

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 03, pp.27840-27844, March, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

DESIGN OF N-GRAM:SENTIMENT ANALYTICS TAGGER

*Kaushik Halder

Employee of Accenture, Pursuing FPM from National School of Leadership in Marketing Research and Analytics, Pune – 412105, India

ARTICLE INFO	ABSTRACT			
Article History: Received 07 th December, 2015 Received in revised form 15 th January, 2016 Accepted 27 th February, 2016 Published online 16 th March, 2016	Sentiment Analytics is widely in use in various domains like in Retails for campaign / Recommendation. In Insurance / Financial Sectors for detecting Frauds etc. Sentiment analytics can further be part of other Analytics to enhance model capability by reducing error. It is required, almost in all domains to address various purposes. In general there is no thumb rule to prepare parser which would address almost all need across domain.			

Key words:

Sentiment Analytics, Parser Tokenization Stemming, Stop Words, Lemmatization Tagging, Text wrangling, R, Sentiment package.

Copyright © 2016 Kaushik Halder. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Kaushik Halder, 2016. "Design of n-gram:sentiment analytics tagger", International Journal of Current Research, 8, (03), 27840-27844.

INTRODUCTION

An effort has been made to generalize Sentiment Analytics across domain to some extent. Error percentage will always be there as it is hard for a parser to understand 100% all grammar. Here in present document the effort of recognizing part of speech has been confined to "Noun", "Pronoun" (only "it"), "Adjective" and "Negation" (which includes words like No, Not, Never etc and no complex statements). The theory developed was partially based on Finite Automata theory. Sentiment package in the R was referred and it's corpus "AFINN-111"(name of the file) was referred in the development new and generic theory, which is expected to address border dimensions. This particular corpus contains huge list of Adjectives and it's scores.

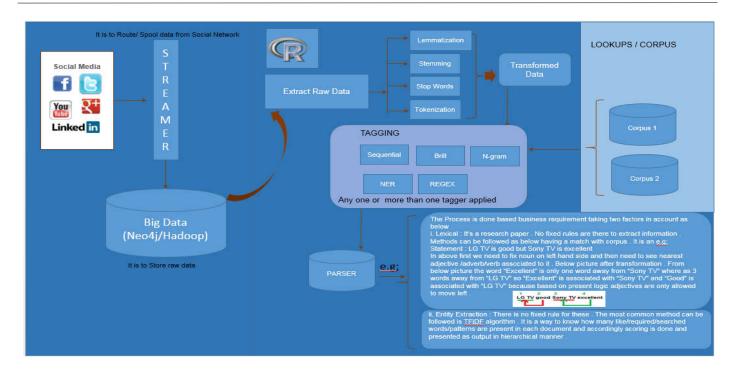
An N-gram parser is developed for Tagger in much simpler form to address Sentiment Analytics. The algorithm follows below architecture and the details of algorithm discussed in below sections.

*Corresponding author: Kaushik Halder,

Method : Algorithm - Development

The Algorithm, developed taking Retail domain as it's base but the same algorithm can be applied to other domains with little or minimum tailor.

Algorithm: After Text Wrangling, the text is searched from Left to right with an intention of making flag 0 e.g; If first Noun is found then definitely search carries on for next adjective. Likewise if first adjective is found then next search initiated for Noun.


Some time search is made back if in front no opposite flag is found. Pronoun, (e.g;"It") is replaced with nearest Noun only if no Noun defined next.

Here Noun is flagged as +1 and adjective flagged as -1. After finding of both Noun and Adjective, it gets added up to 0.

The above algorithm was developed based on following hierarchical process having an assumption as follows

Assumption : Text Wrangling is preprocess before the process tagging starts and in all examples/prototypes it is assumed to be done before Tagging.

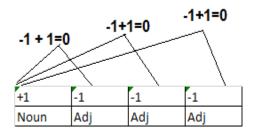
Employee of Accenture, Pursuing FPM from National School of Leadership in Marketing Research and Analytics, Pune – 412105, India.

For simplicity and to make generic only four part of speech is referred "Noun", "Pronoun", "Adjective" and "Negation".

Four corpuses mainly followed for Adjective, for Noun, for Pronoun and for negation. For adjective the corpus "AFINN-111" (present in Sentiment package of R)is followed and the same described in session "Introduction". For Noun a separate corpus is supposed to be prepared, which may be based on product master if the industry referred is Retail etc. For pronoun, similar type corpus prepared having all feasible "Pronouns" and specifically it is also related to domain, like for retail domain the more and only pronoun used widely is "it". For Negation, similar corpus prepared having few words which would negate a statement like "No", "Never" etc. After tokenization, each word in the statement is searched in all corpuses and accordingly tagged as "Noun", "Pronoun", "adjective" or "Negation".

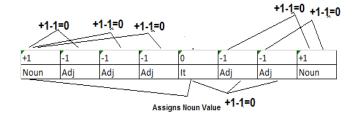
Assigning Adjectives to Nouns

It tries to associate object with right Sentiment by recognizing each word both right and left of Sentiment. Few prototype statements taken below for further sentiment analysis, assuming all stop words removed and only key words retained for analysis.

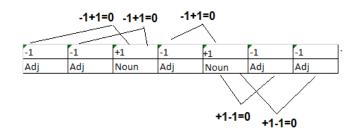

i. <Noun>, <Adj> , <Adj>, <Adj>, <Adj>, <Adj>, <Adj>, <Adj><Noun> ii. <Noun>, <Adj> , <Adj>, <Adj>, <Adj>, <Adj>, <Adj>, <Adj><Noun>, <Adj>, <

iii. <Noun>, <Noun>, <Adj>, <Noun>

iv. <Noun>, <Noun>, <Adj>, <A


After Stop words processing, where Adjectives, pronouns, Nouns, adverbs are supposed to be retained. Each Noun and pronoun are assigned with +1 flag. Adjective and Adverbs are assigned with -1 flag. Pronouns are assigned with 0 flag. Each Noun/Pronoun gets added with nearest adjective/adverb to get sum 0. Few cases discussed below

Case I :


Technical Note: The search found Noun first and assigned +1 flag and next it went on assigning all adjectives/adverbs until it found next Pronoun/Noun. **Intention is to make all sum** "**ZERO**". Hence, sum same Noun flag with all Adjectives and make the sum 0 and to which ever Adjectives it gets sum it gets attached to that Adjective.

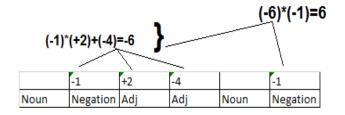
Case II :

Technical Note : It is same as in Case I, except the fact that it will stop search for any more adjective after getting "It". "It" gets replaced with previous Noun. Adjectives present after pronoun gets assign to pronoun. Further, Process flows as in Case I, keeping same intension of making sum 0.

Case III :

Technical Note : It is same as in Case II , except the fact that it will stop search for any more adjective after getting first Noun. Second search gets initiated and continues till it finds Noun/Pronoun. Third search starts, but here no Noun is found hence it moves back to find nearest Noun and the process of summation 0 carries on, keeping same intension of making sum 0.

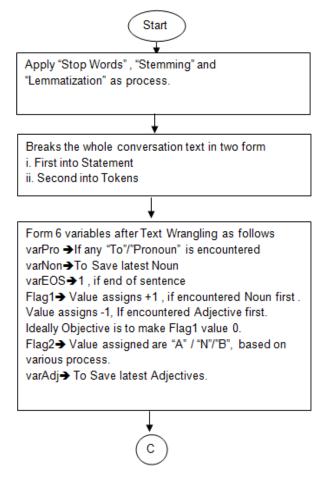
Case IV :



Technical Note : It is same as in Case III and in other cases ,where with intension on making Sum 0 search starts with first Noun and continues till next Noun. No adjective found in between two Nouns hence no -1 found hence search continues till it finds Adjective. First adjective got associated with both first Noun to make their summation 0. The last Noun had to move back to make it's sum 0.

Scoring Adjectives

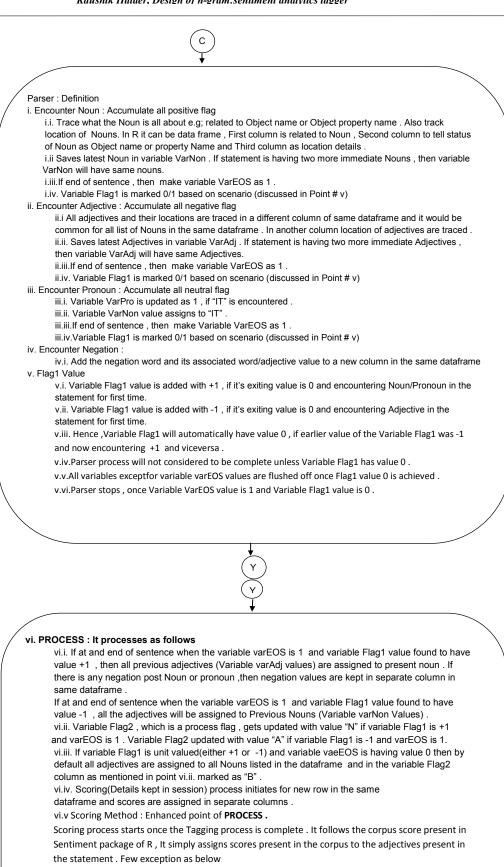
Scoring of Sentiments / adjectives carries by referring the corpus referred in section "Introduction" except few followings i.


If there is any negation word e.g; "No", "Never", "Not" present, then next adjective gets multiplied with -1 or previous all adjectives gets multiplied with -1.

Result : Development - Process Flow

After development of N-Gram Tagger, a parser was developed where the same algorithm was applied. The Process flow for Parser is described below

Note : The process flow developed is more aligned in using R/Revo R $% \left(R\right) =0$


DISCUSSION

Taking an example "XYZ is excellent camera and ABC as well found to be NOT BAD". The example is broken down in matrix format as mentioned below based on the parser defined earlier

Noun	Adjective	Pronoun	Negation	Flag	Total Sentiment
XYZ	Excellent		Not bad	Ν	4
ABC	Bad		Not	Ν	(-1)*(-2)=2
Total					6
Sentiment					

Explanation

After Text Wrangling, the parser is applied where the adjective "Excellent" (assumed score to be 4) got associated with Noun "XYZ". The adjective "Bad" (assumed score to be -2) and a "Negation" got associated with Noun "ABC". The negation score (negation score is -1) gets multiplied with the score of "Bad" and thus gives total sentiment of Noun "ABC".

vi.v.i. If in the above dataframe, a negation is found in the Negation column and variable Flag2 value is either "A" or "B", then negation will impact only the first adjective (associated with the negation) score by multiplying adjective score with (-1).

vi.v.ii. If in the above dataframe , a negation is found in the Negation column and variable Flag2 value is "N" , then negation will impact all adjectives .

Stop

Acknowledgement

Author is much grateful to Mr. Susmit Yenkar an employee of Accenture and Mr. Ashish Kumar Nayak an employee of Accenture, who developed the parser using R and tested sentiment under various scenarios. Author is grateful to his Supervisor Mr. Shantanu Biswas and his younger Brother Soumik Halder who motivated and inspired him for publication

REFERENCES

- NLTK Essentials-Build cool NLP and machine learning applications using NLTK and other Python libraries Nitin Hardeniya
- Theory of Computer science–K.L.P Mishra & N.Chandrasekaran
- Wikipedia : https://en.wikipedia.org/wiki/Parsing, 8-Feb-2016: 10 .16 AM

www.it-ebooks.info
