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INTRODUCTION 
 

The operational calculus of Integral transform essentially involves the replacement of the function under the study by other 
functions called transform, which are obtained from the original functions by certain rules. Also, we know some application o
operational calculus of integral transform to integral equations, difference equation, fractional integrals, Fractional derivativ
summation of infinite series, evaluation of definite integrals, statics and problems of probability 
Khairnar et al.,  2012). Fourier transform (FT) is named in the honor of Joseph Fourier (1768
history of mathematics and physics. Mathematically speaking, it is a linear operator that maps a functional space to another 
functions space and decomposes a function into another function of its frequency components. The formulae used to defined 
Fourier transform vary according to different authors.
processing, time series analysis, and antenna design. It is use for solving linear
examples include: Poisson’s equation for problems in
elasticity and the diffusion equation for problems in heat conduction 
data analysis and image processing etc. The generalized Stieltjes transform (GST) is an integral transform that depends on a 
parameter� > 0. It is a well known fact that the Generalized Stieltjes transform can be formulated as an iterated Laplace transform, 
and that therefore its inverse can be expressed as an ite
transform of a complex valued smooth function 
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Where, � and � are positive real numbers. 
 

The outline of the present paper 
 

In this paper, we have defined the testing function spaces which are given in section 2. In section 3, the various properties
generalized Fourier-Stieltjes transform are proved. Lastly, conclusion is given. Notation and terminology as per Zemanian 
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ABSTRACT 

Fourier and Stieltjes transforms represent an important area of analysis and properties of it are more 
elegant. The Fourier transform is most significant in functional analysis, complex analysis, number 
theory, representation theory etc. Also, Fourier transform has applicable in many areas such as image 
processing, time series analysis, antenna design, radar system, human auditory system etc. In the same 

the Stieltjes transform is also a basic tool for analyzing the behavior of many important functions 
in mathematics and mathematical physics. As it is well known, the Stieltjes transform can be regarded 
as an eigenvalue moment generating function. The Stieltjes transform have many applications in many 
areas such as statistics, probability, moment problems, it is a key tool to derive information and 
communication theoretic performance measures for random vector channels; it can be used to express 
more intuitive performance measures of communication systems such 
ratios and channel capacity etc. In this paper we present Operational calculus on Fourier
Transform. 
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The operational calculus of Integral transform essentially involves the replacement of the function under the study by other 
functions called transform, which are obtained from the original functions by certain rules. Also, we know some application o

ational calculus of integral transform to integral equations, difference equation, fractional integrals, Fractional derivativ
summation of infinite series, evaluation of definite integrals, statics and problems of probability 

Fourier transform (FT) is named in the honor of Joseph Fourier (1768-1830), one of greatest names in the 
history of mathematics and physics. Mathematically speaking, it is a linear operator that maps a functional space to another 

nctions space and decomposes a function into another function of its frequency components. The formulae used to defined 
Fourier transform vary according to different authors. Fourier transform are use in many areas of geophysics such as image 

analysis, and antenna design. It is use for solving linear partial differential equations (PDE). Some 
examples include: Poisson’s equation for problems in gravity and magnetic; the biharmonic equation for problems in

diffusion equation for problems in heat conduction (Shubing Wang, 2007). Also, it is used in communication, 
The generalized Stieltjes transform (GST) is an integral transform that depends on a 

is a well known fact that the Generalized Stieltjes transform can be formulated as an iterated Laplace transform, 
and that therefore its inverse can be expressed as an iterated inverse Laplace transform. The conventional Fourier

mplex valued smooth function �(�, �) is defined by the convergent integral. 
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In this paper, we have defined the testing function spaces which are given in section 2. In section 3, the various properties
Stieltjes transform are proved. Lastly, conclusion is given. Notation and terminology as per Zemanian 
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The Fourier transform is most significant in functional analysis, complex analysis, number 

representation theory etc. Also, Fourier transform has applicable in many areas such as image 
processing, time series analysis, antenna design, radar system, human auditory system etc. In the same 
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more intuitive performance measures of communication systems such as signal to interference, noise 
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The operational calculus of Integral transform essentially involves the replacement of the function under the study by other 
functions called transform, which are obtained from the original functions by certain rules. Also, we know some application of 

ational calculus of integral transform to integral equations, difference equation, fractional integrals, Fractional derivatives, 
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Fourier transform are use in many areas of geophysics such as image 
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gravity and magnetic; the biharmonic equation for problems in linear visco-

. Also, it is used in communication, 
The generalized Stieltjes transform (GST) is an integral transform that depends on a 

is a well known fact that the Generalized Stieltjes transform can be formulated as an iterated Laplace transform, 
The conventional Fourier-Stieltjes 
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In this paper, we have defined the testing function spaces which are given in section 2. In section 3, the various properties for 
Stieltjes transform are proved. Lastly, conclusion is given. Notation and terminology as per Zemanian (1968). 
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The Testing function space 
 

The space is given by 
 

��� = �∅:	∅ ∈ ��/��,�,�,�∅(�, �) = sup����
�(1 + �)���

�(���)
�∅(�, �)� ≤ �����

�����																																																							……… (2.1) 
 

Where the constant � and ���� depend on the testing function space∅. 

 
Some properties of Fourier-Stieltjes transform 
 

Linearity Property 
 
��{����(�, �) + ����(�, �)} = ����{��(�, �)} + ����{��(�, �)} 
 

Proof 
 

��{����(�, �) + ����(�, �)} = ��[����(�, �) + ����(�, �)]�
����	(� + �)��	��	��

∞

�

∞
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                                               = �� ∫ ∫ ��(�, �)	�
����	(� + �)��	��	��

∞

�

∞

�
  

  +	�� ∫ ∫ ��(�, �)	�
����	(� + �)��	��	��

∞

�

∞

�
��{����(�, �) + ����(�, �)} = ����{����(�, �)} +	����{����(�, �)} 

 

Scaling Property 
  

��{�(��, �)} =
�

�
	�(

�

�
, �)  

 

Proof 
 

��{�(��, �)} = ∫ ∫ �(��, �)	�����	(� + �)��	��	��
∞

�

∞

�
                                                                                    ………………….(3.2.1) 

Put   �� = �	 ⇒ �	�� = �� 

��{�(��, �)} = ∫ ∫ �(�, �)	����
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3.3) Ist Shifting property 
 
��{�����(�, �)} = �(� − ��, �)  
 
Proof 
 

 ��{�����(�, �)} = ∫ ∫ 	����	�(�, �)	�����	(� + �)��	��	��
∞

�

∞

�
 

                             = ∫ ∫ 	�(�, �)	��������	(� + �)��	��	��
∞

�

∞

�
	  

                             = ∫ ∫ 	�(�, �)	���(����)�	(� + �)��	��	��
∞

�

∞

�
  

Put  � − �� = � 

��{�����(�, �)} = ∫ ∫ 	�(�, �)	�����	(� + �)��	��	��
∞

�

∞

�
  

                            = �(�, �)  
��{�����(�, �)} 	= �(� − ��, �)  
 
Differential Property 
 
��{��(�, �)} 	= �	��{�(�, �)} − �  
 

Proof 
 

��{��(�, �)} = ∫ ∫ 		��(�, �)	�
����	(� + �)��	��	��

∞

�

∞

�
  

                     = ∫ 	�����	�� ∫ 		��(�, �)		(� + �)��		��
∞

�

∞

�
  

27388                                                    Sharma and Dolas. Operational Calculus on Fourier-Stieltjes Transform 
 



By using integration by parts, we get- 

= ∫ 	�����	��	{
∞

�
(� + �)��	�(�, �))�

∞ − ∫ (−�)
∞

�
(� + �)�(���)	�(�, �)��}  

= ∫ 	�����	��	{
∞

�
−	���	�(�, 0) + � ∫ (� + �)�(���)	�(�, �)��

∞

�
}  

 = −∫ �(�, 0)	���	�����	��	
∞

�
	+ � ∫ ∫ �����	(� + �)�(���)	�(�, �)	��	��

∞

�

∞

�
  

 

Where, ∫ �(�, 0)	���	�����	��	
∞

�
= � 

��{��(�, �)} = −�	 + �	��{�(�, �)}  
��{��(�, �)} = �	��{�(�, �)} − �	  
 

��{���(�, �)} = ��	��{�(�, �)} − �� 
 
Proof 
 

��{���(�, �)} = ∫ ∫ 		���(�, �)	�
����	(� + �)��	��	��

∞

�

∞

�
  

                      = ∫ �����	�� ∫ 		���(�, �)		(� + �)��	��	
∞

�

∞

�
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∞

�
  

                      = ∫ 	�����	��	{
∞

�
−	���	��(�, 0) + � ∫ (� + �)�(���)	��(�, �)��

∞

�
}  

                      = −∫ ��(�, 0)	�
��	�����	��	

∞

�
	+ � ∫ ∫ �����	(� + �)�(���)	��(�, �)	��	��

∞

�

∞

�
  

{Since, by DUIS the value of ∫ ��(�, 0)	�
��	�����	��	

∞

�
= 0 and it is zero for infinite integral or it s ignore} 

                     = �∫ ∫ �����	(� + �)�(���)	��(�, �)	��	��
∞

�

∞

�
  

                     = �	[�	��{�(�, �)} − �]  
��{���(�, �)} = ��	��{�(�, �)} − ��  
 
Similarly, 
 
��{����(�, �)} = ��	��{�(�, �)} − ���  
��{��(�, �)} = ��	��{�(�, �)} − �����  
 
Differential property for t: 
 
 ��{��(�, �)} 	= ��	��{�(�, �)} − �  
 
Proof 
 

��{��(�, �)} = ∫ ∫ 		��(�, �)	�
����	(� + �)��	��	��
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�

∞

�
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��{���(�, �)} = ∫ ∫ 		���(�, �)	�
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�
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{Since, by DUIS the value of ∫ �(0, �)(� + �)��	��	
∞

�
= 0 and it is zero for infinite integral or it s ignore} 

           ��{���(�, �)} = 	�� ∫ ∫ �����	(� + �)��	��(�, �)	��	��
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∞
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                                 = ��	(��	��{�(�, �)} − �)  
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��{���(�, �)} = (��)�	��{�(�, �)} − ��	�  
 
Similarly 
 
��{����(�, �)} = (��)�	��{�(�, �)} − (��)�	� 
��{��(�, �)} = (��)�	��{�(�, �)} − (��)���	� 
 
Second Shifting Property 
 
If ��{�(�, �)} is generalized Fourier-Stieltjes Transform ��{�(� − �, �)} = 	�����	�(�, �) 
 
Proof 
 

��{�(� − �, �)} = ∫ ∫ 		�(� − �, �)	�����	(� + �)��	��	��
∞

�

∞

�
  

Put, � − � = � 

                          = ∫ ∫ 		�(�, �)	����(���)	(� + �)��	��	��
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�

∞
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                          = ����� ∫ ∫ 		�(�, �)	�����	(� + �)��	��	��
∞

�

∞

�
  

                          = �������{�(�, �)}  
��{�(� − �, �)} = ������(�, �)  
 

Multiplication by ����� 
 
���������(�, �)� = 	�(� − �, �)  

 
Proof 
 

��{������(�, �)} = ∫ ∫ 		�(� − �, �)�����	�����	(� + �)��	��	��
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�

∞
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∞

�
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Put  � − � = � 

                            = ∫ ∫ 		�(� − �, �)�����		(� + �)��	��	��
∞

�

∞

�
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��{������(�, �)} = �(� − �, �)  
 
Multiplication by (� + �)� 
 
��{(� + �)�	�(�, �)} = 	�(�, � −�)  
 

Proof 
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∞

�

∞

�
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∞
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∞

�
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∞

�

∞

�
  

Put    � −� = � 

��{(� + �)�	�(�, �)} = ∫ ∫ 		�(�, �)�����	(� + �)��	��	��
∞

�

∞

�
  

                                    = �(�, �)  
��{(� + �)�	�(�, �)} = �(�, � − �)  
 
Conclusion 
 
In the present work, some properties of Distributional Fourier-Stieltjes transform which may be useful in differential and integral 
equations. 
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