

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 3, Issue, 12, pp.022-030, December, 2011 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

# **RESEARCH ARTICLE**

# INFLUENCE OF FOLIAR SPRAY OF CYANOBACTERIAL INDOLIC COMPOUNDS ON THE GROWTH OF *Hibiscus esculentus* L.

# Varalakshmi Perumal<sup>1\*</sup> and Malliga Perumal<sup>2</sup>

<sup>1\*</sup>Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu – India <sup>2</sup>Department of National Facility for Marine Cyanobacteria, Bharathidasan University, Tiruchirappalli, Tamil Nadu – India

Tiruchirappaili, Tamii Nadi

#### **ARTICLE INFO**

# ABSTRACT

Article History: Received 14<sup>th</sup> September, 2011 Received in revised form 29<sup>th</sup> October, 2011 Accepted 27<sup>th</sup> November, 2011 Published online 31<sup>th</sup> December, 2011

*Key words: Oscillatoria annae,* Indole – 3- acetic acid, Tryptophan

# **INTRODUCTION**

A growth regulator is a natural or synthetic organic compound that promotes, inhibits or qualitatively modifies growth and development of a plant. These compounds are biologically active at very low concentration and elicit response similar to those observed from plant hormones. Since most plant growth and development processes are regulated by natural plant hormones, these processes may be manipulated either by altering the plant hormone level or changing the capacity of the plant to respond to its natural hormones (Moore, 1989: Fullick et al., 2006). Auxin is one of the plant growth regulators produced from the bacteria, fungi, cyanobacteria and plants. The auxins are classified based on the occurrence by natural source or synthetic (Nishida and Murata, 1996; Stirk et al., 1999). Indole acetic acid (IAA) is a natural auxin which is also synthesized in many species of non seeded plants, many bacteria, fungi and algae. The amino acid tryptophan is commonly regarded as the precursor for the biosynthesis of auxin in plants (Sergeeva et al., 2002). By one pathway tryptophan is converted to indole pyruvic acid via a transaminase reaction, which requires a keto acid and pyridoxal phosphate in addition to the enzyme. Indole pyruvic acid is next decarboxylated to indole acetaldehyde in a reaction requiring a decarboxylase thiamine pyrophosphate. Either an oxidase or a dehydrogenase then oxidizes indole acetaldehyde to IAA (Pattern and Glick, 1996). In some cases the basal application of biofertilizer or hormone may be drained into the water system. So the plant cannot utilize the

Cyanobacteria are prokaryotic, inexpensive to maintain with high growth rates and produce various biologically active substances like proteins, vitamins, carbohydrates, amino acids, polysaccharides and plant growth regulators. Thus they have the unique potential to contribute to productivity in a variety of agricultural and ecological situations. Indole acetic acid (IAA) is a natural auxin which is also synthesized in many species of non seeded plants, many bacteria, fungi and algae. The amino acid tryptophan is commonly regarded as the precursor for the biosynthesis of auxin in plants. In this study, for the first time an attempt was made to confirm the presence of IAA in the extract of *Oscillatoria annae* using instrumental methods of analysis and a field experiment was also conducted to analyze the efficacy of the extract on the growth of *Hibiscus esculentus*.

Copy Right, IJCR, 2011, Academic Journals. All rights reserved.

basal fertilizer fully. Besides this, foliar fertilization has the advantage that translocation takes place directly into the plant. This application has been used as a means of supplying supplementary doses of minor and major nutrients, plant hormones, stimulants and other beneficial substances. Cyanobacteria are inexpensive to maintain with high growth rates and produce various biologically active substances like carbohydrates, proteins, vitamins, amino acids, polysaccharides and plant growth regulators. Thus they have the unique potential to contribute to productivity in a variety of agricultural and ecological situations. The economically important host plants namely Hibiscus esculentus L. selected for the study based on the usage and nutritive value for testing cyanobacterial extract as a foliar spray.

# **MATERIALS AND METHODS**

# Cyanobacterial culture collection

The cyanobacteria were collected from various paddy (*Oryza sativa* L.) fields in Thanthonimalai, Karur District, Tamil Nadu, India.

# Isolation

BG11 medium (Rippka *et al.*, 1979) was used for isolation, identification and mass cultivation of cyanobacteria. Cyanobacteria *Oscillatoria annae* was isolated and purified by serial dilution technique. One gram of cyanobacterial mat was homogenized and diluted in 100 ml (considered as  $10^{-2}$ ) of stock. From the stock one ml of cyanobacterial suspension

was taken and it was transferred to 9ml of sterilized medium from  $10^{-3}$  to  $10^{-8}$  respectively. From each dilution 1 ml was trasferred and spread using L-rod on solidified BG11 agar medium in petriplates and incubated under controlled condition.

#### Culture maintenance and induction of auxin

Cyanobacterial cultures were maintained in BG-11 medium at  $25\pm2$  <sup>0</sup> C under 1500 lux light intensity with 14/10 D/L cycle for 7 to 15 days. For auxin production 10mg/100ml of tryptophan (precursor) was incorporated in BG11 medium (Sergeeva *et al.*, 2002).

# **Preparation of extract**

Known amount of dried cyanobacterial strains were taken and ground with required amount of distilled water. Extraction was repeated until the cyanobacterial culture turned white residue. Then the extract was filtered through Whatman No.1 filter paper and the culture filtrate was dried for three days.

# Extraction of IAA (Sergeeva et al., 2002)

Oscillatoria annae was homogenized for 10 minutes and centrifuged at 5,000g for 20 minutes at 4°C. The supernatent was acidified pH 2.8 with 1.0 M HCl.Acidified supernatant was extracted three times with ethyl acetate [1:3 v/v].Extracts were then evaporated under vacuum condition.The remaining aqueous fraction was adjusted to pH 7.0 with 1 N NaOH and it was extracted three times with water saturated n-butanol (1:3v/v). The extract collected from aqueous fraction dried under vacuum. The above No. 4 & 6 dried powder was dissolved with 80% methanol and filtered through membrane filter (pore size 0.45mm) and final weight was taken.

# Bioassay for IAA-rice root inhibition assay (Mahadevan and Sridhar, 1996)

Oscillatoria annae extract (3ml) was added to 10ml of 3% bacteriological agar. This solution was warmed in a water bath to melt the agar. Molten agar (5ml) was distributed into 10ml glass vials and autoclaved for120 °C for 15 min. To this molten agar without cyanobacterial extract / known concentration of IAA (10µg- 100µg) was added, which was maintained as control. Surface sterilized rice seeds were soaked in sterile water for 24hr at  $25 \pm 1^{\circ}$ C in dark. Seeds were spread on moist filter paper in petridishes and kept for another 24hrs in dark. The germinated seeds were transferred into sterile agar which containing cyanobacterial extract/ IAA standard. Seedlings were grown for 48hr in dark at  $25 \pm 1^{\circ}$ C. Primary roots were measured and the mean root length was measured after 48hr incubation. Standard curve was prepared by plotting logarithm of concentration µg/L compared with either % of growth or % inhibition over the control.

#### Estimation of IAA (Mahadevan and Sridhar, 1996)

The greyish blue spot corresponding to the authentic IAA was removed and it was diluted in 1ml of methanol. To this 2ml of Salper reagent was added drop wise with continuous agitation. Samples were then incubated in dark for 60min till a stable pink colour developed. The absorbance was measured at 565nm against a solvent reagent blank. A standard curve drawn from known concentration of IAA was used to quantify IAA present in the extract.

#### Detection of IAA by TLC (Mahadevan and Sridhar, 1996)

Cyanobacterial extract was separated on TLC plates coated with 250 $\mu$ m thickness of silica gel. 10 $\mu$ l of the extract and standard IAA (10 $\mu$ g/ml) were spotted on the plate. Isopropanol-ammonia-water (80:10:10 v/v) was used as mobile phase. After elution Ehrlich's reagent (2% p-dimethyl aminobenzaldehyde in 2N HCl in 80% ethanol) was sprayed on the chromatogram and dried in oven at 100  $^{0}$  C for about 8-10 minutes to detect the presence IAA.

# Qualitative and quantitative estimation of IAA BY HPLC (Dobrev *et al.*, 2005)

The powdered extract were dissolved in 5ml of 1M formic acid to give 0.5-1 AU and the actual absorbance of solution were measured. The standard solution of a single compound was sequentially eluted and the absorbance of each elute was measured using spectrophotometer (SCHIMADZU 1700, Japan) with 1cm light path at wavelengths 280nm for IAA.

# **HPLC conditions**

The flow rate (0.6ml min<sup>-1</sup>) and mobile phase (A: 40mM formic acid adjusted to pH 3.0 with ammonium hydroxide and B: acetonitrile/methanol, 1/1 v/v). Samples dissolved in 20% methanol in water (v/v) were injected via the auto sampler in volumes up to 1000µl. Columns were kept at 35°C. The linear gradient in the column was: 10-30% B for10min, 30-100% B for 2min, 100% B for 5 min, 100-10% B for 1min. Eluant from the column was monitored on the UV-Vis Spectrophotometeric detector at 280nm.

# Field study Mass cultivation

The mass cultivation of cyanobacteria was conducted in PVC tanks (sterilized) filled with sterilized BG11 medium. The *O. annae* culture was inoculated and it was incubated for 7-14 days at room temperature. After maturation the cyanobacterial mat were collected and dried for storage.

#### Field condition

Plot size: *Hibiscus esculentus* L. - 6.50sqm Design: Randomized Block Design Variety: Pusa (*Hibiscus esculentus* L.)

#### Treatments

| С              | - | Control (Without treatment)            |
|----------------|---|----------------------------------------|
| С              | - | Chemical fertilizer (Recommended dose) |
| $T_1$          | - | 0.01% of O. annae extract              |
| $T_2$          | - | 0.02% of O. annae extract              |
| T <sub>3</sub> | - | 0.03% of O. annae extract              |
|                |   |                                        |

# Duplication -

Duration of crops: Pusa (*Hibiscus esculentus* L.) - 90 days Recommended dose of chemical fertilizer (NPK kg/ha):*Hibiscus esculentus* L - 40:50:30

25

#### **O.** annae extract as foliar spray

The seeds of *Hibiscus esculentus* L. were treated with the extract of *O. annae* (0.01%, 0.02% and 0.03%). After germination, the seedlings were transplanted to respective fields for further treatment with the extract. The 1<sup>st</sup>, 2<sup>nd</sup> and 3<sup>rd</sup> doses of the *O. annae extract* to *H. annus* extract were was applied to *H.esculentus* on10<sup>th</sup>, 30<sup>th</sup> and 60<sup>th</sup> day. Mean time the morphological characters and biochemical characters were analyzed and tabulated at 30<sup>th</sup>, 60<sup>th</sup> and 90<sup>th</sup> day.

### Analysis of parameters

#### **Morphological Parameters**

- 1 Length of the root, shoot and diameter of the stem
- 2 Fresh and dry weight of the root and shoot
- 3 Leaf stalk, leaf numbers, leaf area, and weight of the leaves
- 4 Number of branches, internodal length, number of internodes, number of flower and number of pods
- 5 Weight of the fruit, diameter of the fruit, plant biomass and productivity of the crop plant

#### **Biochemical Parameters**

#### **Estimation of Chlorophyll (Arnon, 1949)**

1g of fresh leaf was ground in mortar and pestle with 80% cold acetone with a pinch of CaCO<sub>3</sub> to prevent pheophytin formation. The homogenate was centrifuged at 2500g for 10 min. The supernatant was made up to a known volume with 80% cold acetone. Optical density was measured against acetone as blank in spectrophotometer (Shimadzu 1700, Japan) at 645nm and 663nm. Chlorophyll *a*, *b* and total chlorophyll were calculated using Arnon's formula.

#### Estimation of carbohydrates (Yemm and Willis, 1954)

Dried plant materials (100mg of leaves, fruits or seeds) were exhaustively extracted with 70% (v/v) ethanol and the extract was evaporated in vacuum. Evaporated residue was dissolved in distilled water to a final volume of 1ml, and which was kept in a water bath for 30 °C. Anthrone reagent (5ml) was added to the test (1ml) and standard solution. To the test solution, 0.5ml of  $H_2SO_4$  was added and it was cooled for 5min.Tubes were loosely fitted with corks heated for 5min. and then cooled in water bath. The absorption spectra were determined in a spectrophotometer (Shimadzu 1700 Japan) at 600nm. The measurement of test solutions and reagent blanks were made against water as a reference.

#### Estimation of Protein (Lowry et al., 1951)

Fresh plant material 500mg was washed in distilled water. It was ground in 0.1M potassium phosphate buffer (pH 7.0) using a pestle and mortar under cold condition and the homogenate was centrifuged at 7000g for 10 min; the supernatant was decanted and was used for protein estimation. Protein in the supernatant was precipitated by adding equal volume of 5 % Trichloroaceticacid. The precipitate was removed by centrifugation at 7000g for 15min and dissolved

in a known amount of 1N NaOH to give the protein solution.From the protein solution, 0.5ml was pipetted out and the total volume was made upto 4ml with distilled water. To each tube 5.5ml of the alkaline mix (reagent C) was added and mixed well and allowed to stand at room temperature for 15min. From the reagent D, 0.5ml was pipetted and added into each tube and mixed rapidly after each addition. The tubes were left for 30min and the development of blue colour was measured at 650nm (Shimadzu 1700. Japan). A standard graph was plotted by using bovine serum albumin V (Sigma) and the protein content in the sample was estimated with the help of the standard graph.

#### Estimation of total lipids (Tomlinson and Rich, 1969)

Lipids are heterogenous group of biological compounds that are insoluble in water but soluble in ether, chloroform and other organic solvents. The hydrocarbon of lipid contributes the hydrophobic nature. Lipids are generally bound to forms proteins in biological samples and cannot be efficiently extracted with non polar solvents alone. In such cases lipids are extracted with a mixture of chloroform and methanol and are easily separated by this procedure. One gram of plant sample was homogenized with 10ml of chloroform/methanol (2:1 v/v) mixture in a mortar and pestle. The homogenate was filtered through cheese cloth. The residue was re-extracted with 10ml of chloroform methanol mixture and the extracts were pooled. The crude lipid extract was made upto a volume of 20ml with chloroform / methanol mixture. To the crude extract, equal volume of distilled water was added in a separating funnel. The content was mixed thoroughly by vigorous shaking and allowed to stand for the separation of chloroform layer from aqueous phase. The chloroform phase was withdrawn by a vacuum dryer and weight (mg/g) was observed.

#### Estimation of nitrogen (Jackson, 1958)

Dried leaf sample (100mg) was taken in a boiling test tube. To this 3ml of concentrated sulfuric acid was added and this content was boiled for 15min. Few drops of perchloric acid was added during boiling and was finally made upto50ml using distilled water. From this 2ml of sample was taken in microkjeldhal flask along with 4ml of 40% NaOH. The liberated ammonia was collected in a conical flask which contains 5ml of 2% boric acid. After the colour change (pink to blue) in boric acid to titrated against N/70 H<sub>2</sub>SO<sub>4</sub>until the appearance of pink colour. The blank was also titrated without adding sample, finally the total nitrogen content in the sample was estimated by the following formula.

#### Estimation of phosphorus (Fiske and Subba Rao, 1925)

1g of leaf sample was digested with 5ml of perchloric acid. From this, 1ml of digested sample was pipetted out into a test tube. To this 0.4ml of ANSA and 1ml of molybdate solution I and 1ml of molybdate solution II were added and made upto 10ml using distilled water. The contents were mixed well and the color developed was read spectrophotometrically (Schimadzu 1700,Japan) at 660nm after 20min. The phosphorus content of the unknown sample was calculated by plotting against standard graph.

#### Analysis of micronutrient in soil

The micronutrients and macronutrients in the soil sample were analyzed at the Tamil Nadu Agriculture University, Madurai. Soil microflora were also analyzed in soil before and after the treatment of *O. annae* extract

# **RESULTS AND DISCUSSION**

#### Cyanobacterial culture collection

Mixtures of cyanobacterial (blue green in colour) culture were picked up randomly from various paddy (*Oryza sativa* L.) fields in Thanthonimalai of Karur District, Tamil Nadu, India. and the strains were designated as 1-20. Survey of occurrence of cyanobacteria in rice fields showed that out of 2213 samples collected from different region of India showed 33% of samples contain nitrogen fixing cyanobacteria. These organisms grow together with the rice plants and form patch of thick yellowish /brownish/blue green mats on water surface (Venkataraman, 1981).

### Detection of IAA in O. annae

#### **Extraction of IAA**

IAA was extracted from *O. annae* using organic solvents and analyzed for the presence of PGR activity by performing rice root inhibition assay.

Table 1. Soil Analysis (before and after the treatment of *O. annae* extract on *Hibiscus esculentus L.*)

| Treatments       | Sample<br>(Black Soil) | Nature of the soil |                      | Macronutrients (kg/ha) |          |                  | Micronutrients<br>(kg/ha) |    |      |     | Other<br>nutrients | Total bacterial count (cfu\g) |
|------------------|------------------------|--------------------|----------------------|------------------------|----------|------------------|---------------------------|----|------|-----|--------------------|-------------------------------|
|                  |                        | pН                 | EC dSm <sup>-1</sup> | Ν                      | $P_2O_5$ | K <sub>2</sub> O | Zn                        | Cu | Fe   | Mn  | CaCO <sub>3</sub>  | count (cru\g)                 |
| Before treatment | Blank Soil             | 8.5                | 0.05                 | 59                     | 7.6      | 133              | 0.16                      | -  | 1.94 | 1.1 | -                  | $0.86 \times 10^{6}$          |
| After treatment  | Control                | 8.5                | 0.04                 | 48                     | 7.0      | 110              | 0.15                      | -  | -    | 0.6 | -                  | $0.75 \times 10^{6}$          |
|                  | Chemical               | 8.5                | 0.04                 | 45                     | 6.8      | 90               | 0.14                      | -  | -    | 0.6 | -                  | $0.89 \times 10^{6}$          |
|                  | fertilizer             |                    |                      |                        |          |                  |                           |    |      |     |                    |                               |
|                  | 0.01%                  | 8.0                | 0.04                 | 46                     | 7.2      | 100              | 0.16                      | -  | -    | 0.6 | -                  | $0.78 \times 10^{6}$          |
|                  | 0.02%                  | 8.5                | 0.04                 | 47                     | 7.8      | 105              | 0.16                      | -  | -    | 0.6 | -                  | $0.69 \times 10^{6}$          |
|                  | 0.03%                  | 8.5                | 0.04                 | 50                     | 7.4      | 92               | 0.14                      | -  | -    | 0.5 | -                  | $0.82 \times 10^{6}$          |

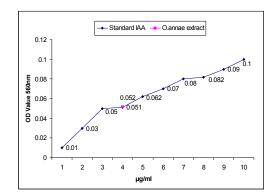



Fig. 1. Estimation of IAA in O.annae extract

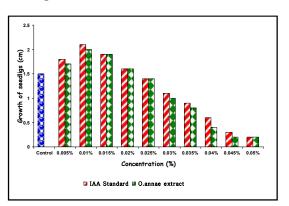



Fig. 2. Bioassay for IAA (Root inhibition assay)

# Isolation

Cyanobacterial strains were separated, isolated using spread plate technique and twenty different strains from the mixture were isolated and were being maintained in BG-11 medium

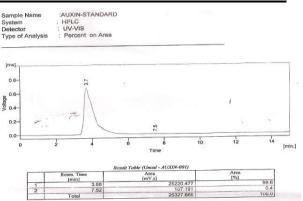



Fig. 3. Quantification of standard IAA by HPLC

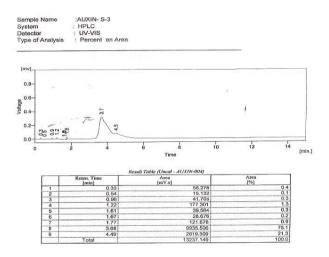



Fig. 4. Quantification of IAA in Oscillatoria annae extract by HPLC

### **Bioassay for IAA**

In order to confirm the plant growth regulating activity in different concentrations from 0.01%-0.05% (Fig.1) of O.

annae extract the root inhibition assay was performed in Oryza sativa L. Among all the concentrations of the cyanobacterial extract, the highest root growth was obtained in 0.01% of the treated plants. But, the growth rate slowly decreased from 0.02% to 0.05% of cyanobacterial extract treated plants (Fig.3). Reduction in growth by higher concentration of cyanobacterial extract was well supported by the report of Raghava and Murty (1988). Report showed that auxin like compounds were released by about 38% of the free-living cyanobacteria as compared to 83% of the symbiotic cyanobacterial isolates. Endogenous accumulation and release of IAA was confirmed immunologically (ELISA) using an anti-IAA antibody on 10 of the Salkowski-positive strain and the chemical authenticity of IAA was further verified by chemical characterization using gas chromatography-mass spectrometry. Evidence on the production of hormonal substances by cyanobacteria has come primarily from treatment of rice seedlings with algal cultures or their extracts (Gupta and Lata, 1964). A significant increase in the length of the coleoptile and radicle was observed due to whole cell extracts. A similar influence on the growth of roots and shoots has also been shown (Gupta and shukla, 1969). Auxins like growth promoting substances was detected in both Nostoc muscorum and Hapalosiphon fontinalis by bioassays in rice seedlings (Misra and Kaushik, 1989). Cylindrosporum muscicola can synthesize vitamin B and inter convertible auxin like substance which stimulates root growth of rice seedlings (Venkatram and Neelakantan, 1967). Sergeeva et al., (2002) reported the possible role of IAA in cvanobacteria in general and their interactions with plants.

#### **Detection of IAA by TLC**

Using thin layer chromatography (TLC) IAA and its various derivatives present in dried cyanobacterial extract were separated. Among the three spots  $R_f$  value of the one spot coincided with that of standard IAA ( $R_f$  0.83). The other two spots corresponding to  $R_f$  value of 0.54 and 0.67cm were to be indole derivatives like indole pyruvic acid and indole lactic acid. The test sample was also analyzed for the presence of glutamic acid and cytokinin, but corresponding spots did not appear in cyanobacterial extract chromatogram and this method was supported by Joseph and Bernard (2005).

#### **Estimation of IAA**

The *O. annae* extract containing IAA was quantified using colorimetric method and the estimation revealed that 1g of cyanobacterial extract contains  $5.2\mu g/g$  of IAA (Fig.2). Production of IAA by *O. annae* was well supported by Tsavkelova *et al.*, (2006) who reviewed the ability of prokaryotes and eukaryotes like Pseudomonas, Anabaena, Fusarium and Saccharomyces to synthesize growth stimulating phytohormones. The presence of auxin like growth promoting substances were shown in both Nostoc and Hapalosiphon and their quantities were 3.76 and 4.48mg/g respectively (Misra and Kaushik, 1989).

#### Quantification of IAA by HPLC

Standard IAA was detected using High Performance Liquid Chromatography and it showed the RT value of 3.68min with an area of 25220.477mV and purity of 99.6%. The major peak

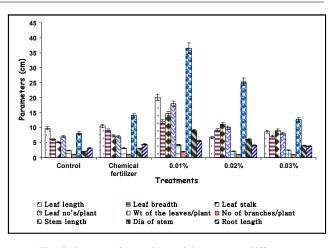



Fig. 5. Impact of cyanobacterial extract on different morphological characters of *Hibiscus esculentus L.* (30<sup>th</sup> day)

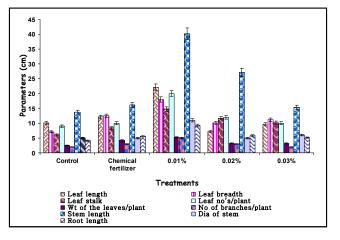



Fig.6. Impact of cyanobacterial extract on morphological characters of *Hibiscus esculentus L*. (60<sup>th</sup> day)

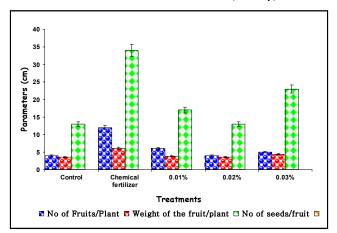
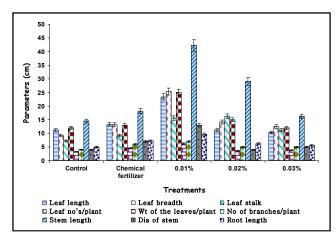
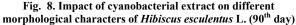





Fig. 7. Impact of cyanobacterial extract on morphology of fruit of *Hibiscus esculentus* L. (60<sup>th</sup> day)

in the chromatogram of *Oscillatoria annae* extract also showed a retention time of 3.68min which confirmed the presence of IAA (Fig. 3 and 4). The fractional area of chromatogram for the extract sample was 9935.506mV which occupied 75.1% of the total extract area. The reduction in IAA area (purity) of the extract compared to the standard chemical should be due to the presence of other natural compounds





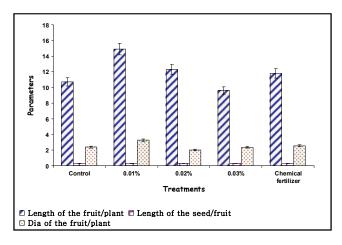



Fig. 9. Impact of cyanobacterial extract on different morphological characters of *Hibiscus esculentus* L. (90<sup>th</sup> day)

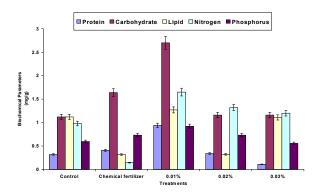



Fig. 10. Effect of *O. annae* extract on the different biochemical characters in *Hibiscus esculentus L.* (30<sup>th</sup> day)

from cyanobacterial biomass. Supportive evidence showed that quantitative determination of indole-3-acetic acid and gibberellic acid were done by a simplified method of high performance liquid chromatography with a fluorometric detector (Gupta and Agarwal, 1973; Crozier *et al.*, 1988; Horgan, 1988; Akiyama *et al.*, 1983; Edlund *et al.*, 1995; Fernandez 1995). Further Jung *et al.*, (2001); Jackson *et al.*, (2001); Genkov *et al.*, (1996) reported that auxin could be identified by HPLC and IR (spectrum) and their activity can

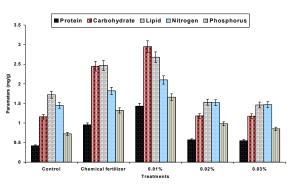



Fig. 11. Effect of *O. annae* extract on the different biochemical characters in *Hibiscus esculentus L* (60<sup>th</sup> day)

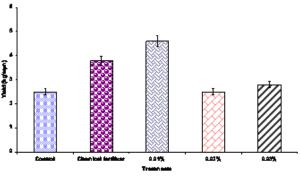



Fig. 12. Influence of *O.annae* extract on the yield of *H. esculentus* L

be analyzed by bioassay methods. They stated the purification and characterization methods of glutamine synthetase from the unicellular cyanobacterium. Identification of IAA by HPLC was well supported by the study of Dobrev *et al.*, (2005).

#### Field study Mass Cultivation

Mass cultivation of *O. annae* was carried out in PVC tanks and *O. annae* in the form of thick greenish mat floats on the medium was harvested and dried for storage.

#### **Field Condition**

Experiments were carried out in different areas of varying soil types showing acidic pH and are well ploughed and marked before planting the seedlings.

#### Analysis of Parameters

# **Morphological Parameters**

Various morphological growth parameters of *H.esculentus* L. of the experimental plant such as shoot length, fresh and dry weight of the shoots and roots, number of internodes, number and mean area of leaves significantly increased in 0.01% concentration of cyanobacterial extract treated plants (Fig. 5 - 9) when compared to control plants. Whereas, in higher concentrations like 0.02%, 0.03% and chemical fertilizer showed less growth when compared with 0.01% concentration *O.annae* extract sprayed at different concentration of 0.01% significantly increased germination percentage. The response of cyanobacterial extract treatment varied with different concentration and shows 0.01% of extract enhanced

hypocotyl and epicotyl length of the three experimental plants. The increase in shoot length by cyanobacterial extract could be due to increased cell elongation (Bonner, 1950 and Sharma, 1988). Plant growth regulating hormones can induce major changes in the development of plant tissues, such as general increase in cell division and cell elongation or specific developmental changes such as the induction of new roots (Davies, 1987). Interestingly, it was observed that in the lower concentration (0.01%) of cyanobacterial extract enhanced growth and in the higher concentrations (0.02% and 0.03%) of cyanobacterial extract shows shunted growth of *H.esculentus*. Growth inhibition at higher concentration of cyanobacterial extract was well supported by Raghava and Murty (1988) who reported that higher concentration of IAA showed inhibitory effect on plants.

#### **Biochemical Parameters**

The increase in biochemical parameters were more pronounced in 0.01% O. annae extract treated plant, H. esculentus L. (Fig. 10 & 11) than the other treatments (untreated, chemical treated, 0.02% and 0.03% of O. annae treatment). Chlorophyll contents increased in 0.01% O. annae extract treated plants than the control plants. Chemical fertilizer treated plants showed moderate amount of chlorophyll content than the 0.02% and 0.03% concentrations and control plants. Mahla et al., (1999) reported that application of NAA and mixtalol NAA spray increased chlorophyll contents in leaves, there by increased photosynthetic efficiency over control. This might have led to provide more assimilates for better modulation. The increase in chlorophyll content as a result of growth regulator application might be because of better uptake of nitrogen, magnesium and other elements which are involved directly in the synthesis of chlorophyll (Tagade et al., 1998; Sachan and Sarayya 1999; Kim and Pyo 1970; Mishra et al., 1976) (Fig. 27, 31 and 35). Cohen, 1986 reported that cyanobacteria all known phycobiliproteins (phycocyanin, possess phycoerythrin, phycoerythrocyanin, allo-phycocyanin) which are commercially valuable. A commercial process of phycocyanin production from open scale cultivation of marine cyanobacterium Phormidium valderianum BDU30501 was developed (Sekar and Subramanian, 1988). Haeley, 1968 showed that the spectrum of carotenoids in Anabaena variabilis and three species of Phormidium showed B-carotene as the major pigment. Similarly, carotenoid composition of Anabaena flosaquae and three other species of Phormidium also showed the presence of B-carotene as the major carotenoids in all species (Hertzberg et al., 1971). Aruna and Kannaiyan (1998) reported that inoculation of rice seedlings with sugarcane waste and PU foam immobilized Anabaena azollae and Anabaena variabilis have accumulated higher total chlorophyll, protein and amino nitrogen compared to the inoculated rice seedlings. Uma and Kannaiyan, 1995 stated inoculation of immobilized cyanobacteria PU foam improved the total carbohydrate, protein, amino nitrogen and chlorophyll content of the seedlings significantly. Also they reported higher growth, nitrogenase activity, ammonia excretion and heterocyst frequency than free-living cultures.

The variations in presence of protein, carbohydrate, lipids, nitrogen and phosphorus content in leaves quantified. It showed that 0.01% treated plant sample increase content of the various parameters and this might be due to uptake of more

nutrients from the soil. Thus the biochemical parameters showed components decrease in values with increasing concentration of cyanobacterial extract. The hormones are responsible for increasing the physiological and metabolic activities in the plant tissue as a consequence of which there is an increase in uptake of nitrogen from the soil and its further assimilation for biosynthesis of protein (Singh and Randhawa, 1969). These reports fully supported the increase of nitrogen and phosphorus content in leaves in 0.01% treated plants.

# **Soil Analysis**

The micro and macronutrient contents decreased after the treatment of O. annae extract treated plants (Table 1). Here, all the treatments showed the utilization of NPK, Zn, Cu, Fe, Mn and CaCO<sub>3</sub> by the plants when compared with control and other treatments. Thus 0.01% cyanobacterial extract treated plants showed higher utilization of micro and macronutrient than the other concentration of cyanobacterial extracts treated plants. It may be due to hormone application causes increase in physiological and metabolic activities of plant which resulted in higher uptake of nutrients from the soil. The observed higher nitrogen content in plant tissue in growth regulator treated plant might be due to the same element (Tagade et al., 1998). The heterotrophic population in the soil increased after the treatments. It could be due to the translocation of IAA on the plants which directly influences the growth and there by the plant releases the root exudates into the soil that are utilized by the heterotrophic micro flora. Report shows that death of algal biomass is most frequently associated with soil desiccation at the end of the cultivation cycle and algal growth has frequently resulted in a gradual build up of soil fertility with a residual effect on succeeding crops. The pattern of distribution of total organic and mineral nitrogen studies in inoculated and un inoculated plots indicated a higher mineral nitrogen content and a low mineralisable index of N in the inoculated plots (Chopra and Dube, 1971). Singh et al., 1981 reported that organic manure which contained phosphorous beside nitrogen increased the soil organic phosphorous content leading to increased phosphorous availability and consequently higher uptake by rice plants. Further reports support that organic carbon, total nitrogen and available phosphorous of the soil were increased due to application of azollae and other organic manures indicating that they released their nitrogen and phosphorous in the soil after decomposition (Subudhi and Singh, 1980).

# Yield

The variation in seed yield due to various concentrations of cyanobacterial extract treatments was statistically significant. The application of cyanobacterial extract in lower concentration (0.01%) showed maximum yield when compared to all other treatments and control and the yield obtained in 0.01% treatment was significantly superior over chemical fertilizer in *H. esculentus L.* (Fig. 12). On application of plant growth regulators, there was an increase in growth parameters, biochemical contents and yield when compared to control plants. It may be because of apparent increase of photosynthesis due to comparatively large volume and surface of the plant (Kulkarni, 1977). Similar finding of increase in yield of groundnut by IAA was reported by Shamsunder and Vittalrao, 1980. Rajula and Padmadevi (2000) showed increase

in germination percentage, shoot, root length and biochemical content like protein, carbohydrate, amino acid in the seedling of Hibiscus esculentus L. grown in effluent blended with cyanobacteria. Application of exogenous growth regulating substances to improve crop productivity was extensively supported by the report of Pando and Srivastava (1985). Kumar et al., 1980 observed enhanced fresh weight, leaf number, root and stem length in lady's finger (Abelmoschus esculentus) after addition of culture filtrate of nitrogen fixing cyanobacteria. Hence the application of cyanobacterial strain no.6, namely Oscillatoria annae extract as foliar spray in 0.01% concentration showed better results in terms of morphological, biochemical and yield parameters when compared to other concentrations of O. annae extract, control and chemical treatments. Hence the application of cyanobacterial strain No.6 namely O.annae extract as a foliar spray in 0.01 % conc. showed better result in terms of morphological, biochemical and yield parameters when compared with other concentrations of O.annae extracts, control and chemical treatments.

### REFERENCES

- Adachi, I and H. Hidaka. 1991. IAA biosynthetic pathway from tryptophan via indole - 3 pyruvic acid in *Enterobacter* sp. *Agri. Biol. Chem.*, 55:701-706.
- Akiyama, M., N. Sakurai and Kuraishi. 1983. A simplified method for the quantitative determination of indole -3acetic acid by high performance liquid chromatography with a fluorometric detector. *Plant Cell Physiol.*, 24:1431–1439.
- Aruna, S.J., Balachander, D. and Kannaiyan, S. 1998. Effect of immobilization of nitrogen fixing cyanobacteria in polyurethane foam and sugarcane waste on ammonia production In: cyanobacterial biofertilizer for rice crop (Ed.) Kannaiyan. S. Tamil Nadu Agric. Univ., Coimbatore, Tamil Nadu.
- Bapat V.A., R. K. Iyer and P. S. Rao. 1996. Effect of cyanobacterial extract on somatic embryogenesis in tissue cultures of sandalwood. J. Medicinal and Aromatic Plant Sci., 18:10-14.
- Crozier, A., Paulo Arruda, Janie M. Jasmin, Ana Maria Monteiro, and Goran Sandberg. 1988. Analysis of indole -3- acetic acid and related indoles in culture medium from Azospirillum lipoferum and Azospirillum brasilense. Applied and Environmental Microbiology, 54(11):2833-2837.
- Desikachary, T.V .1951. Oscillatoriales. In: Cyanophyta. Indian council of Agricural research press. New Delhi. 203.
- Dobrev, P. I., L. Havlcek, M. V. Agner, J. Malbeck and M. Kaminek. 2005. Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J. Chromatography, 1075:159– 166.
- Edlund, A., Staffan Eklof, Bjorn Sundberg, Thomas Moritz and Goran Sandberg, 1995. A microscale technique for gas chromatography-Mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. *Plant Physiol.*, 108:1043-1047.
- Fatima and Balasubramanian. 2006. Effect of plant growth regulators on quality of bast fibers in *Abelmoschus* esculentus (L). Acta.Bot. Croat., 65(1):101-112.

- Fernandez, B., M. Centeno, I. Feito, R. Sanchez-Tames and A. Rodriguez. 1995. Simultaneous analysis of cytokinins, auxins and abscisic acid by combined immuno affinity chromatography, high performance liquid chromatography and immunoassay. *Phytochem. Analysis*, 6:49–54.
- Francisco, S.S., Fabrice Houdusse, Angel M Zamarreño, Maria Garnica, Esther Casanova and Jose M GarcíaMina. 2005. Effects of IAA and IAA precursors on the development, mineral nutrition, IAA content and free polyamine content of pepper plants cultivated in hydroponic condition. *Scientia Horticulturae*, 106(1). 3:38-52.
- Fullick, W., Ringwood School, Ringwood and Hampshire. 2006. The effect of different concentrations of the plant growth substance IAA on the growth of roots and shoots. www.scijournal.org.
- Genkov, T., Ivailo Ivanov and Iordanka Ivanova. 1996. Analysis of cytokinins by immunoassay and high performance liquid chromatography of in vitro cultivated *Dianthus caryophyllus. Bulg. J. Plant Physiol.*, 22(3– 4):95–104.
- Giulini, A., Jing Wang and David Jackson. 2004. Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. *Nature*, 430:1031-1034.
- Glickmann, E and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. *Appl. Environ. Microbiol.*, 61 (2):793-796.
- Gupta ab and shuka ac effect of algal extract of phormidum sp on growth and development of rice seedlings. Hydrobiolgia B4: 77-84, 1969.
- Gupta, A.B and K. Lata, 1964. Effect of algal growth hormones on the germination of paddyseeds. *Hydrobiologia*, 24(1-3):430-434.
- Gupta, A.B and P. R. Agarwal. 1973. Extraction, isolation and bioassay of a gibberellin-like substance from *Phormidium foveolarum*. Ann. Bot., 37(152):737-741.
- Gupta, A.B. and Lata, K.J. 1964.Effect of algal growth hormones on the germination of paddy seeds. *Hydrobiologia*, 430-434.
- Gupta, P and D. Mukherjee. 1986. Seeding growth studies of *P. aconitifolius* after treatment of seeds with a morphaction GA3 and IAA. *J. Indian. Bot. Soc.*, 65:69-73.
- Horgan, R. 1988. Instrumental methods of plant hormone analysis. In: Plant Hormones and their role in plant growth and development, Ed. P. Davies, Kluwer, London, 222–239.
- Krystyana Bialek and Jerry D.Cohen.1986.Isolation and Partial characterization of the major Amide linked conjugate of indole – acetic acid from *Phaseolus vulgaris*. *Plant Physiology*, 80:99-104.
- Kulkarni, L. P. 1977. Effect of pre sowing treatment with growth regulator on growth and yield of tomato. *Indian. J. Pl. Physiol.*, 21(1):66-69.
- Leganés, F., Eva Sánchez-Maeso and Eduardo Fernández-Valiente. 1987. Effect of indole acetic acid on growth and nitrogen fixation in cyanobacteria. *Plant and Cell Physiology*, 28. 3:529-533.
- Lindow, S.E., Caroline Dessourmont, Rachel Elkins, Glenn Mc Gourty, Ellen Clark and Maria T. Brandi. 1998. Occurrence of indole -3- acetic acid producing bacteria on

pear trees and their association with fruit Russet. *Phytopathology*, 88(11):1149–1156.

- Liu, Z., Ho-Yih Liu and Hwei-Yi Wang. 1998. Effect of light on endogenous indole-3-acetic acid, peroxidase and indole -3- acetic acid oxidase in soybean hypocotyls. *Bot. Bull. Acad. Sin.*, 37:113-119.
- Lowry, O.H., Rosebrough, L. Farr and R. L. Randall. 1951. Protein measurement with folin phenol reagent. J. *Biol. Chem.*, 193: 265- 275.
- Mahadevan, A and Sridhar. 1996. Methods in physiological plant pathology, Sivakami Publications. Madras. 229-236.
- Mahla, C.P.S., R. C. Dacheech and R. K. Kulhari. 1999. Effect of plant growth regulators on growth and yield of black gram (Vigna munga L. Hepper) at varying levels of phosphorus. *Crop Res.*, 18(1):163-165.
- Malliga, P and G. Subramanian. 1990. The effect of growth regulator, colchine and salt stress on *Azolla pinnata*. J. Indian Bot Soc., 69:347–350.
- Malliga, P and G. Subramanian. 2002. Cyanobacterial biofertilizer for sustainable agriculture. Proceedings in bio inoculants for sustainable agriculture and forestry (eds). Reddy, S.M., Ram Reddy, S., Sindara chary, S and Girishnan, S. Scientific publishers, Jodhpur, India. 99 – 106.
- Manickavelu, A., N. Nadarajan, S. K. Ganesh, R. Ramalingam, S. Raguraman and R.P. Gnanamalar. 2006. Organogenesis induction in rice callus by cyanobacterial extra cellular product. *African J.Biotechnol.*, 5(5):437-439.
- Mark, C., S. Michael, G. Bausher and George Yelinosky. 1986. Influence of growth regulator treatments on dry matter production, fruit abscission and <sup>14</sup> C- assimilate partitioning in citrus. Journal of Plant growth Regulations, 5:111-120.
- Martin, K.P., P. V. Madhusoodanan, C. Sunandakumari and M. Chithra. 2005. Influence of auxins in direct in vitro morphogenesis of *Euphorbia nivulia*, a lectinaceous medicinal plant. *In Vitro* Cellular and Development Biology - Plant. 41(3):314-319.
- Maske, V.G., R. D. Deotale, N. V. Sorte, H. B. Goramnagar and C. N. Chore.1998. Influence of GA3 and NAA on growth and yield contributing parameters of *J. Soils and Crops*, 8(1):20-22.
- Metting, B and J. W. Pyne. 1996. Biologically active compounds from micro algae. *Enzyme. Microb. Technol.*, 8:386-394.
- Mishea, R.S., R. K. Panigarhi and S. C. Panda. 1976. Chemical regulation of sex expression on relation of growth and yield in cucumber. *Orissa. J. Hort.*, 4(1/2):57-61.
- Mishra, U and Sunil Pabbi. 2004. Cyanobacteria: A Potential Biofertilizer for Rice.Resonance.6-10.
- Misra, S and B. D Kausik.1989. Growth promoting substances of cyanobacteria II. Detection of amino acids, sugars and auxin, Proc. Indian Natn .Sci, Acad. BSS NOS. 5, 6:499– 504.

- Moore, T.C. 1989.Auxins. In: Biochemistry and physiology of plant hormones. Springer verlog Inc, New York. 27–33.
- Normanly. J. 1997. Auxin metabolism.In: *Plant Physiol.*, Academic press .100:431- 433.
- Ostin, A., Mariusz Kowalyczk, Rishikesh P. Bhalerao and Goran Sandberg. 1998. Metabolism of indole-3-acetic acid in Arabidopsis. *Plant Physiol.*, 118:285-296.
- Ostin, A., Nebojsallic and Jerry D. Cohen. 1999. An invitro system from maize seedling for tryptophan independent indole -3- acetic acid biosynthesis. *Plant Physiology*, 119:173-178.
- Owolade, O.F., A. N. Amusa and Y. O. K. Osikanlu. 2000. Efficiency of certain indigenous plant extracts against seed borne infection of *Jusarium monili* forme on maize (*Zea mays* L) in south western Nigeria. Cereal Research communications. 28(3):323-326.
- Padole, V.R. 1981. Effect of IAA, NAA, ascorbic acid and succinic acid as seed soaking treatment on wheat (Kalyan sona) *PKV Res. J.*, 5(2):139–142.
- Pattern, C. L and B. R. Glick. 1996. Bacterial biosynthesis of indole -3- acetic acid. *Can. J. Microbiol.*, 42:207-220.
- Pedurand, P and P. A. Reynaud. 1987. Do cyanobacterial enhance germination and growth of rice. Plant and Soil. 101.2:235-240
- Qaddoury, A and Mohamed Amssa. 2004. Effect of exogenous indole butyric acid on root formation and peroxidase and indole -3- acetic acid oxidase activities and phenolic contents in date Palm offshoots. *Bot. Bull. Acad. Sin.*, 45:127-131.
- Sergeeva, E., Anton Liaaimer and Birgitta Bergman. 2002. Evidence for production of the phytohormone indole -3acetic acid by cyanobacteria. *Planta*, 215: 229–238.
- Tabres, F.G., T. H. Tomico, F. A. Guerri and J. L. G. Bilbao.1987. Production of Indole -3- acetic acid and indole lactic acid in *A. vinelandii* cultures supplemented with tryptophan. *Appl. Microbiol. Biotechnol.*, 25:502– 506.
- Thimann, K.V. 1977. Hormone action in the whole life of plants .University of Massachusetts Press. Amherst.
- Tsavkelova, E. A., S. Yu. Klimova, T. A. Cherdyntseva, and A. I. Netrusov.2006.SMicrobial producers of plant growth stimulators and their practical use: A review. *Applied Biochemistry and Microbiology*, 42, (2). 117–126.
- Verma, H.S and P. Singh. 1978. Note on effect of seed treatment with IAA IBA & GA on growth and yield of barley (*Hordeum vulgare* L). Indian J. Agri. Res. 12:59-60.via indole - 3 pyruvic acid in *Enterobacter* sp. Agri. Biol. Chem. 55:701-706.
- Wake, H., A. Akosaka, H. Umetsu, Y. Ozeki, K. Shimomura and T. Matrunga. 1992. Enhanced germination of artificial seeds by marine cyanobacterial extract. *Appl. Mirobiol. and Biotechnol.*, 36:684–688.
- Woodward, A.W and Bonnie Bartel. 2005. Auxin: Regulation, action, and interaction. *Annals of Botany*, 95(5):707-735.
- Zaccaro, M. C. 2000. Plant growth-promoting cyanobacteria . PGPR Conference. Universidad de Buenos Aires. Argentina. 1-5.

\*\*\*\*\*\*