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INTRODUCTION 
 

Let 
n m� denote the set of all complex nxm matrices. Let ‘k’ 

be a fixed product of disjoint transposition in 

{1, 2,..., }nS n (hence, involutary) and let ‘K’ be the 

associated permutation matrix of ‘k’. Let A

conjugate transpose matrix 
n mA �  and by 

all matrices 
n nA � such that ( )rank A r

the unit matrix of order n. The Moore-Penrose inverse of
n mA � , is an unique matrix X satisfying the four 

equations 
 

............(1)AXA A                        

............(2)XAX X     

( ) ............(3)AX AX                    

( ) ............(4)XA XA     

    

and it is denoted by
†X A . Let { , ,..., }A i j l

of matrices 
m nX �  which satisfy the corresponding above 

four equations. A matrix { , ,..., }X A i j l

{ , ,..., }i j l -inverse of A and is denoted by

these matrices are called the generalized inverse of A.
paper, we discuss expressions for generalized inverses of a 
special class of matrices, k-normal matrices, using their schur 
decomposition. 
 

Definition 1.1:  A matrix 
n nA �  is said to be k

A A K K A A  . 
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denote the set of all complex nxm matrices. Let ‘k’ 
be a fixed product of disjoint transposition in 

(hence, involutary) and let ‘K’ be the 

A
 be denote the 

and by 
n n
r
� the set of 

( )rank A r . nI denotes 

Penrose inverse of

, is an unique matrix X satisfying the four 

{ , ,..., }A i j l
 
denote the set 

which satisfy the corresponding above 

{ , ,..., }X A i j l  is called an 

A and is denoted by
( , ,..., )i j lA . All of 

these matrices are called the generalized inverse of A. In this 
paper, we discuss expressions for generalized inverses of a 

normal matrices, using their schur 

is said to be k-normal, if 

subash_ru@rediffmail.com 

 

Example 1.2: If 0 0 0

0 0

0 0

A i

i

 
 

  
  

0 0

0 0 0

0 0

i

X

i

 
 

  
  

. These two matrices satisfies the above four 

equations (1), (2), (3) and (4). 

Penrose inverse of a singular matrix A and it is denoted by
 
Moore-Penrose inverse of k-normal matrix:
  
In this section {1}, {2}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, 
{1,3,4}, {2,3}, {2,4}, {2,3,4}- 
are discussed. 
 

Theorem 2.1: Let 
n n
rA �  

matrices 
(1) (2),A A are given by

 

(i)  
1

(1) 12

21 22

X
A V V K

X X


 

  
 

 

(ii)
1 1 1

(2)

1

0

0 0 0

( 0)

sI E
P P P

A V V K

F P FE

  



    
          
 
 

where 
( )

12 ,r n rX  � 21X 

 
( ) ( )

22 ,n r n rX   � ( )s n rE  �

arbitrary sub matrices and 0 . 

Proof:  Let 
n nX �  be given by

    
11 12

21 22

............(5)

r n r

X X r
KV XV

X X n r




 
  

 

 Available online at http://www.journalcra.com 

International Journal of Current Research 
Vol. 3, Issue, 11, pp.035-039, November, 2011 

 

 INTERNATIONAL 
     

A.V.C College of Engineering, Mannampandal, Mayiladuthurai,  

Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, Tamilnadu, India 612 001. 

normal matrix are discussed by its schur decomposition. 

diagonal, generalized inverse. 

Copy Right, IJCR, 2011, Academic Journals. All rights reserved. 

0 0 0

0 0

0 0

A i

 
 
 
 
 

  is k-normal matrix and

. These two matrices satisfies the above four 

equations (1), (2), (3) and (4).  Therefore X is a Moore-

Penrose inverse of a singular matrix A and it is denoted by
†A  

normal matrix: 

2}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, 
 inverses of a k-normal matrices 

 be a k-normal matrix. Then all 

are given by 

1 1 1

0 0 0

I E
P P P

A V V K

F P FE

  



    
     

    
 
 

,  

( )
21 ,n r r �  

( )s n r �  and
( )n r sF  �  are 

0 .s r   

be given by 

............(5)
r

n r
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(i)  Using the k-unitary diagonal decomposition of A, we have 

that {1}X A if and only if

11 12

21 22

0 0 0

0 0 0 0 0 0

X X

X X

        
      

      
.  

Hence 
1

11X   and 12 21 22, ,X X X  are arbitrary matrices 

of suitable size. 
(ii)  Similarly, X satisfying XAX=X if and only if  

11 11 11 12 11 12

21 11 21 12 21 22

X X X X X X

X X X X X X

    
   

      
        

11 11 11 ............(5)X X X        

11 12 12 ............(6)X X X   

       21 11 21 ............(7)X X X        

21 12 22 ............(8)X X X   

Pre multiplying both sides   in equation (5), we get 

11 11 11X X X     

     
2

11 11( ) ............(9)X X    

A matrix 11
r r
sX  � , satisfies (9) if and only if then their 

exist nonsingular matrix 
r rP � such that

1
11

0

0 0
sI

X P P 
   

 
, where 110 ( )s rank X r   . 

Hence 
1 1

11

0

0 0
sI

X P P  
   

 
. 

Now, equations (6) and (7) have the form, 

(6)      11 12 12X X X            

1 1
12 12

0

0 0
sI

P P X X  
   

 
     1

12 12

0

0 0
sI

P P X X 
   

 
    

     
1 1

12 12

0

0 0
sI

P X P X  
   

 
 

 And (7)  21 11 21X X X 
   
  1

21 21

0

0 0

sI
X P P X 

 
      

  21 21

0

0 0
sI

X P X P
 

  
 

 from which we conclude that  

1
12

0

E s
P X

r s
  
   

 
 and     

       
21 ( 0)

s r s

X P F




   

  
1

12
0

E
X P  

   
 

 and 
1

21 ( 0)X F P , where E, F 

are arbitrary sub matrices of suitable size. Substituting (8), we 

have 1 1
22 21 12 ( 0)

0

E
X X X F P P   

     
 

 

  1
22 ( 0)

0

E
X F P P  

  
     


22 ( 0)

0

E
X F

 
  

    

  

22X FE . 

Corollary 2.2:  Let 
n n
rA �  be a k-normal matrix. Then any 

{1, 2}-inverse is given by 
1 1

(1,2)

1
,

PE
A V V K

FP FE

 




  
  

 

where
r r
rP � ,

( )r n rE  �  and
( )n r rF  �  are arbitrary 

matrices. 

Proof: Considering the expressions for 
(1)A and

(2)A . From 

Theorem 2.1, we get that 1 1 1
0

0 0
sI

P P   
   

 
 holds if 

and only if s=r, which implies that 
1

12 ,X PE 
1

21X FP  and 
1 1

22X FP PE FE    . 

Lemma 2.3: Let 
n n
rA �  be a k-normal matrix. 

(i) Solutions of the equation (3) are given by the following 
general expression 

11

21 22

0
,

X
X V V K

X X
 

  
 

where

1
11 1 1 1( )X D U U      ,

1 (1) (1) ( ) ( )( ,..., )k k k r k rD diag x x .  

  

2
( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( )

(2)
( ) 2

( ) ( ) ( ) ( ) ( )(1)
( )

, 0

, 0

,

k i k i k i

k i k i k i k i k i

k i

k i k i k i k i k i

k i

i y

x y

i
y y R
















 

  



 …… (10), 

( ) ( ) 1, 1,2,..., , r r
k i k iy R i r U   �  is an arbitrary strictly 

upper triangle matrix and 21X , 22X  are arbitrary matrices of 

suitable size. 
 
(ii)  Solutions of the equation (4) are given by the following 

general expression 
11 12

22

,
0

X X
X V V K

X

 
  

 

 


 where

1
11 2 2 2( )X D U U       , 

2 (1) (1) ( ) ( )( ,..., )k k k r k rD diag x x   . 

2
( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( )

(2)
( ) 2

( ) ( ) ( ) ( ) ( )(1)
( )

0

0

k i k i k i

k i k i k i k i k i

k i

k i k i k i k i k i

k i

i y

x y

i
y y R
















 

  



, 

( ) ( ) 2, 1, 2,..., , r r
k i k iy R i r U   �  is an arbitrary 

strictly upper triangle matrix and 21X , 22X  are arbitrary 

matrices of suitable size. 
Proof: If X satisfies the equation (1), then 

00
( ) ( )

0 00 0
KV XV KV XV


     

   
  

 using the 
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decomposition of X given by (5), we get 

11 12 11 12

21 22 21 22

00

0 00 0

X X X X

X X X X

       
     
     

              

   
11 1211 12

21 2221 22

00

0 00 0

X XX X

X XX X

  

 

     
     
    

  

   
11 1211

21

0

0 00

X XX

X

 

 

    
   

   

 

So, 11 11X X   
  
   11 11( ) ..........(11)X X    and

12 0X  . 

Let 11 ( ) ( )( )k i k j r rX x  . Then the equation (11) is equivalent 

to ( ) ( ) ( ) ( ) ( ) ( ) ,k j k j k i k i k i k jx x   , 1, 2,..., .i j r  this holds 

if and only if 

( ) ( ) ( ) ( ) ( ) ( ) , 1,2,..., ...........(12)k i k i k i k i k i k ix x i r    

( ) ( ) ( ) ( ) ( )

( )

1
, , , 1, 2,..., ...........(13)k j k i k i k i k j

k j

x x i j i j r


    

Let 11 1 1 1X D U L   , where 1D , 1U  and 1L  are the k-

diagonal, strictly upper triangle and strictly lower triangle part 

of 11X , respectively. The equation (12) holds if and only if 

1D  has the form given by (10). The equation (13) is 

equivalent to
1

1 1( )L U    . 

The proof of part (ii) is analogous. 

Lemma 2.4: Let 
n n
rA �  be a k-normal matrix. Solutions of 

the equation (3) and (4) are given by the following general 

expression 
22

0
,

0

D
X V V K

X
 

  
 

 where

(1) (1) ( ) ( )( ,..., )k k k r k rD diag d d .  

2
( ) ( ) ( )

2
( ) ( ) ( ) ( ) ( )

(2)
( ) 2

( ) ( ) ( ) ( ) ( )(1)
( )

0

0

k i k i k i

k i k i k i k i k i

k i

k i k i k i k i k i

k i

i y

d y

i
y y R
















 

  


, 

( ) ( ) , 1, 2,..., ,k i k iy R i r  and 
( ) ( )

22
n r n rX   �  is an 

arbitrary matrix. 

Proof:  If
n nX � . By lemma (2.3), X satisfies the equation 

(3) and (4) if and only if 21 0X  , 12 0X  , 22 22X X  ,

1 2D D , 1 2U U ,
1 1

1 2( ) ( )U U         

…………….(14). 

Now, we have
1( )U U      , where 1 2U U U  , 

that is 
2 2 2 2

(1) ( ) (1) ( )( ,..., ) ( ,..., )k k r k k rU diag U diag   
 



……………… (15) 
This equation holds if and only if U is a k-diagonal matrix. 
However, U is a strictly upper triangle matrix, so a necessary 
and sufficient condition for (15) is U=0.Taking in (10),    

2
( ) ( ) ( )(2)

( )

2
( ) ( ) ( )(1)

( )

(1)
( ) 2

( ) ( ) ( )2

( )

1
, 0,

1
, 0,

,

k i k i k i

k i

k i k i k i

k i

k i

k i k i k i

k i

y

y

y R













  




 


  

    

( ) ( ) , 1, 2,...,k i k iy R i r  ,  

We get that
1

1D   , so for 1 0U  . We obtain that any 

such solution of the equation (3) satisfies AXA=A. 
 
Therefore, we may now pass on to expressions for the 
elements of A{1, 3} and A{1, 4}. 

Theorem 2.5: Let 
n n
rA �  be a k-normal matrix. Then the 

elements of A{1, 3}, A{1, 4} are given by 
1

(1,3)

21 22

0
,A V V K

X X


 

  
 

1
(1,4) 12

22

,
0

X
A V V K

X




 
  

 





respectively, where 21 22 12 22, , ,X X X X  , are arbitrary 

matrices of suitable size. 
Proof: The proof is analogous. 

 Theorem 2.6: Let 
n n
rA �  be a k-normal matrix. Then the 

general forms of the elements of A{1,2, 3}, A{1,2, 4}, A{1,3, 

4} are given by 
1

(1,2,3)

1

0
,

0
A V V K

FP






 
  

 
1 1

(1,2,4) ,
0 0

PE
A V V K

 
  

  
 


 

1
(1,3,4)

22

0
,

0
A V V K

X


 

  
 

respectively, where

( ) ( ) ( ) ( )
22, , , ,r r n r r r n r n r n r

rP P F E X           � � � �

, are arbitrary matrices. 
Proof: The proof is analogous.  

Theorem 2.7: Let 
n n
rA �  be a k-normal matrix. Then {2, 

3}, {2, 4}-inverse of A are given by
1

(2,3) 1 1

1

0

0

M M
A V V K

FM

 




 
  

 
, 

1
(2,4) 1 1 1

0 0

N N N E
A V V K

 
 

  
 

 respectively. 

Where 1 1, r sM N �  satisfy 1 1 sM M I  , 1 1 sN N I   and

( )n r sF  � ,
( )s n rE  �  are arbitrary matrices. 

Proof: Let
n nX � . By Theorem 2.1 (ii) and Lemma 2.3 

(i), we have that {2,3}X A  if and only if   

1 1 1
1 1 1

0
( ) ............(16)

0 0
sI

D U U P P    
       

   
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1

1
21

22

0
0

( 0) ...........(17)

E
P

F P X

FE X





 
   

  


 


                                                        

First, we will prove that there exist 1 1, ,D U P  such that (16) 

holds. If we multiply the equation (16) from the left side by ,  
 
We get, 

1
1 1 1

0
( ) ............(18)

0 0
sI

D U U P P  
       
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(2) 2

( ) ( ) ( ) ( )

(1) 2
1 ( ) ( ) ( ) ( ) ( ) ( )

2

( ) 2
( ) ( ) ( )(1)

( )

0,

( ) 0,

k i k i k i k i

k i k i r r k i k i k i k i

k i

k i k i k i

k i

y

D y

y R

 

  










 


   






 

From the equation (18) we conclude the following 

(i) 1D  is real k-diagonal matrix. 

(ii) 1 1 1( )D U U       is a k-hermitian matrix. 

(iii) The k-eigen value set of 
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0 0
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P P 
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 

is {1, 

0}.That is, 1 1 1( )D U U       that is, 
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0 0
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P P 
 
 

must be k-hermitian positive semi-definite matrix with k-eigen 
values 0 and 1. Because of that, the matrix P can be replaced 
by the        k-unitary matrix M such that

1
1 1 1

0 0
( )

0 0 0 0
s sI I

M M D U U P P     
         

   

.
1 2Let ( ).

s r s

M M M




    

Then 1 1

0

0 0
sI

M M M M  
 

 
 

Denoted by 1 1 ( ) ( )( )k i k i r r M M MM M m L L 
     , 

where 1 1,M MD L U      
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( ) ( ) 2
( )(2)
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( ) ( ) 2
( ) ( ) ( )(1)

( )
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( ) ( ) ( ) 2

( )2

( )

, 0
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
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


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
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So, we have found 1 1( ) , ,P M U D  such that the equation (16) 

holds. 

If we put the k-unitary matrix M in (17) instead of P, we 

obtain that 220, 0E X   and 21 1X FM  , where F is an 

arbitrary matrix of suitable size. 
The proof for the {2, 4}-inverse is analogous. 

Theorem 2.8: let 
n n
rA �  be a k-normal matrix. The every 

{2, 3, 4}-inverse of A is of the form  

1

(2,3,4)

0
0

0 0

0 0

s TI
T T

A V V K




  
     
 
 

, where T is a 

permutation matrix, {0,1,..., }S r . 

Proof: Let
n nX �  be a {2, 3, 4}-inverse of A. then 

{2}X A  and by Lemma (2.4), we get that  

           

1 10
...........(19)
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 
 

            

1

1
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0
0
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 from (20) it follows 

that 0, 0E F   and 22 0X  . 

Now, we have to prove that there exist D and a non-singular 
matrix P such that the equation (19) holds. 

By (19), we have that
1 10

0 0
sI

D P P  
    

 
, so D , that 

is, 
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0 0
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P P 
 
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 is a k-diagonal matrix with k-eigen values 

0 or 1 and ( )rank D s . 

 Therefore, there exists a permutation matrix T such that 

0

0 0
s TI

D T T
 

   
 

 .                          

Denote by ( ) ( )

0
( )

0 0
s T

k i k i r

I
T T
 

    
 

. 

D    holds if 

( ) 2
( )(2)
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( ) ( ) ( )(1)
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 Finally, we get
1 0

0 0
s TI

D T T  
   

 
. Hence the proof. 
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