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ARTICLE INFO                                        ABSTRACT 
 

 
 
 

A rectangular buried vertical   fault of finite length of strike-slip nature in an elastic layer over a viscoelastic half 
space representing the lithosphere-asthenosphere system has been considered here. Stresses and strain accumulate 
in the region due to various tectonic processes, such as mantle convection and plate movements etc, which 
ultimately leads to movements across the fault. In the present paper, a three-dimensional model of the system is 
considered and analytic expressions for displacements, stresses and strains in the model have been obtained using 
suitable mathematical techniques developed for this purpose. A suitable numerical technique is adapted for 
computer simulation. A detailed study of these expressions may give some ideas about the nature of stress-strain 
accumulation in the system, which in turn will be helpful in formulating an effective earthquake prediction 
programme. 
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INTRODUCTION 
 
While the famous San Andreas fault  is very long compared to it’s 
depth  there is a number of neighboring faults, e.g., Calaveras, 
Hayward, San Jacinto faults etc. which are  not so long  compared to 
its depth, we call them a finite fault. Regular observation in 
seismically active regions in recent years have revealed that during 
apparently quiet aseismic period, there are usually slow, quasi-static 
surface deformations indicating accumulations of stress and strain in 
the region during this aseismic period. In some cases, this 
accumulated stress may eventually lead to a sudden fault movement 
generating an earthquake while in other cases there may be 
continuous slow aseismic creeping movement across the fault. The 
effect of such aseismic creep on the accumulation and release of 
stress in the regions is of great interest in formulating an effective 
earthquake prediction programme. It is therefore seems to be an 
essential feature to identify the nature of the stress and strain 
accumulation in the vicinity of seismic faults situated in the region by 
studying the observed ground deformations during the aseismic 
period. A proper understanding of the mechanism of such aseismic 
quasi static deformation may give us some precursory  
 
Information regarding the impending earthquakes 
 
A pioneering work involving static ground deformation in elastic 
media were initiated by Steketee, J.A. (1958(a),(b)). Maruyama, T. 
(1964, 1966), Chinnery, M.A. (1961,1964,1965), Chinnery, M.A. and 
Dushan B. Jovanovich (1972) did a wonderful work in analyzing the 
displacement, stress and strain in the layered medium. Later some 
theoretical models in this direction have been formulated by a number 
of authors such as Rybicki. K. (1971, 1973), R. Sato (1972), M. 
Rosenman and S.J. Singh (1973), Spence, D.A and Turcotte, 
D.L(1976), Savage and Presscott (1976), Budianasky, B; Amazio, 
J.C. (1976), J.B. Rundle and D.D. Jackson (1977),  
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T. Iwasaki and R. Sato (1979), Mukhopadhyay et al. (1979 a,b; 1980 
a,b), Cohen(1980a), Sunita Rani and S.J. Singh (1991,1992), U. 
Ghosh and others (1992), Sen, S., Sarker S., Mukhopadhyay, A. 
(1993). Riad Hassani, Denis Jongmans and Zhen-Zing Yao (2003), G. 
Hillers and S.G. Wesnousky (2008), Paul Segall (2010) has discussed 
various aspects of fault movement in his book. Ghosh, U and Sen, S 
(2011) have discussed stress accumulation near buried fault in 
lithosphere-asthenosphere system.  
 
In most of these works the medium were taken to be elastic and /or 
viscoelastic, layered or otherwise. In most of the cases the faults were 
taken to be too long compared to its depth, so that the problem 
reduced to a 2D model. Noting that there are several faults (As 
mentioned above) which are not so long compared to their depth, a 
3D model is imminent. In the present paper a buried vertical 
rectangular finite strike-slip fault in an elastic layer over a viscoelastic 
half-space model representing the lithosphere-asthenosphere system 
is being considered. The medium is under the influence of tectonic 
forces due to mantle convection or some related phenomena. The 
fault undergoes a slipping movement when the stresses in the region 
exceed certain threshold values. 
 
Formulation 
 
We consider a buried vertical finite rectangular strike-slip fault F of 
length 2L (L-finite) and width D situated in an elastic layer over a 
viscoelastic half space of linear Maxwell type material.  Let H be the 
thickness of the layer. A Cartesian co-ordinate system is used with the 
mid-point O of the fault as the origin, the strike of the fault along the 
Y1 axis,Y2 axis perpendicular to the fault and Y3 axis pointing 
downwards so that the fault is given by  F : (L< y1 < L, y2 = 0, d <  

y3 < D) as shown in Fig1. Let (u k
i), ( ij

k ) and (e k
ij) be the 

displacement, stress and strain components, i, j=1, 2, 3. And k=1 for 
the layer and k=2 for the half-space. 
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Fig.1. Section of the model by the plane y1=0 
 

Constitutive equations 
 
For the elastic layer: M1 
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For a linear viscoelastic Maxwell type medium the constitutive 
equations have been taken a 
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where 2 is the effective viscosity and µ1 , µ2   are  the effective 
rigidity of the material.The stresses satisfy the following equations 
(assuming quasistatic deformation for which the inertia terms are 
neglected); and body forces does not change during our consideration. 
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where (<y1<, <y2<,0<y3<H, t>0) for the layer k=1. 
and  (<y1<, <y2<,y3>H, t>0) for the half-space k=2. 
 
Boundary conditions 
 
The boundary conditions are taken as, with t=0 representing an instant 
when the medium is in aseismic state: 
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assuming that the stresses maintaining a constant value L at the tip of 
the fault along Y1 axis [the value of this constant stress is likely to be 
small enough so that no further extension is possible along the Y1 
axis]. 
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On the interface  
 

)0,,(, 213  tyyHy  

),,( 32113
1 yyy ),,,( 32113

2 tyyy                           (1.26) 

),,( 32123
1 yyy ),,,( 32123

2 tyyy                             (1.27)         

),,( 32133
1 yyy ),,,( 32133

2 tyyy                           
(1.28) 

u1
3(y1,y2,y3)=u2
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 [where )( t  is the shear stress maintained by mantle convection 
and other tectonic phenomena]. 
 
The initial conditions are 
 

Let (u 1
i)0, ( ij

1 )0 and (e1
ij)0 i,j = 1,2,3 be the value of (u 1

i), ( ij
1 ) 

and (e 1
ij) at time t=0 which are functions of y1,y2,y3 and satisfy the 

relations (1.1)-(1.29). 
 

(3) Solution before fault movement 
 
(SEN.S and DEBNATH.S.K.2012), 
(S.K.DEBNATH, 2013) 

The boundary value problem given by (1.1)-(1.29), can be solved               
(as shown in the Appendix-I) by taking Laplace transformation with 
respect to time‘t’ of all the constitutive equations and the boundary 
conditions. On taking the inverse Laplace transformation we get the 
solutions for displacement, stresses as: 
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From the above solution we find that 1

12 increases with time and 
tends to (t) as t tends to , while 1

22, 1
23 tends to zero, but 1

33 
retains the constant value (1

33)0. We assume that the geological 
conditions as well as the characteristic of the fault in such that when 
1

12 reaches some critical value, say c < (t) the fault F starts 
slipping. The magnitude of slip is expected to satisfy the following 
conditions: 
 
(C1) Its value will be maximum near the middle of the fault on the 
free surface. 
(C2)  It will gradually decrease to zero at the tips of the fault (y1=+L, 
y2=0, d<y3<D) along its length. 
(C3)  The magnitude of the slip will decrease with y3 as we move 
downwards and ultimately tends to zero near the lower edge of the 
fault. 

),,( DyyLy  321 0  
 The function, f (y1, y2) satisfy the above conditions. [We call it creep 
function] 
 
(4) Solutions after fault movement 
 
(SEN.S and DEBNATH .S.K.2012), 
(S.K.DEBNATH, 2013) 
 

We assume that after a time T1, the stress component 1
12 (which is 

the main driving force for the strike-slip motion of the fault) exceeds 
the critical value c, and the fault F starts slipping, characterized by a 
dislocation across the fault. We solve the resulting boundary value 
problem by modified Green’s function method following Maruyama 
(1966), Rybicki (1971, 1973) and correspondence principle                       
(As shown in the Appendix-2) and get the solution for displacements, 
stresses and strain as: 
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Numerical computations 
 
Following Chathles, L.M. (1975), Aki, K. And Richards, P.G. (1980) 
and the recent studies on rheological behaviour of crust and upper 
middle by Peter Chift, Jian Lin, Udo Barcktiausen (2002), Shun-
ichiro karato (July 2010) the values of the model parameters are taken 
as: 
 

,/103 211
1 cmdyne

poisecmdyne 21
2

211
2 102.3,/105.3  

 D=Depth of the fault=10km.,[noting that the depth of all major 
earthquake faults are in between 10-15 km] 
d=10km.(say) 
2L=Length of the fault=40km. (say). 

8102 )( t  dyne/cm2 (200 bars), [post seismic observations 
reveal that stress released in major earthquake are of the order of 200 
bars, in extreme cases it may be 400 bars.] 

7
012

1 105)(   dyne/cm2 (50 bars) and 00  )(  
  
We take the function 
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, with U = 

1cm/year, satisfying the conditions stated in (C1)(C3). 
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We now compute the following quantities: 
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  Where 12
1

11
1 ,  and 12

1
11

1 ,ee  are given by (B). 
 
RESULTS AND DISCUSSIONS  
 
(A) Displacements on the free surface y3=0. 
 
We first consider the displacement U1

1 due to the movement of the 
fault for y3=0.The expression for U1

1 is given in (2.1). Figure2: shows 
the variation of U1

1 against y2 for some selective values of y1 
representing the distance of the point along the strike of the fault. It is 
found that, 
(i) U1

1 is asymmetric with respect to y2 = 0;  
(ii) For comparatively large values of y2 the magnitude of U1

1  tends 
to zero at about   |y2| =100km. 
(iii) In each case for negative y1, U1

1 is the same for y1>0. 
(iv) |U1

1|  0 as |y1| increases. 
(v) |U1

1| always remains bounded. It attains it's extreme at points 
which gradually drift away from y1=0 with increase in y2. The 
maximum magnitude of U1

1 is found to be of the order of 3 cm. one 
year after the commencement of the fault slip at points very close to 
the fault line on the free surface as is clear from the Fig.2. 
 

 
 

Fig.2. Variation of surface displacement U1
1 with y2 for 

y3=0,y1=10km and t1=1 year due to fault movement 
 
(B) Spacial variation of stresses due to fault movement with depth 
(with t1=1 year) 
 
(i) Variation of shear stress t12 with depth due to fault movement.  
Numerical computational works carried out for computing the values 
of t12 at different points of the free surface.  In the Fig.3 it is observed 
that  as we go down along the line y1=10km,y2=10km for H=40km 
the  accumulation of shear stress occurred with increasing depth with 
varying magnitude of accumulation. The magnitude of accumulation 
first increases up to a depth of about 14 km. attaining a maximum 

value 0.2 bar per year there and there after  decreases sharply up to a 
depth of about 40 km and after that the magnitude of stress 
accumulation is found to die out gradually as depth increases. It is 
also  observed that the accumulation of stress pattern is the same for 
y1=±10km ,y2=±10km. Also along the line far away from the fault, 
y1=30km,y2=30km the shear stress accumulation pattern is the same 
with less numerical value. 
 

 
 

Fig.3. Variation of shear stress t12 with depth y3 for 
y1=10km.y2=10km,H=100km and t1=1year due to the fault movement 

 
(C) Spacial variation of shear strain e1

12 due to fault movement 
with depth (for t1=1 year) 
 
Fig.4 Shows the variation of surface shear strain E12 with y2 for 
y3=0km.y1=10km and t1=1 year. It is observed that the magnitude of 
this shear strain is of order 10-6 which is well matched with the 
observational value, the strain first increases  attaining a maximum at 
about |y2|=20km and then gradually  decreases to zero as we move 
away from the fault. 
 

 
 

Fig.4. Varion of surface shear strain E12  for y3=0km,y1=10km ,t1=1 year 
with y2 due to fault movement 

 
(D)Temporal variation of shear stress 1

12  
 
Figure 5. shows rate of shear stress 1

12 accumulation/release  at 
y3=0km,y1=10km and y2=10km.It is observed that the rate of shear 
stress accumulation is linear,  represented by a straight line which 
does not pass through the origin, which is justified as the material is 
assumed to be linear viscoelastic of Maxwell type which carries 
memory. 
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Fig.5. Variation of shear stress 1
12   with time t 

 
Appendix-II 
                                                                                      
Solutions after the fault movement 
 

We assume that after a time T1 the stress component 1
12 (which is the 

main driving force for the strike-slip motion of the fault) exceeds the 
critical value c, the fault F starts slipping. Then we have an 
additional condition characterizing the dislocation in u1 due to the 
creeping movement as: 
 
  )(),()( 13111
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where  Fu )( 1
1  = The discontinuity of u1

1 across F given by 
 
  )(lim)(lim)( 1

1

)0(
1

1

)0(
1

1

22

uuu
yyF 

                                                                    

),( 31 DydLyL 
                                               

(4.2) 
 
where H (t1) is the Heaviside function. 
 Taking Laplace transformation in (4.1), we get, 
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The fault slip commences across F after time T1,  
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                                                                                                   (4.4)                                                                                                       

where (u1
i)1, (1

ij)1, are continuous everywhere in the model and are 
given by (A), i,j=1,2,3. While the second part (u1

i)2, (1
ij)2 are 

obtained by solving modified boundary value problem as stated 
below.  We note that (u1

2)2, (u1
3)2, are both continuous even after the 

fault creep, so that 0)][(,0)][( 23
1

22
1  uu , while (u1

1)2 
satisfies the dislocation condition given by (4.2). 

The resulting boundary value problem can now be stated as: (u1
1)2 

satisfies 3D Laplace equation as  
 

                                 0)( 21
12  u              (4.5)                              

where 21
1 )(u  is the Laplace transformation of (u1

1)2 with respect to 

t, with the modified boundary condition. 0),,,( 32112
1 pyyy   

as [y2], <y1<,y3 > 0.     
        
                                                                                                  (4.6)  
the other boundary conditions are same as before. We solve the above 
boundary value problem by modified Green’s function method 
following Maruyama (1966), Rybicki (1971), and the correspondence 
principle. 
 
Let Q (y1, y2, y3) be any point in the field and ),,( 321 xxxP  be any 
point on the fault, then we have, 
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where G is the Green’s function satisfying the above boundary value 
problem and 
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Taking inverse Laplace transformation, 
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where H (t1) is the Heaviside step function, which gives the 
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and similar other equations.  
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Using (4.13) and taking inverse Laplace transformation, we get 
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Similarly the other components of the displacements, stresses and 
strains can be found out. These are given in (B). 
 
Acknowledgements 
 
I like to thank Dr. Sanjay Sen, Professor, Department of Applied 
Mathematics, C.U. for encouraging continuously for this research, the 
Principal and Head of the Department of Basic Science and 
Humanities, Meghnad Saha Institute of Technology, a unit of Techno 
India Group (INDIA), for allowing me to pursue the Ph.D. thesis, and 
also thanks the Geological Survey of India, ISI, Kolkata, for 
providing me the library facilities.  Computer centre, Department of 
applied Mathematics, University of Calcutta, for providing me the 
computational facilities. 
 

REFERENCES 
 
[1]  Aki. K, and Richards, P.G. (1980): Quantitative Seismology: 

Theory and Methods; W.H.Freeman,San, San Francisco, 
California. 

[2]  Budiansky. B, Amazigo. J.C. (1976): Interaction of fault slip 
and lithospheric creep;J.Geophys.Res. 81,4897-4900. 

[3]  Chinnery. M. A (1961):The deformation of the ground around 
surface faults; Bull.Seis.Soc. Am,51,355-372. 

[4]  Chinnery. M. A (1964): The strength of the Earth's crust under 
horizontal shear stress; Jour.Geophysical.Res.69.2085-2089. 

[5]  Chinnery. M. A (1965):The vertical displacements associated 
with transcurrentfaulting;J.Geophys.Res.70,4627-4632. 

[6]  Chinnery.M.A and Dushan. B.Jovanovich (1972): Effect of the 
earth's layering on earthquake displacement fields,; Bull. 
Seis.Soc. Am,62,1629-1646. 

[7]  Chift. P, LIN.J. Barcktiausen. U. (2002): Marine and petroleum 
Geology 19,951-970. 

[8]  Cohen (1980,a): Post seismic viscoelastic surface deformations 
and stress,1,Theoretical considerations, Displacements and 
strains calculations, J.Geophys.Res.85,No. B6,3131-3150. 

1413                 International Journal of Current Research, Vol. 5, Issue, 6, pp.1407-1414, June, 2013 
 



[9]  Hillers. G. and Wesnousky. S.G. (2008) Scaling relations of 
strike slip earthquakes with different slip rate dependent 
properties a depth. Bulletin of seismological society of Am.v-
98,p 1085. 

[10]  Karato.S.I. (July, 2010): Rheology of the Earth's  mantle: A 
historical review Gondwana Research,vol-18, issue-1,pp-17-45. 

[11]  Rundle, J.B. and  Jackson, D.D. (1977): 3D viscoelastic model 
of a strike slip fault.Geophys.J.R.Astr.Soc.49575-591. 

[12]  Maruyama, T. (1964): Statical elastic dislocations in an infinite 
and semi- infinite medium; Bull. Earthquake. Res. Inst., Tokyo 
Univ.,42,289-368. 

[13]  Maruyama,T.(1966) :On two dimensional dislocations in an 
infinite and semi-infinite medium; Bull. Earthquake Res. Inst. 
Tokyo Univ.,44,(part 3).p.811-871. 

[14]  Rosen.M. and Singh.S.J. (1973):  Quasi static strains and tilts 
due to faulting in a viscoelastic half space: Bull.Seis.Soc. 
Am.vol.63,No.5.p-1737-1752. 

[15]  Mukhopadhyay.A et al. (1979a): On stress accumulation near 
finite rectangular fault, Indian Journal of Meteorology, 
Hydrology and Geophysics (Mausam),vol-30,p-347-352. 

[16]  Mukhopadhyay, A et al. (1979b): On stress accumulation and 
fault slip in lithosphere, Indian Journal of Meteorology, 
Hydrology and Geophysics(Mausam),vol-30,p-353-358. 

[17]  Mukhopadhyay,A., S. SEN and B.P. PAUL (1980a):On stress 
accumulation in a viscoelastic lithosphere containing a 
continuously slipping fault; Bull.Soc.Earthquake Technology, 
vol-17, No-1,p-1-10. 

[18]  Mukhopadhyay, A., SEN. S, and PAUL, B.P. (1980a): On 
stress accumulation near a continuously slipping fault in a two 
layered model of lithosphere; Bull. Soc. Earthquake 
Technology, vol-17,No-4,p- 29-38. 

[19]  Segal. P. (2010): Earthquake and volcano deformation: 
Princeton University Press. 

[20]  Rybicki, K. (1971):The elastic residual field of a very long 
strike slip fault in the presence of a discontinuity; Bull.Seis.Soc. 
Am.61,79-92. 

[21]  Sato. R.(1972):Stress drop of finite fault; J. Phys. Earth,20,397-
407. 

[22] Hassani .R, Jongmans.D. and Chery. J. (1997): Study of a plate 
deformation and stress in subduction processes using 2D 
numerical models, Journal of Geophysical Reaserch,vol-
102,No-B-8,p-17,951-17,965. 

[23]  Stekeetee, J.A. (1958,a): On Volterra's dislocations in a semi-
infinite medium; Can. J. Phys. 36.192-205. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[24]  Stekeetee, J.A. (1958,b): Some geophysical applications of the 
theory of dislocations, Can.J.Phys.36.1168-1198. 

[25]  Sen. S, Sarker. S and Mukhopadhyay. A. (1993): A Creeping 
and surface breaking long strike-slip fault inclined to the 
vertical in a viscoelastic half space, Mausam,44,4,365-4,372. 

[26]  Iwasaki. T and Sato. R. (1979): Strain field in a semi infinite 
medium due to an inclined rectangular fault. Journal of the 
physics of the Earth,v-27.p-285-314. 

[27] Ghosh,U Mukhopadhyay., A. and Sen. S. (1992): On two 
interacting creeping vertical surface-breaking strike-slip faults 
in a two-layered model of lithosphere. Physics of the Earth and 
planetary interior.70,119-129. 

[28] Ghosh.U. and Sen. S. (2011): Stress accumulation near buried 
fault in lithosphere asthenosphere system; International Journal 
of computing,Oct,2011,vol-I,Issue4,pp786-795. 

[29] Sen. S., Debnath S.K. (2012)" Long dip-slip fault in a 
viscoelastic half-space model of the Lithosphere". American 
journal of computational and Applied Mathematics.Vol-2, No-
6.  P-249-256.  

[30] Sen S.  Debnath. S.K.  (2012) "A Creeping vertical strike- slip 
fault of finite length in a viscoelastic half-space model of the 
Lithosphere". International Journal of Computing. Vol-2, Issue-
3, pp-687-697. 

[31] Sen. S, Debnath. S.K. (2013) “Stress and Strain Accumulation 
due to a Long Dip-Slip Fault Movement in an Elastic Layer 
Over a Viscoelastic Half-Space Model of the Lithosphere-
Asthenosphere System”. International Journal of Geosciences  
Vol-4, No-3.p-549-557.   

[32]  Debnath. S.K, Sen .S. (2013)”Aseismic ground deformation in a 
viscoelastic layer overlying a viscoelastic half-space model of 
the lithosphere-asthenosphere system”. Geosciences  vol-2 No- 
3 P-60-67.  

[33] Debnath. S.K.  (2013)”Nature of stress-strain accumulation due 
to a rectangular finite fault in a viscoelastic layer over a 
viscoelastic half-space”- International Journal of Scientific and 
Technology Research. vol-2  ,issue-3   p- 254-265.         

[34]  S.K. Debnath, S. Sen (2013)” Accumulation/ release of stress-
strain due to a long dip-slip fault movement in a viscoelastic 
layer over a viscoelastic half-space model of the lithosphere–
asthenosphere system. (communicated) Acta Geophysica. 

[35]  Debnath. S.K. (2013) “A buried vertical long dip-slip fault in a 
viscoelastic half-pace model of the lithosphere” Journal of 
Emerging Trends in Engineering and Applied Sciences, vol-4, 
No-1, pp-7-15.  

 

******* 

1414                 International Journal of Current Research, Vol. 5, Issue, 6, pp.1407-1414, June, 2013 
 


