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INTRODUCTION

Let [] " denote the set of all complex nxm matrices. Let ‘k’
be a fixed product of disjoint transposition in

S ={1,2,...,n} (hence, involutary) and let ‘K’ be the

associated permutation matrix of ‘k’. Let A" be denote the

conjugate transpose matrix 4 €[l ™" and by [J ZX" the set of

all matrices 4 €l " such thatrank(A)=r. I denotes
the unit matrix of order n. The Moore-Penrose inverse of

Aell™  is an unique matrix X satisfying the four
equations

AXA= Ao, )
XAX = X oo, (2)
(AX) = AX oo 3)
(XA)' = XA, (4)

and it is denoted by X = A" . Let A{i, j,...,I} denote the set

of matrices X €[] ™" which satisfy the corresponding above
four equations. A matrix X € A{i, J,...,[} is called an

{i, j,...,I} -inverse of A and is denoted by A"/~ All of

these matrices are called the generalized inverse of A. In this
paper, we discuss expressions for generalized inverses of a
special class of matrices, k-normal matrices, using their schur
decomposition.

Definition 1.1: A matrix 4 €[]
AA K=K A A.

is said to be k-normal, if
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Example 1.2: If 000 is k-normal matrix and
A=0 0 i
-i 0 0

0 0 0
0 —i 0
equations (1), (2), (3) and (4).

Penrose inverse of a singular matrix A and it is denoted by A

{0 0 ’}. These two matrices satisfies the above four
X =

Therefore X is a Moore-

Moore-Penrose inverse of k-normal matrix:

In this section {1}, {2}, {1,2}, {1,3}, {14}, {1,2,3}, {1,2,4},
{1,3,4}, {2,3}, {2,4}, {2,3,4}- inverses of a k-normal matrices
are discussed.

Theorem 2.1: Let A4 €[] :X" be a k-normal matrix. Then all

matrices A", A® are given by

o) A‘”:V[Z_l X”JV*K
21

22

- P L0 p' P E
(i) 4o _pr 0 0 0K

(F 0P FE
where X, €] ™" X, el
X, 0 Ee¥U and F el "™ are
arbitrary sub matrices and 0 < s <7,
Proof: Let X €[] ™" be given by

r n—r

X, r
] ............ (5)

* Xll
KV'XV =
X,,

21
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(i) Using the k-unitary diagonal decomposition of A, we have

that X e A{l}if and

T 0\(X, X,)(T 0) (T 0
0 o)\lx, X,)lo o) (0 o
Hence X, = ~"and X,,,X,,,X,, are arbitrary matrices

only if

of suitable size.
(i)  Similarly, X satisfying XAX=X if and only if

(XIIZXII X112X12 ]:[Xll XIZ J

X212X11 X212X12 XZI X22
X, 2X, =X, . (5)
X\ EX, =X,y oo (6)
X, 52X, =Xy oo (7)
69D SRS SN (8)

Pre multiplying both sides X in equation (5), we get
2X 22X, =2X,

A matrixZ X, €17, satisfies (9) if and only if then their

exist nonsingular matrix P ell " such that

I 0
XX, ZP( ’ jPl, where 0 < s = rank(X,)<r.
0 0

0 P
0 :

Now, equations (6) and (7) have the form,

6 = X 2X,=X, =

1
Hence X, ZZIP(OS

ap(ds 0 - I 0
) ]P[O OJP]ZXu:Xlz = P((; OJPIZXIZZEXIZ

I, 0

= | |P'TX,=P'TX,
0 0

And(7) = X, 2 X, =X, = XZIP[IS OJP]:X

21

I 0
= X, P =X21P((; Oj from which we conclude that

4 3 E) s
P2X,= and
0

r—=S
S r—=s
X, P=(F 0)

E _
= X,= ZIP(OJ and X, =(F 0)P"', where E, F
are arbitrary sub matrices of suitable size. Substituting (8), we

have S——
X, =X,2X,=(F 0P XXP 0

E
= Xy =(F O)PIP[OJ = Xy =(F m[fj =

X, =FE.

Corollary 2.2: Let A €[]”" be a k-normal matrix. Then any
' I'PE

» V'K,
FP FE
WhereP ED :XV,E S D rx(n=r) andF S D (n=r)xr are arbitrary
matrices.

1 2
Proof: Considering the expressions for A" and A%, From

{1, 2}-inverse is given by A(“):V[

Theorem 2.1, we get that ¥ ‘UD(IS 0] P '=3y " holds if
0 0

and only if s=r, which implies that X, = >'PE,
X, =FP "' and X,,=FP'SX'PE=FE.

Lemma 2.3: Let 4 €[] 7™ be a k-normal matrix.

(i) Solutions of the equation (3) are given by the following
general expression

(Xll O j *
X=V VK, where
21 22

X, =D, +U,+37'(ZU,)",

Dy = diag(x, ) x>+ Xy b))

. 2
LYkiykay » ;”k(i) <0
_ P, (10),
Xy = Yk » /Ik(i) >0
+1(2)
A7
k(i) 2
Yitiyky — 20 Yy ;Lk(i) &R
(i)

Viiky € R 1=1,2,...,7, U, €™ is an arbitrary strictly

upper triangle matrix and X 21 , X ,, are arbitrary matrices of
suitable size.

(i) Solutions of the equation (4) are given by the following
X *

-~ |V'K, where
X5

X

general expression X :V{ "

Xll = D2 +Uz +(U22)*271,

D, = diag (X, ray>+s Xy ki) -

. 2
LY kykG Ak(i) <0
~ _ 2 i
Xeikiy =\ Yeiyka /1/((;) >0
+2(2)
A
k(i) 2
Yy ~ ﬁ,(_l) Yraiykaiy ﬂ’k(i) ZR
k(D)

Vi ERT=12,.,r, U, €l™ is  an  arbitrary

strictly upper triangle matrix and X,,, X,, are arbitrary

matrices of suitable size.

Proof: If X satisfies the equation

=0 20 .

(KV'XVY = (KV*XV) using the
0 0 0 0

(1), then
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decomposition of X given Dby (5), we get
X, X,) (= 0) (= 0\(Xx, X,
(Xz, XZZJLO oj_(o O](XZI XZJ
~[ B T
X5, X, )L0o 0 0 O)\X, X,
N (X;;z* 0]_(2){11 ZXIZJ
X,z 0 0 0
So, XI*IZ*:ZX” = (Z)XH)*=ZX11 .......... (11) and
X, =0.

Let X|, = (xk(l.)k(j))rxr . Then the equation (11) is equivalent

0 A X ik =Xk > brJ =125, 7. this holds

if and only if
Ao oty =ikt » = 1 2o P (12)
1] — . ...
Xi (ki) =/1—ﬂ,k(l.)xk(i)k(j) , 1< J, i, J=1,2,0 ). 13)
116)

Let X, =D, +U,+L,, where D;, U, and L, are the k-
diagonal, strictly upper triangle and strictly lower triangle part
of X|,, respectively. The equation (12) holds if and only if

D, has the form given by (10). The equation (13) is
equivalentto L, =X~ (ZU,)" .
The proof of part (ii) is analogous.

Lemma 2.4: Let 4 €l " be a k-normal matrix. Solutions of

the equation (3) and (4) are given by the following general

D 0,
X=V V'K,
0 X,

D= diag(dk(l)k(l)"”’ dk(r) k(’)) ’

expression where

. 2
) ’1/((1') <0
dk(i)k(i) RRPITI0) /11%(1‘) >0
il(z)

k() 2
Vi) — 20 Yikai) /1/{(1') R
10)

Vi ER = L2,..,r,and X,, €l] (=X i an

arbitrary matrix.

Proof: If X €[l ™ . By lemma (2.3), X satisfies the equation

(3) and (4) if and only if X, =0, X,=0,X,, =X,
-1 ES * -1

D =D,U =U,2 (2U,) =U,Z)X

................ (14).

Now, we havelU =(X'2)'UZL", whereU =U, =U,,

that is
. -2 -2 . 2 2

U =diag(Ay| soluon| I diag(|Ay| seon | )

.................. (15)

This equation holds if and only if U is a k-diagonal matrix.
However, U is a strictly upper triangle matrix, so a necessary
and sufficient condition for (15) is U=0.Taking in (10),

-1 ,
Vi) = 10 /11((1) <0,
k()
1 2
YViiyka) = 20 ﬂ“k([) >0,
k()
20
0 >
YViiyka) = 2 /Ik(i) R
‘ k(i)

Ve ERs =1, 2,7,

We get that D, = ', so for U, =0. We obtain that any
such solution of the equation (3) satisfies AXA=A.

Therefore, we may now pass on to expressions for the
elements of A{1, 3} and A{l, 4}.

Theorem 2.5: Let A €[] 7™ be a k-normal matrix. Then the

elements of A{l, 3}, A{l, 4} are given by
-1 -1 v

A" = V[Z 0 JV*K A = V[Z Yz ] V'K,
21 X22 O 22

respectively, ~ where X,,, X, X, X

2ysX1ps Xy, are arbitrary

matrices of suitable size.
Proof: The proof is analogous.

Theorem 2.6: Let A €[] 7™ be a k-normal matrix. Then the
general forms of the elements of A{1,2, 3}, A{1,2, 4}, A{1,3,

0
4} are given by AN = V'K,
FP' 0
-1 15
A(],2,4) — V 2 2 PE V*K’
0 0

-1
4034 _ V(Z 0 JV* K, respectively, where

22
P,P el ;;xr,F el (nfr)xr,E el r><(nfi‘)’)(22 el (n—r)x(n-r)

, are arbitrary matrices.
Proof: The proof is analogous.

Theorem 2.7: Let A €] "™ be a k-normal matrix. Then {2,
31, {2,

A% = V(

4}-inverse of A are
STMM! 0,
) V'K,
FM, 0
[1\@1\/{‘2-1 NIEJ

given by

APV =V V*K respectively.

Where M|, N, €] ™" satisty M| M, =1_,N/N, =1, and
Fel" 7 Eell ™" are arbitrary matrices.
Proof: Let X €[] ™" . By Theorem 2.1 (ii) and Lemma 2.3

(i), we have that X € A4{2,3} if and only if
-1 * -1 Is 0 —1
DU +E EUY =2 7P| [P (16)
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Z‘IP(E]—O
o 7

(F 0)P'=X,,
FE=X,,

First, we will prove that there exist D;,U,, P such that (16)
holds. If we multiply the equation (16) from the left side by 2,

We get,
* Is 0 —1
ED+ XU+ (SU) =P [ [P (18)
_A;(z(;) Yk ﬂ’lf(i) <0,
2D, = (}/k(i)k(i))rxr = /,i’l(cl()i) Vi) /113(1') >0,
2
/’i’k(i)
%yk(i)k(i) ﬂ’/f(i) R
ﬁ’k(i)

From the equation (18) we conclude the following
() 2D, is real k-diagonal matrix.

(ii) ED, +XU, +(ZU,)" is a k-hermitian matrix.
Iv 0 —1
(iii) The k-eigen value set of P 0 0 P is {1,

0\,
0

must be k-hermitian positive semi-definite matrix with k-eigen
values 0 and 1. Because of that, the matrix P can be replaced
by the k-unitary matrix M such that

0
0

I
0}.That is, ZD, +ZU, +(XZU,)" that is, P(O‘

I 0) . (1
M((; OJM = %D, +XU, +(2U,) :P(O

s r—s
Let M=(M, M,).

Iv O * *
Then M 0 0 M =MM,

* *
Denoted by MM, = (mk(i)k(i))rxr =Ay,+L,+L,,
5
where A,, =2D,,L,, =2U,
My 2
FIENE /lk(,) <0
When k@
) Mk 2
Yy = 20 lk(l‘) >0
k(i)
AV m,
k(i) k(tz)k(t) , 2{:(,) gR
‘ﬂ’k(i)

So, we have found P(M'),U,, D, such that the equation (16)
holds.

If we put the k-unitary matrix M in (17) instead of P, we
obtain that £=0,X,, =0 and X,, = FM,, where F is an

arbitrary matrix of suitable size.
The proof for the {2, 4}-inverse is analogous.

Theorem 2.8: let 4 €[] be a k-normal matrix. The every
{2, 3, 4}-inverse of A is of the form

-1 s T
4234 z T[O OJT 0 VK where T is a
0 0
permutation matrix, S € {0,1,...,7}.
Proof: Let X €[1™" be a {2, 3, 4}-inverse of A. then
X € A{2} and by Lemma (2.4), we get that

,1 [S 0 71
D=X"P| * P ... (19)
0 0
o
0=3"'P
0
0=(F 0P o (20) from (20) it follows

X,, =FE

that £=0,F =0 and X,, =0.

Now, we have to prove that there exist D and a non-singular
matrix P such that the equation (19) holds.

I 0
By (19), we have that 2D = ZIP( (; OjPl ,soxD , that

IS
is, P
5

0or 1 andrank(D)=s .
Therefore, there exists a permutation matrix T such that

Is 0 T
XD=T T .
0 0

[s 0 T
Denote by I" = (7 iyei)), =T 0 0 T .

0] Plisa k-diagonal matrix with k-eigen values

ki 2
7o Aery <0,
k(i)
2D =T holds if Ve ,
Yrikay = 20 ﬂ’k(i) >0,
k(i)
A0y
k(i) /7 k(i) 2
- Aok
s

I, 0
Finally, we get D = ZlT( OS Oj T" . Hence the proof.
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