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INTRODUCTION 
 
The reliability of a system may be optimized by the mostly 
used following ways, viz.,  
 
(i) by increasing the component reliability  
(ii) by adding redundant components to those with less 

reliability. 
 

There are technological limitations in the first method and it is 
also costly beyond a certain limit. However, redundancy 
allocation is widely used in industry for optimal reliability 
design. From the common uses of engineering design, 
redundancy allocation is considered in two different ways: 
 
(i) component-level redundancy and  
(ii) system-level/modular-level redundancy.  
 
However, second option is more effective than first one. The 
system level redundancy is known as multi-level redundancy or 
modular redundancy. The most of the research works in this 
particular area are limited to the component level redundancy.
 

*Corresponding author: Dr. Sanat Kumar Mahato
Department of Mathematics, Mejia Govt. College, Mejia
West Bengal, India. 

ISSN: 0975-833X 

 

Article History: 
 
 

Received 25th December, 2015 
Received in revised form  
15th January, 2016 
Accepted 18th February, 2016 
Published online 16th March, 2016 
 
Key words:  
 
Modular Redundancy, Genetic Algorithm, 
Fuzzy Numbers,  
Trapezoidal Fuzzy Number,  
Centre of Approximated Interval. 

Citation: Sanat Kumar Mahato, 2016. “Department of Mathematics, Mejia Govt. College, Mejia
Current Research, 8, (03), 27392-27400. 

 

 

                                                  

 

 

 
 

REVIEW ARTICLE 
 

REDUNDANCY ALLOCATION AT MODULAR LEVEL IN FUZZY ENVIRONMENT 
USING GENETIC ALGORITHM 

 
*Dr. Sanat Kumar Mahato 

 

Mathematics, Mejia Govt. College, Mejia-722143, West Bengal, India
 
    

ABSTRACT 

Modular redundancy is more effective than component redundancy
redundancy allocation in multilevel systems not only enhances the system reliability but also provides 
fault tolerance to the optimum design. Therefore, to increase the efficiency, reliability and 
maintainability of a system, the modular redundancy should be considered instead of traditional 
approach of component redundancy. Multi-level redundancy allocation problem in fuzzy environment 
has been formulated and solved using advanced genetic algorithm (GA) and penalty function 
technique. Numerical examples have been solved and the results have been discussed.
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The strategy of modular redundancy plays an important role in 
developing highly reliable product architectures. This strategy 
achieves better serviceability and reliabili
product whose lifetime operational costs exceed the initial 
acquisition costs. This situation has been observed in aero 
planes, locomotives, power generating plants and 
manufacturing equipments. In most of the complex engineering 
systems of this kind, there are thousand numbers of different 
components that function interdependently, while certain 
components are used only for a specific set of subtasks within 
the system. Such a subsystem is called a module. In the theory 
of system reliability, a module indicates a group of components 
that has a single input and output. To determine the state of the 
system, the state of the module is very important, not the state 
of all the components within the module.
 
Boland and El-Neweihi (1995) first 
redundancy at the component level is not always more effective 
than the same at the system level in case of redundancy using 
non-identical parts. Rasmussen and Niles (2005) showed that a 
modular system can shift operation from failed modu
healthy ones, allowing repairs to be carried out without 
downtime. Yun and Kim (2004) proposed a multi
redundancy allocation model by considering each unit of a 
three level series system subject to redundancy and solved the 
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corresponding problem to maximize the system reliability by 
using conventional genetic algorithm (GA). Yun, Song and 
Kim (2007) formulated a multiple multi-level redundancy 
allocation problem in series system by relaxing the restrictions 
for redundancy and choosing all available units (system, 
module and component) for redundancy simultaneously. 
Kumar, Izui, Yoshimura and Nishiwaki (2009) proposed a 
method for optimizing modular redundancy allocation in two 
types of multi-level reliability configurations, series and series-
parallel. To solve the corresponding problem, they developed 
hierarchical genetic algorithm (HGA) in which all the design 
variables are coded as hierarchical genotypes. These 
hierarchical genotypes are represented by two nodal genotypes, 
ordinal and terminal. 
 
In the earlier mentioned works, reliabilities of the system 
components are assumed to be known and fixed positive 
numbers which lie between zero and one. However, in real life 
situations, the reliability of an individual component may not 
be fixed. It may fluctuate due to different reasons. It is not 
always possible for a technology to produce different 
components with exactly identical reliabilities. Moreover, the 
human factor, improper storage facilities and other 
environmental factors may affect the reliabilities of the 
individual components. So, the reliability of each component is 
sensible and it may be treated as a positive imprecise number. 
For handling the problem with such imprecise numbers, 
generally stochastic, fuzzy and fuzzy-stochastic approaches are 
applied and the corresponding problems are converted to 
deterministic problems for solving them. In stochastic 
approach, the parameters are assumed to be random variables 
with known probability distributions. In fuzzy approach, the 
parameters, constraints and goals are considered as fuzzy sets 
with known membership functions or fuzzy numbers. On the 
other hand, in fuzzy-stochastic approach, some parameters are 
viewed as fuzzy sets/fuzzy numbers and others as random 
variables. However, it is a formidable task for a decision maker 
to specify the appropriate membership function for fuzzy 
approach and probability distribution for stochastic approach 
and both for fuzzy-stochastic approach. So, to avoid these 
difficulties for handling the imprecise numbers by different 
approaches, one may use interval number to represent the 
imprecise number, as this representation is the most significant 
representation among others. Due to this representation, the 
system reliability would be interval valued. As per our 
knowledge, only a very few researchers (Gupta, Bhunia & Roy, 
2009; Bhunia, Sahoo & Roy, 2010; Sahoo, Bhunia & Roy, 
2010; Sahoo, Bhunia & Kapur, 2012) have done their works 
considering interval valued reliabilities of components.  
 
In this study, we have considered GA-based approach for 
solving multi-level reliability redundancy optimization problem 
considering the reliability of each component as interval 
valued. As the objective function of the redundancy allocation 
problem is interval valued, to solve this type of problem by 
GA, order relations for intervals numbers are essential. Over 
the last three decades, very few researchers proposed the order 
relations of interval numbers in different ways. Mahato and 
Bhunia (2006) proposed the modified definitions of order 
relations with respect to optimistic and pessimistic decision 
maker’s point of view for maximization and minimization 

problems separately. Very recently, Sahoo, Bhunia and Kapur 
(2012) proposed the simplified definition of interval order 
relations ignoring optimistic and pessimistic decisions. 
However, it has been observed that both the definitions give the 
same result. 
 
In this paper, we have considered the problem of multi-level 
reliability-redundancy optimization considering the reliability 
of each component as an fuzzy number that maximizes the 
overall system reliability subject to the given resource 
constraints. The corresponding problem has been formulated as 
non-linear mixed integer constrained optimization problem. For 
solving this problem, we have used genetic algorithm and Big-
M penalty technique. To illustrate the method, numerical 
examples have been solved.  
 
Assumptions and Notations 
 
The following assumptions and notations have been used in the 
entire paper. 
 
Notations 
 

n number of subsystems 

1 2( , ,..., )nx x x x  
redundancy vector  

A  fuzzy number/fuzzy set 

jr   
j-th component fuzzy valued reliability    

1 2( , ,..., )nr r r r  
reliability vector for the system 

SR     system reliability (objective function)  

jc  
fuzzy valued cost of j-th component 

V  fuzzy valued upper limit  of volume constraint  

C  
fuzzy valued upper limit  of cost constraint  

W  
fuzzy upper limit weight of the system  

ig  i-th constraints functions ( 1,2,..., )i m  

ib  availability of i-th resource ( 1,2,..., )i m  

jl , ju  lower and upper bounds of jx   

 aj  a set of ancestor units of unit j 

jy   indicator variable associated with the j-th 
component/module 

S  feasible region 

( )defuz A  defuzzified  value of fuzzy number A  

pc probability of crossover 
pm probability of mutation 
mg maximum number of generation  
ps size of population  

 

Assumptions 
 
(i) The reliabilities of all the components are fuzzy valued. 
(ii) The chance of failure of any component is independent 

with respect to other components. 
(iii) All the redundancies are active redundancy without 

repair. 
(iv) The cost coefficients are fuzzy valued. 
(v) The optimal modular redundancy allocation is considered 

under the strict restriction that only one level among 
components, module and subsystem can be available for 
redundancy. 
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Fuzzy Mathematics 
 
The word ‘fuzzy’ was first introduced by Zadeh in the year 
1965 in his famous research paper “Fuzzy Sets” as a 
mathematical way of representing impreciseness/fuzziness or 
vagueness. The approach of fuzzy set is an extension of 
classical set theory and it is used in fuzzy logic. In classical set 
theory, the membership of each element in relation to a set is 
assessed in binary terms according to a crisp conditions; an 
element either belongs to or does not belong to the set. By 
contrast, a fuzzy set theory permits the gradual assessment of 
the membership of each element in relation to a set; this is 
discussed with the aid of a membership function. Fuzzy set is 
an extension of classical set theory since, for a certain universe, 
a membership function  may act as an indicator function, 
mapping all elements to either 1 or 0, as in the classical 
notation.  He used this word to generalize the mathematical 
concept of the set to one of fuzzy set or fuzzy subset, where in 
a fuzzy set; a membership function is defined for each element 
of the referential set.  
 

Fuzzy Set: A fuzzy set A  in a universe of discourse X  is 

defined as the set of pairs {( , ( )) : }
A

A x x x X 
 , where 

: [0,1]
A

X  is a mapping and  A
x  is called the 

membership function of A or grade of membership of x in A . 
 

Convex Fuzzy Set: A fuzzy set A  is called convex if and only 
if for all 1 2,x x X , 

 

1 2 1 2( (1 ) ) min{ ( ), ( )},
A A A

x x x x          where [0,1] . 

 
 -level Set: The set of elements that belong to the fuzzy set 

A  at least to the degree  is called the  -level set or  -cut 

and is given by { : ( ) }
A

A x X x    
 . 

 

 If { : ( ) }
A

A x X x    
 , it is called strong  -level set or 

strong -cut. 
 

Normal Fuzzy Set: A fuzzy set A  is called a normal fuzzy set 
if there exists at least one x X such that ( ) 1

A
x  .  

 
Fuzzy Number  
 
A fuzzy number is a fuzzy set which is both convex and 
normal. A fuzzy number is a special case of a fuzzy set. 
Different definitions and properties of fuzzy numbers are 
encountered in the literature but they all agree on that a fuzzy 
number represents the notion of a set of real numbers ‘closer to 
a ’ where ‘ a ’ is the number being fuzzified. 
 
Trapezoidal Fuzzy Number (TrFN) 
 

 Trapezoidal fuzzy number A  is represented by the quadruplet 

1 2 3 4( , , , )a a a a and is defined by its continuous membership 

function ( ) : [0,1]
A

x X   given by   

1
1 2

2 1

2 3

4
3 4

4 3

if

1 if
( )

if

0 otherwise

A

x a
a x a

a a

a x a
x

a x
a x a

a a




  


  

 
  

 



  

 
Generalized Fuzzy Number 
 

The generalized fuzzy number A  with membership function 

( )
A

x   (Figure 1) exhibits a fuzzy subset of the real line � , 

where 
 

1 2

2 3

3 4

( )

1
( )

( )

0 otherwise

A

L x a x a

a x a
x

R x a x a


 
  

 
 



  

 

 
 

Fig. 1. Generalized fuzzy number 
 

where, ( )L x  and ( )R x  are continuous functions of  x.   

Moreover, ( )L x  is strictly monotonic increasing and ( )R x  

strictly monotonic decreasing function of  x  in 1 2a x a   and 

3 4a x a   respectively. 

 
Defuzzification 
 
Defuzzification is the process of producing a quantifiable result 
in fuzzy logic, given the fuzzy sets and the corresponding 
degrees of membership. There are several defuzzification 
techniques available in the existing literature. However, we 
have used the method of Centre of Approximated Interval 
(CAI).  
 
Centre of the Approximated Interval (CAI) 
 

Let A  be a fuzzy number with interval of confidence at the 

level  , then the  -cut is [ ( ), ( )]L RA A  .  The nearest 

( )
A

x 

 

1a

 
2a

 
3a

 
4a

 

1 

( )L x

 
( )Rx

 

x 
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interval approximation of A  with respect to the distance 

metric d is 1 1

0 0

( ) ( ) , ( )d L RC A A d A d   
 

  
  
  ,   

where     
1 1

2 2

0 0

( , ) ( ) ( ) ( ) ( ) .L L R Rd A B A B d A B d             

 
The interval approximation for the trapezoidal fuzzy number 

1 2 3 4( , , , )A a a a a  is  1 2 3 4( ) / 2, ( ) / 2 .a a a a   Thus, we have,  

   1 2 3 4CAI / 4.A a a a a     

 
Problem formulation 
 
According to assumption (i), the reliability of each component 
of a system is fuzzy number. So, the system reliability will be 
fuzzy valued. The redundancy at the modular (subsystem) level 
is considered rather than at the component level as the earlier 
one is more effective than the later one. Here, the series system 
and parallel redundancy are considered and also it is assumed 
that the failures are statistically independent. The optimal 
modular redundancy allocation is considered under the strict 
restriction that only one level among components, module and 
system can be available for redundancy. The proposed model is 
described after giving the meanings of the frequently used 
terms while reporting the model. The term ‘unit’ can be used 
commonly for subsystem, module and component. The unit A 
is the parent unit of B if B is a unit of A and B is located at one 
lower level than A. If C is a unit of A, then A is an ‘ancestor’ 
unit of C. If D is a unit of A and D is located at one lower level 
than A, D is a ‘child’ unit of A. If E is a unit of A, E is a 
‘offspring’ of A and if the parent unit of F and G are same, they 
are the ‘sibling’ units. If the levels of H and I are same, then 
they are ‘cousin’ units. The aim is to maximize the system 
reliability with suitable redundancy allocations as well as to fit 

the resource constraints. Here, the variable jx  denotes the 

number of allocated unit j and jy  indicates whether the unit j 

is actually used or not. Thus the actual number of allocated unit 

j becomes ( . )j jx y . The constraint functions are constructed 

depending upon the available resources such as cost, weight 
and volume. The constraint functions depending on weight and 
volume are regarded as linear interval functions and the 

corresponding cost is taken as ( ) xC x cx    . The cost function 

is the sum of the price cx and the additive cost x and it is 
clear that the additive cost increases geometrically as the 
redundancy increases. A hierarchical modular redundancy 
structure is shown in the Figure 2 below. 
 

 
                     

Fig. 2. System structure of modular redundancy  

Considering the modular redundancy, the corresponding 
redundancy allocation problem is formulated as follows: 

Maximize  
1

(1 (1 ) )i

n
x

S i i
i

R x y r


                      (1) 

 subject to 

1

( , , ) , 1, 2,....,
n

i pi i i i p p
i

y g x y r b p n


   

 

{ }

1
a

i k
k i

y y


   

0iy  or 1 for all i and all 1ix  and i denotes the components 

in the lowest level. 
 
The above problem is constrained optimization problem with 
interval valued objective. 
 
Genetic algorithm based constraints handling technique 
 
To solve the fuzzy valued constrained optimization problems, 
Genetic algorithm (GA) (Goldberg, 1989; Michalewicz, 1996; 
Sakawa, 2002; Deb, 2000) can be used for easy implementation 
of the global optimal solution. The constrained optimization 
problem is converted into unconstrained optimization problem 
with the help of penalty function technique given by Miettinen, 
Makela and Toivanen (2003) and Aggarwal and Gupta (2005). 
The aim of the penalty function technique is to penalize the 
infeasible solutions. Gupta, Bhunia and Roy (2009) proposed 
the Big-M penalty technique in which a large negative number 
(say –M, M being a large positive number) is penalized for 
infeasible solution of the problem and a new unconstrained 
optimization problem is formed. For this penalty technique, the 
reduced problem of problem (1) is as follows:  
 

Maximize    S Sdefuz R defuz R                    (2)  

 

where 
 

0 if ( , , )

if ( , , )

i

S i

x y r S

defuz R M x y r S



 
  



 
 

 

 ( , , ) : ( , , ) , 1, 2,...,i i i pi i i i iS x y r g x y r b i m     and ,l x u  

where 1 2( , ,..., )ql l l l    , 1 2( , ,..., )qu u u u    , 1 2( , ,..., )nx x x x ,      

 1 2( , ,..., ) 0 or 1,  1,2,...,n iy y y y y i n   .  

 
Problem (2) is a non-linear unconstrained optimization problem 
with fuzzy objective of n integer variables 1 2, ,..., nx x x and n 

binary variables 1 2, ,..., ny y y .  For solving this problem with 2n 

variables, we have developed a real coded genetic algorithm 
(GA) with advanced operators for integer as well as binary 
variables. Genetic Algorithm (GA) is a stochastic search and 
optimization technique (Goldberg 1989). Gen and Cheng 
(1996) described the application of GA to combinatorial 
problems including reliability optimization problems. Perhaps, 
GA is the most widely known evolutionary computation 
method due to its simplicity, powerfulness and wide 
application. It works by the evolutionary principles and 
chromosomal processing in natural genetics. GA maintains a 

System S 

Module C Module B Module A 

Component  

A1 A2 A2 B1 B2 A3 
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population   P t  for generation t, of chromosomes which are 

the set of genes, the part of solution. The most fundamental 
idea of Genetic Algorithm is to replicate the natural evolution 
process artificially in which populations undergo continuous 
changes through genetic operators, like crossover, mutation and 
selection. In particular, it is very useful for solving complicated 
optimization problems which cannot be solved easily by direct 
or gradient based mathematical techniques. It is very effective 
to handle large-scale, real-life, discrete and continuous 
optimization problems without making unrealistic assumptions 
and approximations. The approach of GA is applied to many 
engineering problem as well as decision making problems in 
various fields. Some distinguishing characteristics of GA are as 
follows (Goldberg 1989): 
 
(i) GA works with a coding of solution set, not the solution 

themselves, 
(ii) GA searches over a population of solutions, not a single 

solution, 
(iii) GA uses payoff information, not derivatives or other 

auxiliary knowledge, 
(iv) GA applies stochastic transformation rules, not 

deterministic. 
 

Each chromosome represents a potential solution to the 
problem under consideration and is evaluated to give some 
measure of its fitness. Some chromosomes undergo stochastic 
transformation by means of genetic operators to form new 
chromosomes. The genetic operator ‘crossover’ creates new 
chromosomes by combining some parts from two 
chromosomes and the other genetic operator ‘mutation’ 
produces offspring by making changes in a single chromosome. 
A new population is formed by selecting the chromosomes 
having better fitness value from the parent and the offspring 
populations taken together. After several generations, the 
algorithm converges to the best chromosome having the best 
fitness value and it represents the optimal solution. 
 
The algorithm for implementing GA is as follows: 
 
Step-1:  Set population size (ps), maximum number of 

generations (mg), probability of crossover (pc), 
probability of mutation (pm) and the bounds of 
decision variables. 

Step-2:  Set t=0. 

Step-3:  Initialize the chromosomes of the population  P t . 

Step-4:  Compute the fitness function (objective function) for 

each chromosome of  P t . 

Step-5:  Find the chromosome having the best fitness value. 
Step-6:  Set t=t +1. 
Step-7:  If the termination condition is satisfied go to Step-

13; otherwise go to the next step. 

Step-8:  Select the population  P t  from the population 

 1P t   of (t-1)- th generation using tournament 

selection. 

Step-9:  Apply crossover & mutation operators on  P t  to 

produce new population  P t . 

Step-10:  Compute the fitness function value of each 

chromosome of  P t . 

Step-11:  Find the best chromosome from  P t . 

Step-12:  Find the better of the best chromosomes of  P t  & 

 1P t   and store it; go to Step-6. 

Step-13:  Print the best chromosome and its fitness value 
Step-14:  End. 
 
Basic components of genetic algorithm  
 
(i)  GA parameters (population size, maximum number of 

generation, crossover rate and mutation rate) 
(ii)  Chromosome representation  
(iii) Initialization of population 
(iv)  Evaluation of fitness function  
(v)  Selection process  
(vi)  Genetic operators (crossover, mutation and elitism)  
 
GA parameters 
 
For implementing GA we have considered the following GA 
parameters: 
 
Population size (ps): Population size determines the amount of 
information stored by the GA. There is no clear rule how large 
it should be.  The population size is problem dependent and 
will need to increase/decrease with the dimension of the 
problem. 
 
Maximum number of generations (mg): It varies from 
problem to problem and depends upon the number of genes 
(variables) of a chromosome and it is being prescribed to be the 
termination criterion for convergence of the solution. 
 
Probability of crossover (pc): In Genetic Algorithms 
crossover is considered to be the main search operator. The 
crossover operator is used to thoroughly explore the search 
process. In crossover operator the genetic information between 
two or more individuals are blended to produce new 
individuals. Normal range of the crossover rate lies in [0.60, 
0.95]. 
 
Probability of mutation (pm): Mutation operator plays an 
important role in genetic algorithm. After crossover operation, 
mutation is performed. It is intended to prevent to the falling of 
all solutions in the population into a local optimum of the 
problem under consideration. Mutation operator randomly 
changes the offspring resulted from crossover. The mutation 
rate lies in [0.05, 0.20]. Sometimes mutation rate is considered 
to be 1/n

 
where n is the number of genes (variables) of the 

chromosome. 
 
Chromosome representation 
 
In the existing literature there are different types of 
representations of chromosomes, like, binary, real, octal, 
hexadecimal coding, amongst which real coding 
representations are well accepted. In this representation, a 
chromosome is coded in the form of vector/matrix of integer/ 
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floating point or   combination of the both numbers and every 
component of that chromosome represents a decision variable 
of the problem. In this representation, each chromosome is 
encoded as a vector of integer numbers, with the same 
component as the vector of decision variables of the problem 
under consideration. This type of representation is accurate and 
more efficient as it is closed to the real design space and 
moreover, the string length of each chromosome is same as the 
number of decision variables. In this representation, for a given 
problem with n decision variables, a n-component vector 

1 2( , , , )nx x x x   is used as a chromosome to represent a 

solution to the problem. A chromosome denoted as kv  (

1, 2,..., )sk p is an ordered list of n genes as

1 2{ , ,..., ,..., }k k k ki knv v v v v . 
 

Initialization of population 
 

After representation of chromosome, the next step is to 
initialize the chromosome that will take part in the artificial 
genetics. To initialize the population, first of all we have to find 
the independent variables and their bounds for the given 
problem. Then the initialization process produces population 
size number of chromosomes in which every component for 
each chromosome is randomly generated within the bounds of 
the corresponding decision variable. There are several 
procedures for selecting a random numbers of integer types. In 
this work, we have used the following algorithm for selecting 
of an integer random number. 
An integer random number between a and b can be generated 

as either x a g   or, x b g  , where g is a random integer 

between 1 and a b . 

 
Evaluation of fitness function 
 
Evaluation of fitness function is same for natural evolution 
process in the biological and physical environments. After 
initialization of chromosomes of potential solutions, we need to 
see how relatively good they are. Therefore, we have to 
calculate the fitness value for each chromosome. In our work, 
the value of objective function of the reduced unconstrained 
optimization problems corresponding to the chromosome is 
considered as the fitness value of that chromosome. 
 
Selection of fitness function 
 
The selection operator which is the first operator in artificial 
genetics plays an interesting role in GA. This selection process 
is based on the Darwin’s principle on natural evolution 
“survival of the fittest”. The primary objective of this process is 
to select the above average individuals/chromosomes from the 
population according to the fitness value of each chromosome 
and eliminate the rest of the individuals/chromosomes. There 
are several methods for implementing the selection process.  
 
In this work, we have used tournament selection process of size 
two with replacement as the selection operator with the 
following assumptions: 
 
(i) If both the chromosomes/individuals are feasible, then the 

chromosome with better fitness value is selected. 

(ii) If one feasible and another infeasible chromosome/ 
individual are considered then the feasible chromosome is 
selected. 

(iii) For both infeasible chromosomes/individuals with 
unequal constraints violation, the chromosome with less 
constraints violation is selected. 

(iv) For both infeasible chromosomes/individuals with equal 
constraints violation, any one chromosome/individual is 
selected. 

 
Genetic operators 
 
After the selection process, other genetic operators, like 
crossover and mutation are applied to the resulting 
chromosomes those which have survived. Crossover is an 
operator that creates new individuals/chromosomes (offspring) 
by combining the features of both parent solutions.  It operates 
on two or more parent solutions at a time and produces 
offspring for next generation. In this work, we have used 
intermediate crossover for integer variables. 
 
The aim of mutation operator is to introduce the random 
variations into the population and is used to prevent the search 
process from converging to the local optima. This operator 
helps to regain the information lost in earlier generations and is 
responsible for fine tuning capabilities of the system and is 
applied to a single individual only. Usually, its rate is very low; 
because otherwise it would defeat the order building being 
generated through the selection and crossover operations. In 
this work we have used one-neighborhood mutation.  
 
Elitism preserves and uses the best chromosome obtained in the 
previous generations. To overcome the situation that the best 
chromosome may be lost when a new population is generated 
by crossover and mutation operations, the worst 
individual/chromosome is replaced by the best 
individual/chromosome in the current generation. In this 
operation, one or more chromosomes may take part.  
 
Numerical Examples and Sensitivity analysis 
 
To illustrate the performance of the proposed method in 
solving modular redundancy allocation problem in interval 
environment we have performed numerical experiments 
considering an example.  
 
For this purpose, we have developed Genetic Algorithm 
considering fuzzy fitness value and defuzzification method.  
 
This algorithm is coded in C++ programming language and the 
numerical computations are carried out in a PC with Intel i5 
processor in LINUX environment.  
 
For each case 100 independent runs have been performed to 
calculate the best found results viz., the system reliability and 
the system cost.  
 

The values of GA parameters used in the experiments are as 
follows:  
 

ps=500, mg=300, pm=0.15 and ps=0.85. 
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Fig. 3.  Modular System in the Example 
  

Example: In this example, a series system (Fig 3) is considered 
and the corresponding numerical data are given in Table 1. The 
cost availability is taken to be fuzzy valued where, 

(225, 235, 245,255)C  . For this example 100 independent runs 

have been performed and the best found results with fuzzy 
parameters and fixed parameters are presented in Table 2. 
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1ix i  and integer. 

 
For solving the optimization problems, the GA based penalty 
approach has been used. In this approach, -M (M being a large 
number) is considered for the value of the fitness function 
corresponding to infeasible solution. Gupta, Bhunia and Roy 
(2009) applied this  

 
Table 1. Numerical Data  

 

Basic item 
Parent 
item ir  ic  i  

S – (0.30,0.35,0.45, 0.50) (69,71,73,75) (0,1,3,5) 

A S (0.60,0.65,0.70, 0.75) (20,23,25,28) (0,1,3,5) 

B S (0.65,0.70,0.75, 0.78) (16,18,20,22) (1,2,4,6) 
C S (0.62,0.66,0.72, 0.76) (18,22,23,25) (0,1,3,5) 

1A  A (0.80,0.85,0.91, 0.96) (2,4,6,8) (1,2,4,6) 

2A  A (0.85,0.89,0.97, 0.99) (3,5,7,9) (1,3,5,7) 

3A  A (0.80,0.82,0.86, 0.89) (3,5,7,9) (1,3,5,7) 

1B  B (0.82,0.86,0.92, 0.95) (3,5,7,9) (2,3,5,7) 

2B  B (0.81,0.83,0.86, 0.90) (2,4,6,8) (1,2,5,6) 

1C  C (0.82,0.85,0.92, 0.96) (4,7,8,9) (1,2,4,5) 

2C  C (0.75,0.78,0.81, 0.86) (4,6,8,10) (2,3,5,7) 

        
Table 2. Best found results  1,2, ,11i  

 
 

Parameters .i ix y x  R Cost  

Fixed * 0,0,3,3,2,2,2,0,0,0,0 0.931863 228.00 

Interval ** 0,0,3,3,2,2,2,0,0,0,0 [0.890774, 
0.974029] 

[216.00, 
240.00] 

Fuzzy 0,0,0,3,3,2,2,2,2,0,0 0.906443 225.00 

*  Yun et al. (2004) , **Sahoo et al (2015) 

                                     
Table 3. Best found results from 100 runs  1,2, ,11i    

 

x=xi*yi Cost Syst. Rel. Feq. 

0,0,0,3,3,2,2,2,2,0,0 225 0.906443 6 
0,4,0,0,0,0,0,2,2,2,2 233 0.904591 8 
0,3,0,3,0,0,0,2,2,0,0 215 0.904232 32 
0,3,3,0,0,0,0,0,0,2,2 225 0.895219 18 
0,0,2,4,2,2,2,0,0,0,0 220 0.872680 5 
0,0,2,3,3,2,2,0,0,0,0 214 0.865561 4 
0,3,2,3,0,0,0,0,0,0,0 204 0.863450 23 
0,3,3,2,0,0,0,0,0,0,0 216 0.853710 2 
0,2,3,3,0,0,0,0,0,0,0 211 0.848682 2 

Mean 216.46 0.8881453 100 
Variance 78.02868687 0.00036468 

Std. Deviation 8.833384791 0.019096594 

                                            
for solving constrained reliability optimization problems. In 
their works there is no indication regarding the value of M. 
However, for infeasible solution the value of M may be taken 
depending on the fitness function value. In case of 
maximization problem, a small value and in case of 
minimization problems a large value may be considered for M 
for solving constrained optimization problems. 
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Result Analysis 
 
To study the performance of the proposed method for solving 
modular reliability allocation problem, sensitivity analyses 
have been performed graphically for system reliability with 
respect to different GA parameters separately by changing one 
parameter at a time and keeping the other at their original 
value.  

 

 
Fig. 4. Graphical representation of frequency of Cost & System 

Reliability  
 

 
Fig. 5. Cost vs. System Reliability 

 
The graphical representation of the analysis has been shown in 
Fig 4-6. The Fig 4 represents the system reliability with regard 
to system cost and system reliability. In figure 5, we can see the 
curve of variation of system reliability with respect to the 
system cost. The frequency distribution of the system reliability 
out of 100 runs is presented in table 3 and also by 

 
The best found result is presented in the table 2
comparisons with the available results are also presented. Table 
3 represents the frequency table of the best found outcomes 
from 100 runs along with the computation of mean, variance & 
standard deviation of the system reliability. It is to be noted 
from table 4 that the result is stable for wide range of 
from 200 to 500. Sensitivity of mg (varying from 100 to 300) 
has been reported in Table 5.  
 
Also, we have observed the stability of the system reliability 
with respect to the parameters pc (varied from 0.5 to 0.95) and 
the pm (varied from 0.01 to 0.3). 
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Fig. 6. Frequency distribution of System Reliability 

Table 4. Sensitivity test of

ps x=xi*yi 

200 0,0,0,3,3,2,2,2,2,0,0
250 0,0,0,3,3,2,2,2,2,0,0
300 0,0,0,3,3,2,2,2,2,0,0
350 0,0,0,3,3,2,2,2,2,0,0
400 0,0,0,3,3,2,2,2,2,0,0
450 0,0,0,3,3,2,2,2,2,0,0
500 0,0,0,3,3,2,2,2,2,0,0

mg=300, pm=0.15, 

 
Table 5. Sensitivity test of 

mg x=xi*yi 

100 0,0,0,3,3,2,2,2,2,0,0
150 0,0,0,3,3,2,2,2,2,0,0
200 0,0,0,3,3,2,2,2,2,0,0
300 0,0,0,3,3,2,2,2,2,0,0

ps =500, pm=0.15, 

Conclusion 
 
The importance of modular redundancy allocation applied to 
multilevel system reliability problems in fuzzy environment is 
treated in this paper. Here, 
redundancy allocation problem in series system with parallel 
redundancy considering trapezoidal fuzzy values for the 
reliability of each component and for the involved parameters 
also.  Then CAI method is applied for
values so that to convert into deterministic form. After that 
Big-M penalty technique is used to convert the problem into 
unconstrained one. The transformed problem then solved with 
the help of advanced genetic algorithm. To solve th
other heuristic methods like simulated annealing, tabu search, 
ant system, particle swarm optimization etc. can be applied. For 
future studies, one may formulate and solve other type of 
modular redundancy allocation problems for series
system, multi-objective case, etc.  
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