

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 3, Issue, 11, pp.035-039, November, 2011

INTERNATIONAL INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

GENERALIZED INVERSE OF K K-Normal Matrix

S. Krishnamoorthy and *R. Subash

¹Department of Mathematics, A.V.C College of Engineering, Mannampandal, Mayiladuthurai, Tamilnadu, India 609305. Engineering, Mannampandal, Mayiladuthurai,

Tamilnadu, India 609305.

Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India

TICLE INFO

ABSTRACT

The generalized inverses of k-norma

²Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612 001.

 \overline{a}

ARTICLE INFO ABSTRACT

Key words: Schur decomposition, k-normal, k-unitary, k-diagonal, generalized inverse. *Article History:* Received 28th August, 2011 Received in revised form 19th September, 2011 Accepted 28th October, 2011 Published online 20th November, 2011

The generalized inverses of k k-normal matrix are discussed by its schur decomposition.

Copy Right, IJCR, 2011, Academic Journals Copy Right, Journals. All rights reserved.

INTRODUCTION

Let \Box ^{nxm} denote the set of all complex nxm matrices. Let 'k' be a fixed product of disjoint transposition in ${S_n} = \{1, 2, ..., n\}$ (hence, involutary) and let 'K' be the associated permutation matrix of k' . Let A^* be denote the conjugate transpose matrix $A \in \Box^{n \times m}$ and by $\Box^{n \times n}_{r}$ all matrices $A \in \Box^{n \times n}$ such that $rank(A) = r$. I_n denotes the unit matrix of order n. The Moore-Penrose inverse of Penrose $A \in \mathbb{R}^{n \times m}$, is an unique matrix X satisfying the four equations $\prod_{r}^{n \times n}$ the set of

$$
AXA = A \dots (1)
$$

\n
$$
XAX = X \dots (2)
$$

\n
$$
(AX)^{*} = AX \dots (3)
$$

\n
$$
(XA)^{*} = XA \dots (4)
$$

and it is denoted by $X = A^{\dagger}$. Let $A\{i, j, ..., l\}$ denote the set of matrices $X \in \Box^{m \times n}$ which satisfy the corresponding above four equations. A matrix $X \in A \{i, j, ..., l\}$ is called an $\{i, j, \ldots, l\}$ -inverse of A and is denoted by $A^{(i, j, \ldots, l)}$. All of these matrices are called the generalized inverse of A. In this paper, we discuss expressions for generalized inverses of a special class of matrices, k-normal matrices, using their schur decomposition. special class of matrices, k-normal matrices, using their schu decomposition.
Definition 1.1: A matrix $A \in \Box^{n \times n}$ is said to be k-normal, if

 $A A^* K = K A^* A$.

**Corresponding author: subash_ru@rediffmail.com*

Example 1.2: If $A = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & i \end{bmatrix}$ 0 0 $A = \begin{pmatrix} 0 & 0 & i \end{pmatrix}$ $=\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & i \\ -i & 0 & 0 \end{pmatrix}$ is k-normal matrix and

 $\begin{bmatrix} 0 & 0 & i \end{bmatrix}$. These two matrices satisfies the above four $X = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ $0 \quad -i \quad 0$ *i* $= \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ 0 & -i & 0 \end{pmatrix}$ $X = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ 0 & -i & 0 \end{pmatrix}$. These two matrices satisfies the above four equations (1), (2), (3) and (4). Therefore X is a Moore-

Penrose inverse of a singular matrix A and it is denoted by A^{\dagger}

Moore-Penrose inverse of k-normal matrix: normal

In this section {1}, {2}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, In this section {1}, {2}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3}, {2,4}, {2,3,4}- inverses of a k-normal matrices are discussed.

Theorem 2.1: Let $A \in \mathbb{Z}^n$ be a k-normal matrix. Then all matrices $A^{(1)}$, $A^{(2)}$ are given by

(i)
$$
A^{(1)} = V \begin{pmatrix} \Sigma^{-1} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} V^* K
$$

\n(ii) $A^{(2)} = V \begin{pmatrix} \Sigma^{-1} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} & \Sigma^{-1} P \begin{pmatrix} E \\ 0 \end{pmatrix} V^* K$,
\n $(F \quad 0) P^{-1} F E$

where $X_{12} \in \Box^{r \times (n-r)}$, $X_{21} \in \Box^{(n-r) \times r}$, $X_{22} \in \Box$ $\overset{(n-r)\times(n-r)}{\ldots}$, $E \in \Box$ $\overset{s\times(n-r)}{\ldots}$ and $F \in \Box$ $\overset{(n-r)\times s}{\ldots}$ are arbitrary sub matrices and $0 \leq s \leq r$.

Proof: Let
$$
X \in \square
$$
 ^{*n*×*n*} be given by
\n $r \quad n-r$
\n $KV^*XV = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} r \\ n-r \end{pmatrix}$ (5)

(i) Using the k-unitary diagonal decomposition of A, we have that $X \in A\{1\}$ if and only if $11 \quad \lambda$ 12 21 $\rightarrow 22$ $0 \setminus (X_{11} \ X_{12}) (\Sigma \ 0) (\Sigma \ 0)$ $0 \t0 / (X_{21} \tX_{22} / 0 \t0) \t0 \t0$ X_{11} X $\begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix} \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix}.$ Hence $X_{11} = \Sigma^{-1}$ and X_{12} , X_{21} , X_{22} are arbitrary matrices of suitable size. (ii) Similarly, X satisfying XAX=X if and only if $11^{\omega_1}\lambda_11$ $\lambda_11^{\omega_1}\lambda_12$ $\lambda_11^{\omega_1}\lambda_11$ $\lambda_12^{\omega_1}$ $21^{\prime\prime}$ 21 \cdot \cdot $21^{\prime\prime}$ 21^{\prime} \cdot \cdot 21^{\prime} \cdot 22^{\prime} $X_{11} \Sigma X_{11}$ $X_{11} \Sigma X_{12}$ X_{11} X $X_{21} \Sigma X_{11}$ $X_{21} \Sigma X_{12}$ X_{21} X_{31} $\begin{pmatrix} X_{11} \Sigma X_{11} & X_{11} \Sigma X_{12} \\ X_{21} \Sigma X_{11} & X_{21} \Sigma X_{12} \end{pmatrix} = \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}$ 11 11 11 *X X X*(5) 11 12 12 *X X X*(6)

$$
X_{21} \Sigma X_{11} = X_{21} \dots \dots \dots \dots (7)
$$

21 12 22 *X X X*(8)

Pre multiplying both sides Σ in equation (5), we get $\sum X_{11} \sum X_{11} = \sum X_{11}$

$$
\Rightarrow (\Sigma X_{11})^2 = \Sigma X_{11} \dots \dots \dots \dots (9)
$$

A matrix $\sum X_{11} \in \square$ *r*^{xr}, satisfies (9) if and only if then their exist nonsingular matrix $P \in \Box^{r \times r}$ such that 1 11 0 $0 \quad 0$ $\sum X_{11} = P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$ where $0 \leq s = rank(X_{11}) \leq r$.

Hence $X_{11} = \sum_{n=1}^{-1} P \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} P^{-1}$ 0 $0 \quad 0$ $X_{11} = \sum_{i=1}^{n} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$.

Now, equations (6) and (7) have the form,

$$
(6) \Rightarrow X_{11} \Sigma X_{12} = X_{12} \Rightarrow
$$

\n
$$
\Sigma^{-1} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \Sigma X_{12} = X_{12} \Rightarrow P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \Sigma X_{12} = \Sigma X_{12}
$$

\n
$$
\Rightarrow \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \Sigma X_{12} = P^{-1} \Sigma X_{12}
$$

\nAnd (7) \Rightarrow \times Σ \times \Rightarrow \longrightarrow $\begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}$.

And (7) $\Rightarrow X_{21} \Sigma X_{11} = X_{21} \Rightarrow X_{21} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = X_{21}$ 0 0 $X_{21}P\begin{pmatrix} I_s & 0 \ 0 & 0 \end{pmatrix} P^{-1} = X$ $(0 \t 0)$ \ldots

 $\Rightarrow X_{21}P = X_{21}$ 0 0 0 $X_{21}P = X_{21}P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix}$ from which we conclude that 1 $12 - 0$ $E \setminus s$ $P^{-1}\Sigma X$ $r^{-1} \Sigma X_{12} = \begin{pmatrix} E \\ 0 \end{pmatrix} \begin{matrix} s \\ r - s \end{matrix}$ and $X_{21}P = (F \t 0)$ s $r - s$

 $\Rightarrow X_{12} = \Sigma^{-1}$ $12 - 2$ $1 \n\bigg(0$ $X_{12} = \sum^{-1} P \begin{pmatrix} E \\ 0 \end{pmatrix}$ and $X_{21} = (F \ 0) P^{-1}$, where E, F are arbitrary sub matrices of suitable size. Substituting (8), we

have
$$
X_{22} = X_{21} \Sigma X_{12} = (F \quad 0) P^{-1} \Sigma \Sigma^{-1} P \begin{pmatrix} E \\ 0 \end{pmatrix}
$$

\n $\Rightarrow X_{22} = (F \quad 0) P^{-1} P \begin{pmatrix} E \\ 0 \end{pmatrix} \Rightarrow X_{22} = (F \quad 0) \begin{pmatrix} E \\ 0 \end{pmatrix} \Rightarrow X_{22} = FE.$

Corollary 2.2: Let $A \in \mathbb{Z}_r^{n \times n}$ be a k-normal matrix. Then any {1, 2}-inverse is given by $A^{(1,2)} = V \left(\frac{\Sigma^{-1}}{FP^{-1}} - \frac{\Sigma^{-1}PE}{FE} \right) V^* K$, $\left[\begin{array}{cc} -1 & \Sigma^{-1}PE \end{array}\right]_{L}$ Ē $=V\left(\begin{matrix} \Sigma^{-1} & \Sigma^{-1}PE \\ FP^{-1} & FE \end{matrix}\right)$ where $P \in \Box$ $f^{\times r}$, $E \in \Box$ $f^{\times (n-r)}$ and $F \in \Box$ \Box $f^{\times r}$ are arbitrary matrices. **Proof:** Considering the expressions for $A^{(1)}$ and $A^{(2)}$. From

Theorem 2.1, we get that $\sum^{-1} P \begin{pmatrix} I_s & 0 \end{pmatrix} P^{-1} = \sum^{-1} P \begin{pmatrix} I_s & 0 \end{pmatrix} P^{-1}$ 0 0 $\Sigma^{-1}P\begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = \Sigma^{-1}$ holds if and only if s=r, which implies that $X_{12} = \sum^{-1} PE$,

 $X_{21} = FP^{-1}$ and $X_{22} = FP^{-1} \Sigma \Sigma^{-1} PE = FE$.

Lemma 2.3: Let $A \in \mathbb{Z}_r^{n \times n}$ be a k-normal matrix.

(i) Solutions of the equation (3) are given by the following general expression

$$
X = V \begin{pmatrix} X_{11} & 0 \\ X_{21} & X_{22} \end{pmatrix} V^* K, \text{ where}
$$

\n
$$
X_{11} = D_1 + U_1 + \sum^{-1} (\sum U_1)^*,
$$

\n
$$
D_1 = diag(x_{k(1) k(1)}, ..., x_{k(r) k(r)}).
$$

\n
$$
x_{k(i) k(i)} = \begin{cases} \ni y_{k(i) k(i)}, & \lambda_{k(i)}^2 < 0 \\ y_{k(i) k(i)}, & \lambda_{k(i)}^2 > 0 \\ y_{k(i) k(i)}, & \lambda_{k(i)}^2 > 0 \end{cases}
$$
 (10),

 $y_{k(i)k(i)} \in R$, $i = 1,2,...,r$, $U_1 \in \square$ ^{rxr} is an arbitrary strictly upper triangle matrix and X_{21} , X_{22} are arbitrary matrices of suitable size.

Solutions of the equation (4) are given by the following general expression $X = V \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$ \tilde{X}_{22}^{11} \tilde{X}_{22}^{12} V^*K , X_{11} *X* $X = V \begin{bmatrix} 1 & 1 & 1 \\ 0 & z & 1 \end{bmatrix} V^* K$ $= V \begin{pmatrix} \tilde{X}_{11} & \tilde{X}_{12} \\ 0 & \tilde{X}_{22} \end{pmatrix} V^*$ $\tilde{X}_{\infty}^{\perp 2}$ V^*K , where $\tilde{X}_{11} = D_2 + U_2 + (U_2 \Sigma)^* \Sigma^{-1},$ $D_2 = diag(\tilde{x}_{k(1),k(1)},...,\tilde{x}_{k(r),k(r)})$.

$$
\tilde{x}_{k(i)k(i)} = \begin{cases}\ni y_{k(i)k(i)} & \lambda_{k(i)}^2 < 0 \\
y_{k(i)k(i)} & \lambda_{k(i)}^2 > 0 \\
y_{k(i)k(i)} - \frac{i \lambda_{k(i)}^{(2)}}{\lambda_{k(i)}^{(1)}} y_{k(i)k(i)} & \lambda_{k(i)}^2 \notin R\n\end{cases}
$$

 $\sqrt{ }$

 $y_{k(i)k(i)} \in R, i = 1, 2, ..., r, U_2 \in \square^{r \times r}$ is an arbitrary strictly upper triangle matrix and \tilde{X}_{21} , \tilde{X}_{22} are arbitrary matrices of suitable size. **Proof:** If X satisfies the equation (1), then $(KV^*XV)^*\begin{pmatrix} \Sigma^* & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} (KV^*XV)$ * XY)* $\begin{pmatrix} \Sigma^* & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} (KV^*)$ using the

decomposition of X given by (5), we get
\n
$$
\begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}^{*} \begin{pmatrix} \Sigma^* & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}
$$
\n
$$
\Rightarrow \begin{pmatrix} X_{11}^* & X_{12}^* \\ X_{21}^* & X_{22}^* \end{pmatrix} \begin{pmatrix} \Sigma^* & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} \Sigma & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} X_{11} & X_{12} \\ X_{21} & X_{22} \end{pmatrix}
$$
\n
$$
\Rightarrow \begin{pmatrix} X_{11}^* \Sigma^* & 0 \\ X_{21}^* \Sigma^* & 0 \end{pmatrix} = \begin{pmatrix} \Sigma X_{11} & \Sigma X_{12} \\ 0 & 0 \end{pmatrix}
$$
\nSo, $X_{11}^* \Sigma^* = \Sigma X_{11} \implies (\Sigma X_{11})^* = \Sigma X_{11}$(11) and
\n $X_{12} = 0$.
\nLet $X_{11} = (x_{k(i)k(j)})_{r\times r}$. Then the equation (11) is equivalent
\nto $\overline{\lambda_{k(j)} x_{k(j)k(i)}} = \lambda_{k(i)} x_{k(i)k(j)}$, $i, j = 1, 2, ..., r$. this holds
\n $\frac{\partial f}{\partial x_{k(i)} x_{k(i)k(i)}} = \lambda_{k(i)} x_{k(i)k(i)}$, $i = 1, 2, ..., r$(12)
\n $x_{k(j)k(i)} = \frac{1}{\lambda_{k(j)}} \overline{\lambda_{k(i)} x_{k(i)k(j)}}$, $i < j, i, j = 1, 2, ..., r$(13)
\n $x_{k(j)k(i)} = \frac{1}{\lambda_{k(j)}} \overline{\lambda_{k(i)k(k(i)j)}}$, $i < j, i, j = 1, 2, ..., r$(13)

Let $X_{11} = D_1 + U_1 + L_1$, where D_1 , U_1 and L_1 are the kdiagonal, strictly upper triangle and strictly lower triangle part of X_{11} , respectively. The equation (12) holds if and only if D_1 has the form given by (10). The equation (13) is equivalent to $L_1 = \Sigma^{-1} (\Sigma U_1)^*$.

The proof of part (ii) is analogous.

Lemma 2.4: Let $A \in \mathbb{Z}^n$ be a k-normal matrix. Solutions of the equation (3) and (4) are given by the following general

expression
$$
X = V \begin{pmatrix} D & 0 \\ 0 & X_{22} \end{pmatrix} V^* K
$$
, where
\n $D = diag(d_{k(1)k(1)},...,d_{k(r)k(r)})$.
\n $d_{k(i)k(i)} = \begin{cases} \ni y_{k(i)k(i)} & \lambda_{k(i)}^2 < 0 \\ y_{k(i)k(i)} & \lambda_{k(i)}^2 > 0 \\ y_{k(i)k(i)} & \lambda_{k(i)}^2 > 0 \end{cases}$,

 $y_{k(i)k(i)} \in R, i = 1, 2, ..., r, \text{ and } X_{22} \in \Box^{(n-r)\times(n-r)} \text{ is an }$ arbitrary matrix.

Proof: If $X \in \square$ ^{*nxn*}. By **lemma (2.3)**, X satisfies the equation (3) and (4) if and only if $X_{21} = 0$, $\tilde{X}_{12} = 0$, $X_{22} = \tilde{X}_{22}$, $D_1 = D_2$, $U_1 = U_2$, $\Sigma^{-1} (\Sigma U_1)^* = (U_2 \Sigma)^* \Sigma^{-1}$ …………….(14).

Now, we have $U = (\Sigma^* \Sigma)^{-1} U \Sigma \Sigma^*$, where $U = U_1 = U_2$, that is $\frac{1}{2}$ 2 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$ 2 $\frac{1}{2}$

$$
U = diag(|\lambda_{k(1)}|^{-2}, ..., |\lambda_{k(r)}|^{-2})U diag(|\lambda_{k(1)}|^{2}, ..., |\lambda_{k(r)}|^{2})
$$

................. (15)

This equation holds if and only if U is a k-diagonal matrix. However, U is a strictly upper triangle matrix, so a necessary and sufficient condition for (15) is U=0.Taking in (10) ,

$$
\begin{cases}\ny_{k(i)k(i)} = \frac{-1}{\lambda_{k(i)}^{(2)}}, & \lambda_{k(i)}^2 < 0, \\
y_{k(i)k(i)} = \frac{1}{\lambda_{k(i)}^{(1)}}, & \lambda_{k(i)}^2 > 0, \\
y_{k(i)k(i)} = \frac{\lambda_{k(i)}^{(1)}}{\left|\lambda_{k(i)}\right|^2}, & \lambda_{k(i)}^2 \notin R \\
y_{k(i)k(i)} \in R, & i = 1, 2, \dots, r,\n\end{cases}
$$

We get that $D_1 = \Sigma^{-1}$, so for $U_1 = 0$. We obtain that any such solution of the equation (3) satisfies AXA=A.

Therefore, we may now pass on to expressions for the elements of A $\{1, 3\}$ and A $\{1, 4\}$.

Theorem 2.5: Let $A \in \square$ $\bigcap_{r=1}^{n \times n}$ be a k-normal matrix. Then the elements of $A\{1, 3\}$, $A\{1, 4\}$ are given by $(1,3)$ $-V$ \sum Z^{-1} $A^{(1,3)} = V \begin{pmatrix} \Sigma^{-1} & 0 \\ X_{21} & X_{22} \end{pmatrix} V^* K, A^{(1,4)} = V \begin{pmatrix} \Sigma^{-1} & \tilde{X}_{12} \\ 0 & \tilde{X}_{22} \end{pmatrix}$ $A^{(1,4)} = V \begin{pmatrix} \Sigma^{-1} & X_{12} \\ 0 & \tilde{X}_{22} \end{pmatrix} V^* K,$ *X* $=V\begin{pmatrix} \Sigma^{-1} & \tilde{X}_{12} \\ 0 & \tilde{X}_{22} \end{pmatrix}V^*$ $\tilde{\chi}$

respectively, where X_{21} , X_{22} , X_{12} , X_{22} , are arbitrary matrices of suitable size.

Proof: The proof is analogous.

Theorem 2.6: Let $A \in \square$ $\prod_{r}^{n \times n}$ be a k-normal matrix. Then the general forms of the elements of $A\{1,2, 3\}$, $A\{1,2, 4\}$, $A\{1,3, 4\}$ 4} are given by $A^{(1,2,3)} = V \begin{pmatrix} \Sigma^{-1} \\ 1 \end{pmatrix}$ $A^{(1,2,3)} = V \begin{pmatrix} \Sigma^{-1} & 0 \ FP^{-1} & 0 \end{pmatrix} V^* K,$ *FP* $\begin{pmatrix} -1 & 0 \end{pmatrix}_{V^*}$ i- $=V\begin{pmatrix} \Sigma^{-1} & 0 \\ FP^{-1} & 0 \end{pmatrix}$

$$
A^{(1,2,4)} = V \begin{pmatrix} \Sigma^{-1} & \Sigma^{-1} \tilde{P} E \\ 0 & 0 \end{pmatrix} V^* K,
$$
\n
$$
A^{(1,3,4)} = V \begin{pmatrix} \Sigma^{-1} & 0 \\ 0 & X_{22} \end{pmatrix} V^* K
$$
, respectively, where\n
$$
P, \tilde{P} \in \Box^{r \times r}, F \in \Box^{(n-r) \times r}, E \in \Box^{r \times (n-r)}, X_{22} \in \Box^{(n-r) \times (n-r)}
$$

, are arbitrary matrices.

Proof: The proof is analogous.

Theorem 2.7: Let $A \in \mathbb{Z}^n$ be a k-normal matrix. Then $\{2, \ldots, n\}$ $3\}$, $\{2, 4\}$ -inverse of A are given by 1 $(2,3)$ V \sim $\frac{1}{1}$ $(1,1)$ 1 $\boldsymbol{0}$ $\boldsymbol{0}$ M_1M $A^{(2,3)} = V$ $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} V^* K$ *FM* $^{-1}$ M M^{*} × × $= V \begin{pmatrix} \Sigma^{-1} M_1 M_1^* & 0 \ F M_1^* & 0 \end{pmatrix}$, $\sum_{(2,4)}$ \sum_{l} $N_1 N_1^* \Sigma^{-1}$ N_1 0 0 $A^{(2,4)} = V \begin{pmatrix} N_1 N_1^* \Sigma^{-1} & N_1 E \\ 0 & 0 \end{pmatrix} V^* K$ respectively.

Where $M_1, N_1 \in \Box$ ^{r×s} satisfy $M_1^* M_1 = I_s$, $N_1^* N_1 = I_s$ and $F \in \Box^{(n-r) \times s}$, $E \in \Box^{s \times (n-r)}$ are arbitrary matrices.

Proof: Let $X \in \Box$ $n \times n$. By **Theorem 2.1 (ii)** and **Lemma 2.3** (i), we have that $X \in A\{2,3\}$ if and only $D_1 + U_1 + \Sigma^{-1} (\Sigma U_1)^* = \Sigma^{-1} P \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} P^{-1}$ 0 ()(16) 0 0 $D_1 + U_1 + \Sigma^{-1} (\Sigma U_1)^* = \Sigma^{-1} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$

$$
\Sigma^{-1} P\binom{E}{0} = 0
$$
\n
$$
(F \quad 0)P^{-1} = X_{21}
$$
\n
$$
FE = X_{22}
$$
\n(17)

First, we will prove that there exist D_1, U_1, P such that (16) holds. If we multiply the equation (16) from the left side by Σ ,

We get,

$$
\Sigma D_{1} + \Sigma U_{1} + (\Sigma U_{1})^{*} = P \begin{pmatrix} I_{s} & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \dots \dots \dots \dots (18)
$$

$$
\Sigma D_{1} = (\gamma_{k(i)k(i)})_{rsr} = \begin{cases} \lambda_{k(i)}^{(2)} y_{k(i)k(i)} & \lambda_{k(i)}^{2} < 0, \\ \lambda_{k(i)}^{(0)} y_{k(i)k(i)} & \lambda_{k(i)}^{2} > 0, \\ \frac{|\lambda_{k(i)}|^{2}}{\lambda_{k(i)}^{(1)}} y_{k(i)k(i)} & \lambda_{k(i)}^{2} \notin R \end{cases}
$$

From the equation (18) we conclude the following

- (i) ΣD_1 is real k-diagonal matrix.
- (ii) $\Sigma D_1 + \Sigma U_1 + (\Sigma U_1)^*$ is a k-hermitian matrix.
- (iii) The k-eigen value set of $P\begin{pmatrix} I_s & 0 \ 0 & 0 \end{pmatrix} P^{-1}$ 0 0 $P\left(\begin{matrix}I_s & 0 \ 0 & 0\end{matrix}\right)$ $P^$ is {1,

0}.That is, $\Sigma D_1 + \Sigma U_1 + (\Sigma U_1)^*$ that is, $P\begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$ $P\left(\begin{matrix}I_s & 0 \ 0 & 0\end{matrix}\right)P^-$

must be k-hermitian positive semi-definite matrix with k-eigen values 0 and 1. Because of that, the matrix P can be replaced by the k-unitary matrix M such that

$$
M\begin{pmatrix}I_s & 0\\ 0 & 0\end{pmatrix}M^* = \Sigma D_1 + \Sigma U_1 + (\Sigma U_1)^* = P\begin{pmatrix}I_s & 0\\ 0 & 0\end{pmatrix}P^{-1}
$$

$$
S \quad r - S
$$

Let $M = (M_1 \ M_2)$.

Then
$$
M \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} M^* = M_1 M_1^*
$$

Denoted by $M_1 M_1^* = (m_{k(i)k(i)})_{r \times r} = \Lambda_M + L_M + L_M^*$, where $\Lambda_M = \Sigma D_1, L_M^* = \Sigma U_1$

When

$$
y_{k(i)k(i)} = \begin{cases} \frac{m_{k(i)k(i)}}{\lambda_{k(i)}^{(2)}}, & \lambda_{k(i)}^{2} < 0\\ \frac{m_{k(i)k(i)}}{\lambda_{k(i)}^{(1)}}, & \lambda_{k(i)}^{2} > 0\\ \frac{\lambda_{k(i)}^{(1)} m_{k(i)k(i)}}{\left|\lambda_{k(i)}\right|^2}, & \lambda_{k(i)}^{2} \notin R \end{cases}
$$

 $\begin{cases}\n-m_{k(i)k(i)} \\
\frac{\lambda_{k(i)}^{(2)}}{\lambda_{k(i)}^{(2)}}\n\end{cases}$, $\lambda_{k(i)}^2$

So, we have found $P(M)$, U_1 , D_1 such that the equation (16) holds.

If we put the k-unitary matrix M in (17) instead of P, we obtain that $E = 0, X_{22} = 0$ and $X_{21} = FM_1^*$, where F is an arbitrary matrix of suitable size.

The proof for the $\{2, 4\}$ -inverse is analogous.

Theorem 2.8: let $A \in \mathbb{Z}_r^{n \times n}$ be a k-normal matrix. The every ${2, 3, 4}$ -inverse of A is of the form

$$
A^{(2,3,4)} = V \begin{pmatrix} \Sigma^{-1}T \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} T^T & 0 \\ 0 & 0 \end{pmatrix} V^* K , \text{ where } T \text{ is a}
$$

permutation matrix, $S \in \{0,1,...,r\}$.

Proof: Let $X \in \mathbb{R}^{n \times n}$ be a {2, 3, 4}-inverse of A. then $X \in A\{2\}$ and by **Lemma (2.4)**, we get that

$$
D = \Sigma^{-1} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1} \dots (19)
$$

\n
$$
0 = \Sigma^{-1} P \begin{pmatrix} E \\ 0 \end{pmatrix}
$$

\n
$$
0 = (F \quad 0) P^{-1} \dots (20) \text{ from (20) it follows}
$$

\n
$$
X_{22} = FE
$$

that $E = 0, F = 0$ and $X_{22} = 0$.

Now, we have to prove that there exist D and a non-singular matrix P such that the equation (19) holds.

By (19), we have that
$$
\Sigma D = \Sigma^{-1} P \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}
$$
, so ΣD , that

is, $P\begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} P^{-1}$ 0 0 $P\left(\begin{matrix}I_s & 0 \ 0 & 0\end{matrix}\right)P^$ is a k-diagonal matrix with k-eigen values

0 or 1 and $rank(D) = s$.

Therefore, there exists a permutation matrix T such that 0 $\Sigma D = T \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} T^T$.

$$
(0 \t 0)
$$

Denote by $\Gamma = (\gamma_{k(i)k(i)})_r = T \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} T^T$.

$$
\Sigma D = \Gamma \text{ holds if } \gamma_{k(i)k(i)} = \begin{cases} \frac{-\gamma_{k(i)}}{\lambda_{k(i)}^{(2)}} & \lambda_{k(i)}^2 < 0, \\ \frac{\gamma_{k(i)}}{\lambda_{k(i)}^{(1)}} & \lambda_{k(i)}^2 > 0, \\ \frac{\lambda_{k(i)}^{(1)} \gamma_{k(i)}}{|\lambda_{k(i)}|^2} & \lambda_{k(i)}^2 \notin R, \\ \frac{\lambda_{k(i)}^{(1)} \gamma_{k(i)}}{|\lambda_{k(i)}|^2} & \lambda_{k(i)}^2 \notin R, \end{cases}
$$

Finally, we get $D = \Sigma^{-1} T \begin{pmatrix} I_s & 0 \\ 0 & 0 \end{pmatrix} T^T$. Hence the proof.

REFERENCE

[1] Krishnamoorthy, S., and Subash, R., "On k-normal matrices", *International J. of Math. Sci. & Engg. Appls.,* 5(II) (2011), 119-130.

- [2] Zheng, B., and Bapat, R.B., "Characterization of generalized inverses by a rank equation" Applied Mathematics and Computation, 151 (2004), 53-67.
- [3] Chuning, He., "General forms for Moore-Penrose inverses of real symmetric matrix under the congruence decomposition condition" , Numerical mathematics(in Chinese). 28(3) (2006), 236-242.
- [4] Horn, R.A., Johnson, R., "Matrix Analysis", Cambridge
- University Press, 1985.
Shufang, Xu., "Theory [5] Shufang, Xu., "Theory and methods of matrix computations", Beijing University Press, 1995.
- [6] Penrose, R., "A Generalized inverse for matrices" *Proc. Cambridge Philos. Soc.,* 51(1955), 406-413.
- [7] Drazin, M.P., "Pseudo Inverses in Associate Rings and Semi groups" *Amer. Math. Mon,* 65(1985), 506-514.
- [8] Wang, G., Wei, Y., and Qiao, S., "Generalized Inverses" Theory and Computations, Science Press (Beijing) 2004.
- [9] Moore, E.H., "On the reciprocal of the general algebraic matrix (abstract)" *Bull. Amer. Math. Soc.,* 26(1920), 394-395.
