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INTRODUCTION 
 
In classical geometry, one of the most celebrated and reputedly most proven theorems,
the relationship between and among the squares constructed on the sides of an arbitrary right triangle. A little over two hun
years thereafter, Euclid generalized the Pythagorean Theorem, stating in effect that
among and in between the squares constructed on the sides of any given right triangle is also true if similar figures are con
on said sides, instead of squares.  Another two thousand years or so, the twice
rediscovered a theorem that bears his name. The said theorem describes the nature and property of the equilateral triangles t
constructed in any given arbitrary triangle. There is reason to believe that the th
mathematically interconnected. In his book, Geometry by Discovery, David Gay noted that "...geometry is more than a series of
events. There's additional spice when there are links between them and surprises occ
1998). The interconnection among and in between the theorems of Pythagoras, Euclid and Napoleon is the main underlying factor 
that innervates the researcher to undergo this study.
 
Theoretical Background 
 
Rectilinear and Similar Figures 
 
 In classical geometry, a polygon consists of three or more coplanar segments; the segments, called the 
endpoints; each endpoint, called the vertex, belongs to exactly two segments, and no two segments with 
collinear. A rectilinear figure, or simply referred to as a 
throughout this study, however, the terms polygon, geometric figure, and figure are used interchangeably
sides equal is equilateral, whereas, that in which all its angles are equal is 
if their angles are correspondingly equal and the sides that contain each of the corresponding e
proportional. 
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ABSTRACT 

This research focuses mainly on the three most elegant statements of triangle geometry, namely, 
Pythagorean, Euclidean, and Napoleonian theorems. In classical geometry, 
states that if one is to construct squares to each of the sides of any right triangle, then the area of the 
square constructed at the hypotenuse is equal to the sum of the areas of the other two squares
constructed on the other two sides, while Euclidean Theorem states that if one is to construct similar 
figures to each of the sides of any right triangle, then the area of the figure constructed at the 
hypotenuse is equal to the sum of the areas of the other two figures constructed on the other two sides. 
On the other hand, Napoleonian Theorem states that if one is to construct equilateral triangles on the 
sides of any triangle, the centers of those equilateral triangles themselves form an equilateral tria
Here, the researcher investigates the three above-said theorems and in the process provides proof of 
Euclidean Theorem using the Pythagorean Theorem, then goes to prove 
again the Pythagorean Theorem. 

This is an open access article distributed under the Creative Commons Att
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In classical geometry, one of the most celebrated and reputedly most proven theorems, is the Pythagorean Theorem, which states 
the relationship between and among the squares constructed on the sides of an arbitrary right triangle. A little over two hun
years thereafter, Euclid generalized the Pythagorean Theorem, stating in effect that the relationship that Pythagoras observed 
among and in between the squares constructed on the sides of any given right triangle is also true if similar figures are con
on said sides, instead of squares.  Another two thousand years or so, the twice-emperor of France, Napoleon Bonaparte, 
rediscovered a theorem that bears his name. The said theorem describes the nature and property of the equilateral triangles t

There is reason to believe that the theorems of Pythagoras, Euclid and Napoleon are 
mathematically interconnected. In his book, Geometry by Discovery, David Gay noted that "...geometry is more than a series of
events. There's additional spice when there are links between them and surprises occur when one come upon the links..."(Gay, 

The interconnection among and in between the theorems of Pythagoras, Euclid and Napoleon is the main underlying factor 
that innervates the researcher to undergo this study.  
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, or simply referred to as a figure, is that which is contained by any boundary or boundaries. All 
throughout this study, however, the terms polygon, geometric figure, and figure are used interchangeably
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Prominent all throughout this research study is the 
two adjacent sides of a triangle is said to be an 
is the sum of the said three interior angles of a give
is equal to two right angles, whereas in the non
equal to two right angles, yet it can be less than or greater than two right angles.
 

Figure 1. A Right

Pythagorean Theorem 
 
The Pythagorean Theorem, named after the Greek mathematician
BC), states that for a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides 
(see Figure 1). It is worthy to note here that to Pythagoras and to the Greeks in general during that time, the square on the 
hypotenuse is not to be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side.
say that the square on the hypotenuse of a right
two squares could be cut up and reassembled to form a square identical to the third square, as shown in Figure 2 below:
 

Figure 2. A Diagram of Pythagoras’ Interpretation of His Theorem
 
Whether Pythagoras or someone else from the society of which he led, indeed was the first to discover its proof cannot be cla
with any degree of credibility. As what the mathematics historian William Dunham aptly describes it, “…there are those who 
doubt as to how Pythagoras did it, others who doubt that Pythagoras ever did it, and still others who doubt that Pythagoras even
existed.” (Dunham, 1994:91). The society that Pythagoras led, which is half 
secrecy, and thus, unlike many later Greek mathematicians where some of the books which they wrote survive to this day, nothing 
of Pythagoras' writings, if there is any, survives.
 
Euclidean Theorem 
 
Euclid of Alexandria, (circa 300 BC), was born about two hundred years after the death of Pythagoras, and is generally 
acknowledged as the Father of Geometry. He 
for the thirteen-volume textbook, entitled Elements
Greek geometrical knowledge of his day. This includes the theorems and constructions of plane geometry and solid geometry, 
along with the theory of proportions, incommensurables and 
(Boyer, 1989:119). The Greek mathematics historian Proclus, Euclid’s foremost biographer, emphasized that a few original 
theorems in the Elements are directly attributed to Euclid, among others, is Proposition VI.31, which is a generalization of 
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Prominent all throughout this research study is the triangle, which is a three-sided closed figure. The angle thus formed by any 
two adjacent sides of a triangle is said to be an interior angle. A striking difference between classical
is the sum of the said three interior angles of a given triangle. In classical geometry, the sum of the interior angles of any triangle 

non-classical geometry, the sum of the interior angles of any triangle, though it may 
ss than or greater than two right angles. 

 
 

Figure 1. A Right-Angled Triangle with a Square 
 

, named after the Greek mathematician-philosopher Pythagoras of Samos, (circa 569 BC 
angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides 

It is worthy to note here that to Pythagoras and to the Greeks in general during that time, the square on the 
not to be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side.

say that the square on the hypotenuse of a right-angled triangle equals the sum of the squares on the other two sides
quares could be cut up and reassembled to form a square identical to the third square, as shown in Figure 2 below:

 
 

Figure 2. A Diagram of Pythagoras’ Interpretation of His Theorem 

Whether Pythagoras or someone else from the society of which he led, indeed was the first to discover its proof cannot be cla
with any degree of credibility. As what the mathematics historian William Dunham aptly describes it, “…there are those who 
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of Pythagoras' writings, if there is any, survives. 

Euclid of Alexandria, (circa 300 BC), was born about two hundred years after the death of Pythagoras, and is generally 
acknowledged as the Father of Geometry. He published a great number of works on a variety of topics, but he is most remembered 

Elements. Here, Euclid presents, in an eminently logical way, all of the 
Greek geometrical knowledge of his day. This includes the theorems and constructions of plane geometry and solid geometry, 

heory of proportions, incommensurables and commensurable, number theory, and a type of geometrical algebra 
The Greek mathematics historian Proclus, Euclid’s foremost biographer, emphasized that a few original 

directly attributed to Euclid, among others, is Proposition VI.31, which is a generalization of 
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not to be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side. To 

angled triangle equals the sum of the squares on the other two sides means that the 
quares could be cut up and reassembled to form a square identical to the third square, as shown in Figure 2 below: 

 

Whether Pythagoras or someone else from the society of which he led, indeed was the first to discover its proof cannot be claimed 
with any degree of credibility. As what the mathematics historian William Dunham aptly describes it, “…there are those who 

bt as to how Pythagoras did it, others who doubt that Pythagoras ever did it, and still others who doubt that Pythagoras even 
religious and half-scientific, followed a code of 

recy, and thus, unlike many later Greek mathematicians where some of the books which they wrote survive to this day, nothing 

Euclid of Alexandria, (circa 300 BC), was born about two hundred years after the death of Pythagoras, and is generally 
published a great number of works on a variety of topics, but he is most remembered 

, Euclid presents, in an eminently logical way, all of the elementary 
Greek geometrical knowledge of his day. This includes the theorems and constructions of plane geometry and solid geometry, 

, number theory, and a type of geometrical algebra 
The Greek mathematics historian Proclus, Euclid’s foremost biographer, emphasized that a few original 

directly attributed to Euclid, among others, is Proposition VI.31, which is a generalization of 

Pythagorean 



Pythagorean Theorem, and which states: In right-angled triangles, the area of the figure on the side subtending the right angle is 
equal to the sum of the areas of the similar and similarly described figures on the sides containing the right angle. Note that in this 
proposition, henceforth referred to as Euclidean Theorem, the figures surrounding the middle triangle may be of any shape as long 
as they are all similar.  In particular, in Figure 3, if triangle ���  is a right triangle, then the area of triangle ���’ is equal to the 
sum of the areas of triangles ��’� and �’��.   
 

 
 

Figure 3.  Right ΔABC with ΔABC’, ΔAB’C, and ΔA’BC Constructed from each of its Side 
 

Napoleonian Theorem  
 
Napoleon Bonaparte (1769-1821) who came to power in 1799 and ruled France for 15 years. Known for his military endeavours 
and sheer personality, he made not only war strategies, but also a rediscovery of a mathematical, in particular, a geometric 
theorem.  Generally known today as Napoleon’s Theorem, it states that if one is to construct equilateral triangles on the sides of 
any triangle, the centers of those equilateral triangles themselves, once connected by straight lines, form an equilateral triangle, 
(see Figure 4).  
 

 
 

Figure 4. Equilateral Triangle XYZ Formed by Joining the Centers of Equilateral Triangles BCA’, CAB’ 
 

In the figure, ��� is the starting triangle with an equilateral triangle built on each side: ���′ (on side BC ), ���’ (on side AC )', and 

���’ (on side AB ).  The centers of the equilateral triangles are points �,�, �, respectively. If one is to join these three points by 
straight lines as shown in Figure 4, an equilateral triangle is formed (����). Talking about triangles, it is said that when two 
triangles are similar, the reduced ratio of any two corresponding sides is called the scale factor of the similar triangles. In 
Figure 5, ���� is similar to ����.  
 

 
 

Figure 5. Similar Triangles ABC and DEF with a Scale Factor of 2:1 
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The ratios of corresponding sides are 
,

3

6
,

4

8  and 
,

5

10 respectively, which all reduce to
1

2 . It is then said that the scale factor of 

these two similar triangles is 2:1, (read as “2 is to 1”). The theorem stated without proof below states an important result in 
geometry; 
 
Theorem 2.1.  
 
If two similar triangles have a scale factor of �: �, then the ratio of their areas is ��: ��. 
A much more important result that generalizes the ratio between the areas of similar polygons is stated without proof 
below.  
 
Theorem 2.2.  
 
The ratio of the areas of two similar polygons is the square of the ratio of the lengths of any two corresponding sides. 
 
Euclidean Theorem and Napoleonian Theorem: Their Derivation from Pythagorean Theorem 
 
Euclidean Theorem and its Proof 
 
Heath's translation of Euclid's Book VI.31 states that in right-angled triangles the figure on the side subtending the right 
angle is equal to the sum of the areas of the similar and similarly described figures on the sides containing the right angle, 
of which, without loss of generality, can be stated as follows:  
 
Theorem 3.1 
 
If similar polygons are constructed on the sides of a right triangle, then the area of the polygon constructed at the 
hypotenuse is equal to the sum of the areas of that constructed at the legs. 
 Observe that by virtue of Theorem 2.2, it shall suffice to prove the Euclidean Theorem in the case of arbitrary similar 
triangles to prove that it is also true in the case of arbitrary similar polygons.  
 

 
 

Figure 6. Similar Triangles ABD, BEC, and CAF Constructed at the Sides of Right Triangle ACB 
 

Consider the right triangle, ���� with sides �, �, and hypotenuse � as shown in Figure 6. On each of its sides � and � are 
constructed two similar triangles which are ���� and ���� respectively. Likewise, on its hypotenuse �, is a third triangle, 
���� constructed in such a way that it is also similar to the two other triangles (���� and ����). Letting the areas of 
these triangles be: �� for ����; �� for ���� and �� for ����, one has to show that �� = �� + ��. 
Referring to the same figure (Figure 6) and applying Theorem 2.2, one has the following results: 
 

��
��

=
��

��
		 ; 		

��
��

=
��

��
		 ; 		���		

��
��

=
��

��
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However, from the same figure, it is also clear that  
��

��
= �

�

�
�
�

= (tan �)� which can be written as tan�  . Since 
2

1

A

A =
2

2

b

a  and 

2

2

b

a  = tan2   , then 
2

1

A

A  = tan2  . 

 

Similarly for 
3

2

A

A
 and 

1

3

A

A
, the following are the results: 

 

3

2

A

A
=

2

2

c

b
= 

2










c

b
= (cos  )2   = cos2   

 
and, 
 

1

3

A

A
=

2

2

a

c
= 

2










a

c
= (csc  )2   = csc2   

 

Thus, the ratios of the areas of the three similar triangles in terms of the sides of the right triangle ACB and   are shown as 
follows:  
 

i.   
2

1

A

A
 = 

2

2

b

a
  =  tan2    A1 = A2 tan2    

 

ii.  
3

2

A

A
 = 

2

2

c

b
  = cos2    A2 = A3 cos2   

 

iii.  
1

3

A

A
 = 

2

2

a

c
  =csc2     A3 = A1 csc2   

 
From equation iii; 
 

A3 = A1 csc2   
 

     = A2 tan2   csc2   (substituting A1  by A2 tan2   from equation i) 
 

     = A2 











2

2

cos

sin









2sin

1
 (since tan2   = 












2

2

cos

sin
and csc2   = 









2sin

1
) 

    = A2 








2cos

1
 (algebraic manipulation) 

      

= A2 sec2  ( 








2cos

1
=sec2   ) 

 

=A2 (tan2   + 1) (sec2   = (tan2   + 1)) 
 

       

= A2 tan2   + A2  (algebraic manipulation) 
 

 

Since, A2 tan2   = A1 (from equation i), then  
 

A2 tan2   + A2  = A1 + A2. 
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Therefore 
 
A3   = A1 + A2 

 
which proves the Euclidean Theorem. 
 
Euclidean Theorem Proof Using Pythagorean Theorem 
 
Classical geometry offers an area formula that deals with the triangle of which all the angle measurements are known but 
only one side measurement is known, appropriately illustrated below.   

 
 

Figure 7. ΔPMR with a known side m and three known angles: P,M, and R  
 
Based on classical geometry and from Figure 7, if ��� is a triangle of which angles �, �, and � are known, and side � is 
also known, then its area is given by the equation: 
 

Area of Δ PMR = 
M

RPm

sin2

sinsin2

   

 
With this area formula at hand, Euclidean Theorem can also be proven using the Pythagorean Theorem. Observe that by virtue of 
Theorem 3.1, it shall suffice to prove the Euclidean Theorem in the case of arbitrary similar triangles to prove that it is 
also true in the case of arbitrary similar polygons, thus one considers similar triangles ��, ��, and ��, with corresponding 
angles, measuring, , , and   respectively, constructed at the sides of a given right triangle with �� and �� constructed at the legs 
�, and �, respectively, and triangle �� constructed at the hypotenuse �, (see the Figure 8). 
 

 
Figure 8. Similar Triangles Constructed at the Sides of a Right Triangle  

 
As observed from Figure 8, and by applying the classical geometry area formula:  
 

Area of ΔA3 = 




sin2

sinsin2c
 

=
 





sin2

sinsin22 ba
[Pythagorean Theorem] 

=




sin2

sinsinsinsin 22 ba
[Algebraic Manipulation] 
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=




sin2

sinsin2a
+ 





sin2

sinsin2b
[Algebraic Manipulation] 

 
Area of ΔA3= Area of Δ A1 + Area of Δ A2, [by the classical geometry area formula].  
 
This shows that the area of triangle A3 constructed on the hypotenuse is equal to the sum of the areas of the other triangles 
constructed on leg a (ΔA1), and b (ΔA2) respectively, hence proving the Pythagorean Theorem. 
 
A closer observation in the derivation shows that 
Area of Δ A3 = Area of Δ A1 + Area of Δ A2 

 






sin2

sinsin2c
=





sin2

sinsin2a
+ 





sin2

sinsin2b
 

 

 












sin2

sinsin2c = 












sin2

sinsin2a + 












sin2

sinsin2b  

 

which can be rewritten as :  
2

sin2

sinsin
c











=

2

sin2

sinsin
a











 +  

2

sin2

sinsin
b











, 

 
The last equality shows that the area of the similar triangles can be expressed as the product of a constant and the square of 
the corresponding side on which the similar triangle is constructed. Letting this constant be s then; 
 
Area = s * (corresponding side)2, where 
 

s = 












sin2

sinsin
, and  

 
corresponding side refers to the sides a, b, and c, respectively. 
 
Let the formula Area = s * (corresponding side)2 be called the scaling formula for the areas of similar triangles constructed 
on the sides of a right triangle. 
 
Beyond the Pythagorean Theorem: The Law of Cosines 
 
Consider an arbitrary ABC with its base at side b, and height, h, such that an angle C of known measurement is the intersection of 
two sides, a and b, of known length (see Figure 9). 
 

 
 

Figure 9. Triangle ABC with two sides a and b and the included angle measurements known 
 
From Figure 9, the mathematical relationship between the sides �, �, and � are as follows: 
 

(a)  222 xbch  Pythagorean Theorem 

(b) 
222 xah  Pythagorean Theorem 
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(c)   2222 xaxbc  Equating (a) and (b) 

(d) bxbac 2222  Algebraic Manipulation 

(e) Cabbac cos2222  Cax
a

x
C coscos   

The last line, Cabbac cos2222  , is the famous law of cosines and is actually the generalized Pythagorean Theorem in 
disguise. 
 
Napoleonian Theorem and Its Proof 
 
Napoleon's Theorem almost exclusively deals with equilateral triangles and their respective centers, and hence, the mathematical 
relationship between a given equilateral triangle and its center must first be investigated. The area of a given triangle with base 

b and height h is found by the formula, Area =
2

hb  . In the case of an equilateral triangle, it becomes,
2

hs  , where s is the 

length of the equilateral triangle’s side. Another formula to find the area of an equilateral triangle is Area =
4

32 s , where, 

s is the equilateral triangle’s side length. The height of an equilateral triangle in terms of its side length s is found by 
equating the two area formulas as follows: 
 

4

3

2
2 


s

hs
 

2

3
 sh  

 
One important property of an equilateral triangle is that the height h passes through the triangle’s center, which is located 

at a length 
3

2
of the way from the top vertex down the h line, (see Figure 10). 

 

 
 

Figure 10. An Equilateral Triangle with center C 
 

In terms of s, the length d from any of the vertices of an equilateral triangle to its center is: 
 

3

2h
d 

 
 

h
3

2

 
 

2

3

3

2
 s

 
 

3

s
  

 
This result, in conjunction with the law of cosines, is of utmost importance in the derivation of Napoleon’s Theorem, which is 
formally stated as follows: 
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Theorem 3.2. 
 
If one constructs equilateral triangles on the sides of any triangle, the centers of those equilateral triangles themselves when 
connected by lines form an equilateral triangle. 
 
Proof: Consider triangle ���, with angular measurements �, �, and �, respectively. Constructing equilateral triangles at its sides, 
with centers at points, �, �, and �, respectively, a diagram shown in Figure 11 is obtained. 
 

 
 

Figure 11. Equilateral Triangles ABD, ACF, and BCE, With centers, G, H, and I, respectively, constructed on the sides of Triangle ABC 
 
Observe that HAG, is the sum of angles HAC, α, and BAG, and since HAC = BAG = 30, then HAG = α + 60. The same 
observation shows that GBI = β + 60 and HCI = γ + 60, thus:  
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Now, consider the original triangle ABC and the equilateral triangle BCE attached to it via side BC, (Figure 12).  

 
 

Figure 12. Triangle ABC and Equilateral Triangle BCE Attached to it via side BC 
 
If one is to connect points A and E, and compute for the length of AE then:  
 

From ABE’s perspective,  
 

           60cos2
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From ACE’s perspective,  
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 23 HI  
 

Since classical geometry allows only positive lengths for the sides, then without loss of generality,  
 

    HIGIHIGI 
22

33 . 
 

Next, consider the original triangle ABC and the equilateral triangle ACF attached to it via side AC, (Figure 13). 
 

 
 

Figure 13. Triangle ABC and Equilateral Triangle AFC Attached to it via side AC 
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If one is to connect points B and F, and compute for the length of BF then:  
 
From FAB’s perspective,  
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From BCF’s perspective,  
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 23 HI  
 

This goes to show that GH = HI, and since GI = HI, then GH = GI, thus proving that GHI is an equilateral triangle.  
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