu (1993) have 
analyzed combined boundary and inertia effects for fully-developed 
mixed convection in a vertical channel embedded in porous media. 
Cheng  et al. (1990)  have discussed flow reversal and heat transfer of 
fully-developed mixed convection in vertical channel. Chamkha 
(1997)  has analyzed the problem of hydromagnetic non-Darcy mixed 
convection flow through a porous medium channel in the presence of 
heat generation effects. Klemp et al. (1990) have investigated the 
effects of temperature-dependent viscosity on the flow in the entrance 
region of a channel. The laminar convection through porous medium 
between two vertical parallel plates with heat source has been studied 
by (Vidhya and Kesavan 2010). Umavathi (2011)  has discussed the  
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free convection of composite porous medium in a vertical channel. 
Moh'd Ahmad Al-Nimr and Tariq Darabseh (2011) have obtained the 
analytical solution to transient laminar fully developed free 
convection in open-ended vertical channel embedded in porous 
media. Aung (1972) has studied the fully developed laminar free 
convection between infinitely long vertical plates with asymmetric 
heating of the plates. 
 
The aim of the present paper is to study free and forced convection of 
a viscous incompressible fluid flow between two infinitely long 
vertical plates embedded in a porous medium. It is found that for 
small values of Grashof number Gr , the velocity distribution 
decreases near the channel walls while it increases at the middle of 
the channel with increase in porosity parameter  . For large values 
of Grashof number Gr , the effect of porosity of the medium is 
prominent near the cold wall while near the hot wall the velocity 
distribution is nearly unaffected by the porosity of the medium. The 
critical value of the buoyancy force for which there is no flow 
reversal near the cold wall increases with increase in temperature 
ratio parameter while it decreases with increase in porosity of the 
medium. Further,  the bulk temperature b increases with an increase 
in either Grashof number Gr  or porosity parameter  . 
 
Mathematical Formulation and its solution 
 
Consider the fully developed flow of a viscous incompressible fluid 
between two infinitely long vertical plates embedded in porous 
medium. The distance between the plates is d . The origin being 
taken at the left plate of the channel, x -axis is along the walls in the 
direction of the flow and y -axis perpendicular to it. For fully 
developed steady flow all physical quantities will be function of y  

only. The plate at 0y   has a uniform temperature 2T  while the 
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plate at y d  is subjected to a uniform temperature 1T  where

1 2T T . It is assumed that the forced convection flow entering the 
channel is directed vertically upwards whereas the pure free 
convection is motivated by a zero pressure gradient. 
 

 
 

   Fig. 1. Geometry of the problem 
 
The equation of motion is  
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where 0=p p g x  ,   the viscosity of the fluid,   the 
viscosity of the porous medium, k  the porosity of the medium, g
acceleration due to gravity,   the thermal expansion co-efficient, 

rho_fluid density and 0T  the temperature at the channel entrance. 
 
On neglecting, viscous dissipation, the energy equation is  
 

2

20 = .d T
dy

                                                                                         (2) 

 
The velocity and the temperature boundary conditions are  
 

and  at  
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Introducing non-dimensional variables 
 

3
1 0

2

( )
= , = , = ,

g d T Ty u du Gr
d




 

 

2
20 2 0

0 1 0 1 0

= , = , = , = ,T
T T T Td r
T T k T T

 
  

 
 
 

                    (5) 

 
equations (1) and (2) become  
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where 
3

= d dp
dx






  is the non-dimensional pressure gradient. 

On the use of (5), the boundary conditions (3) and   (4) become   
   

(0) = 0 = (1),u u                                                                              (8) 
 

(0) = , (1) = 1.Tr                                                                        (9) 
 
The solution of the equation (7) subject to the boundary condition (9) 
is  
 

( ) = (1 ) .T Tr r                                                                       (10) 
 
Equation (10) shows that the temperature distribution is linear. 
Substituting the value of ( )   in the equation (6), one can obtain  
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Equation (11) together with the boundary condition (8) can be solved 
easily and the solution for velocity distribution is  
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The velocity distribution depends on the porosity parameter  . It is 
noticed that the buoyancy force is balanced by the constant rate of 
flow. It is seen from the solution (12) that the parameter   is still 
unknown. 
 
On the use of the mass flow rate  
 
1

0

= 1,u d                                                                                      (13) 

 
 the unknown pressure parameter   can be expressed in the 
following form  
 

                              (14) 
 
On the use of (14), equation (12) becomes  
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It is interesting to note from equation (15) that the velocity 
distribution for = 0Gr  (pure forced convection) for any values of 

509             International Journal of Current Research, Vol. 5, Issue, 03, pp.508-513, March, 2013 
 



Tr  and for = 1Tr  with any values of Gr  are identical and it 
becomes  

.[(1 cosh )sinh (1 cosh )sinh ]( ) =
sinh 2(1 cosh )

u     
  

  
 

           (16) 

 
In the free convection process, letting = 0  in the equation (12), we 
have the axial velocity distribution as  
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For free convection flow when = 1Tr , the solution (17) reduced to  

2( ) = (1 cosh ) sinh
sinh
Gru   

 
      

(1 cosh )sinh .                                                                  (18) 
 
For free and forced convection flow when 1  , the velocity 
distribution and the pressure gradient are given by  
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and 
2 1= 12 1 (1 ).

10 2 TGr r
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Letting limit 0   in equations (19) and (20), we have  
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It is seen from (19) that either = 0Gr  Gr<<0 (pure forced 
convection) or = 1Tr , we have the same velocity distribution  
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Further, for free convection ( = 0 ), we have, for  << 0, 
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In the limit 0  , for viscous fluid  
 

     2 31 1( ) = [ ( ) (1 )( )].
2 3T Tu Gr r r                              (25) 

 
Equation (25) is identical with equation (17a) of Aung (1972). 

RESULTS AND DISCUSSION 
 
We have presented the non-dimensional velocity ( )u   for several 
values of Gr , Tr  and   against   in Figures 2-7. It is observed 
from Figures 2-7 that the velocity distributions become asymmetric 
in the presence of buoyancy forces ( 0)Gr   whether the values of 
Grashof number Gr  are small or large. It is seen from Figures 2 and 
3 that the fluid velocity ( )u   decreases in the left half of the channel 
and increases in the right half of the channel with increase in Grashof 
number Gr , for both small as well as large values of Grashof 
number Gr . It is also seen that for large values of Grashof number
Gr , the asymmetric nature of the velocity distributions is more 
prominent than small values of Gr . An increase in Grashof number
Gr  leads to an increase in velocity, this is because, increase in Gr  
means more heating and less density.   
 
Figures  4 and 5 show  that with an increase in temperature ratio 
parameter Tr , the fluid velocity ( )u   increases in the left half of the 
channel while it decreases in the right half of the channel for both 
small and large values of Grashof number Gr . The velocity 
distribution is asymmetric prominently for large values of Grashof 
number Gr  shown in Figure 5.  It is interesting to see from Figure 6 
that for small values of Grashof number Gr , the fluid velocity  
decreases near the channel walls while it increases at the middle of 
the channel with increase in porosity parameter  .  Further, for 
small values of Gr , the velocity distribution is symmetrical at the 
channel in the presence of porous medium. On the other hand, Figure 
7 reveals that the fluid velocity distribution  is asymmetric in nature 
for large values of Grashof number Gr . It is also shown that the 
effect of porosity parameter   is prominent near the left wall of the 
channel while near the right wall, the fluid velocity is nearly 
unaffected by the porosity of the medium. Porous medium produces a 
resisting force in the flow field. So, as the porosity parameter 
increases, the resistance in the flow field decreases and as such 
velocity increases. 
 

 
 

Fig. 2. Velocity profiles for small Gr  with = 0.5  and = 0.2Tr  
 
The shear stresses at the plates = 0  and = 1  are given by  
 

   2
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Fig. 2. Velocity profiles for small Gr  with = 0.5  and = 0.2Tr  

 

 
Fig. 3. Velocity profiles for large Gr with = 0.5  and = 0.2Tr  

 

 
Fig. 4. Velocity profiles for Tr  with = 0.5  and small = 20Gr  

 

 
Fig. 5. Velocity profiles for Tr  with = 0.5  and   large = 102Gr  

 

 
 

Fig. 6. Velocity profiles for   with small = 5Gr  and = 0.2Tr  

 
 

Fig. 7. Velocity profiles for   with large = 102Gr  and = 0.2Tr  
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1] = [ (1 )(2sinh cosh )
2 sinh T
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          2 (1 cosh )],                                                              (27) 
 where  
 

       
3 sinh= .

sinh 2(1 cosh )
 


   

                                             (28) 

 
The numerical values of the shear stresses 0  and 1  at the plates 

= 0  and = 1  respectively are shown in the Figures 8-11 against 

Tr  for several values of   and Gr . Figures 8 and 9 show that the 

shear stress 0  at the plate = 0  decreases with increase in either 

Gr  or  . Further, for fixed values of Gr  and  , 0  steadily 

increases with increase in temperature ratio parameter Tr . Figures 10 

and 11 show that the effects of Gr ,   and Tr  on the shear stress at 
the plate = 1  is reversed as that of the plate = 0 . 
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Fig. 8. Shear stress 0 for Gr  with = 0.5  
 

 
 

Fig. 9. Shear stress 0  for  with = 70Gr  

 
Fig. 10. Shear stress 1  for Gr  with = 0.5 . 

 

 
 

Fig. 11. Shear stress 1  for   with = 70Gr  
 

The critical value of 0Gr  for which there is no flow reversal near the 
plate = 0  is obtained from  
 

=0] = 0,du
d 

                                                                                  (29) 

 
 which in turn yields  
 

0
2 (1 cosh )= ,

(1 )[2sinh (1 cosh )]T

Gr
r

 
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
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 where   is given by (28). The corresponding value of the critical 
Grashof number at the plate = 1  is given by 1 0=Gr Gr . The 

values of the critical Grashof number 0Gr  are entered in Table 1 for 
different values of   and Tr . It is seen from Table 1 that the critical 

Grashof number 0Gr  at the plate = 0  increases with increase in 

temperature ratio parameter Tr  while it decreases with increase in 
porosity parameter  . 

 

Table 1. The critical Grashof number 3
010 Gr   

  
 \Tr     0.1    0.5    2.0    10.0   

 0.0   0.31242   0.08164   0.07260   0.07201  
0.2   0.39054   0.10205   0.09075   0.09002  
0.4   0.52071   0.13607   0.12100   0.12002  
0.6   0.78107   0.20410   0.18150   0.18004  

 
The non-dimensional bulk temperature of the viscous flow through 
porous medium may be expressed in the following way  

               
1 1

0 0

= ,b u d ud                                                       (31) 

 
 which in turn gives  
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Fig. 12. Bulk temperature distribution b  for Gr with = 0.5  
 

 
 

Fig. 13. Bulk temperature distribution b  for  with = 70Gr  
 

 
 

Fig. 14. Bulk temperature distribution b  for   with = 5Gr  
 

The numerical values of the bulk temperature b  are presented in 

Figures 12 -14 for several values of   and Gr  against Tr . Figures 

12 and 13 show that the bulk temperature the bulk temperature b  
increases with an increase in either Grashof number Gr  or porosity 
parameter  . It is also seen that for fixed values of Gr  and  ,  the 
bulk temperature b   decreases with an increase in temperature ratio 

parameter and finally converges when = 1Tr . Further, the variation 

of the bulk temperature is linear either for = 0Gr  or for small 
values of the porosity parameter  . For small values of Gr , it is 
observed from Figure 14 that the bulk temperature  b  increases with 
an increase in temperature ratio parameter Tr . 
 

Conclusion 
 
The steady laminar free and forced convective flow of viscous 
incompressible fluid between two infinitely long vertical plates 
embedded in porous medium has been investigated. It is found that 
the velocity distribution shows asymmetric nature for large values of 
buoyancy force Gr . In the presence of porous medium, the velocity 
distribution is symmetric for small values of Grashof number Gr  
while it is asymmetric for large values of Gr . The critical Grash of 
number for which there is no flow reversal near the cold wall 
( = 0)  decreases with increase in porosity of the medium. The bulk 
temperature b  increases with an increase in either Grashof number 
Gr  or porosity parameter  . 
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