

GOAL ORIENTED DEVOPS TRANSFORMATION FRAMEWORK

Modern Science and Arts University, Faculty of Engineering, Electrical and

ARTICLE INFO ABSTRACT

With the introduction of
organizations to better satisfy their clients expectations from both infrastructure and services
perspectives becomes a necessity
standards that formulate the required model that enables those organizations to evolve and adapt to the
target spectrum. This paper provides a new innovative DevOps transformation framework adopting a
quantitati
delivery model into the DevOps model. The edge of the proposed framework is that it provides a
structured and quantitative mechanism via different transformation phases
state in the assessment phase via clear KPI (Key Performance Indicators) and CSF (Critical Success
Factors), and then isolate the gaps covered within the assessment phase to move to the next state via
clear transformation actio
other transformation frameworks
quantitatively measures any project/organization maturity using metric phased approach, against
different capabilities, with different capability levels. This is done by reviewing the observed
project/organization behaviors against the standard framework description described at each capability
level.

Copyright © 2016, Samer I. Mohamed. This is an open access article distributed under the Creative Commons Att
use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

In the cloud world, the traditional approaches for application
development and management prove not to accommodate with
the increasing trends of clients demands and expectations.
Thus a need for a new approach that enables IT organizations
to ensure integrated software systems are always on and
available to support clients requests while reducing expected
risks, maximize the value and/or ROI (Return
and minimize the TCO (Total Cost of Ownership). These
challenges faced currently by many IT organizations pushed it
towards adopting DevOps model. DevOps model is a
collection of standards and best practices that help IT
organizations to learn how to become a service provider to its
business users, move quickly to meet changing business
environments, enable a self-service mechanism for selecting
and provisioning the IT services and use automation to deliver
more with less costs. DevOps is an evolution in thinking with
regards how IT services are delivered and supported. It is a
continuation of some of the predecessor work in the areas of
continuous integration and application life cycle management
(ALM); therefore, it is rooted in the agile philosophy, which

*Corresponding author: Samer I. Mohamed,
Modern Science and Arts University, Faculty of Engineering,
Electrical and Communication Department, Egypt

ISSN: 0975-833X

Article History:
Received 14th December, 2015
Received in revised form
20th January, 2016
Accepted 26th February, 2016
Published online 31st March, 2016

Key words:

Cloud computing,
Transformation framework,
Key Performance Indicator,
Critical Success Factor,
Maturity model.

Citation: Samer I. Mohamed, 2016. “Goal oriented
Research, 8, (03), 28307-28313.

RESEARCH ARTICLE

GOAL ORIENTED DEVOPS TRANSFORMATION FRAMEWORK – METRIC PHASED APPROACH

*Samer I. Mohamed

Modern Science and Arts University, Faculty of Engineering, Electrical and Communication Department

ABSTRACT

With the introduction of the cloud computing and virtualization, a need for a new model that enables
organizations to better satisfy their clients expectations from both infrastructure and services

erspectives becomes a necessity (Bang et al., 2013). DevOps is a collection of best practices and
standards that formulate the required model that enables those organizations to evolve and adapt to the
target spectrum. This paper provides a new innovative DevOps transformation framework adopting a
quantitative or metric phased approach that can be utilized by any organization aims to transform
delivery model into the DevOps model. The edge of the proposed framework is that it provides a
structured and quantitative mechanism via different transformation phases
state in the assessment phase via clear KPI (Key Performance Indicators) and CSF (Critical Success
Factors), and then isolate the gaps covered within the assessment phase to move to the next state via
clear transformation actions. Thus instead of following qualitative measures, like those adopted by
other transformation frameworks (Le-Quoc, 2011), the proposed goal
quantitatively measures any project/organization maturity using metric phased approach, against
different capabilities, with different capability levels. This is done by reviewing the observed
project/organization behaviors against the standard framework description described at each capability

open access article distributed under the Creative Commons Attribution License, which
use, distribution, and reproduction in any medium, provided the original work is properly cited.

In the cloud world, the traditional approaches for application
development and management prove not to accommodate with
the increasing trends of clients demands and expectations.
Thus a need for a new approach that enables IT organizations

ated software systems are always on and
available to support clients requests while reducing expected
risks, maximize the value and/or ROI (Return on investment)
and minimize the TCO (Total Cost of Ownership). These

ganizations pushed it
DevOps model is a

collection of standards and best practices that help IT
organizations to learn how to become a service provider to its
business users, move quickly to meet changing business

service mechanism for selecting
and provisioning the IT services and use automation to deliver

DevOps is an evolution in thinking with
regards how IT services are delivered and supported. It is a

of the predecessor work in the areas of
continuous integration and application life cycle management
(ALM); therefore, it is rooted in the agile philosophy, which

Modern Science and Arts University, Faculty of Engineering,
, Egypt.

also attempts to bridge the traditional organizational process
divide between development and operations teams (
2013). The value behind DevOps lays in bridging the current
gap between the different technical roles within the same team
who work in silos. Thus, The DevOps approach is built around
those who believe that the application of a combination of
appropriate technology and attitude can
world of software development and delivery especially these
different roles share the same objective which is the delivery of
a successful products under a stressful market conditions
(Debois, 2011). The key for any organization to get
from the DevOps model is to follow the below best practices:

Automation: Faster release cycles, combined with massively
scalable cloud environments, demand the ability to automate
every aspect of the release process. Tools such as Puppet and
Chef eliminate manual processes and replace them with
simpler, standardized and highly repeatable software
deployment methods.

Scripting and coding: Many system administrators are
already comfortable using tools like Perl, a tool that was
actually developed as a programming language for automating
system administration.

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol. 8, Issue, 03, pp. 28307-28313, March, 2016

 INTERNATIONAL

Goal oriented DevOps transformation framework – Metric phased approach”, International Journal of Current

 z

METRIC PHASED APPROACH

Communication Department, Egypt

the cloud computing and virtualization, a need for a new model that enables
organizations to better satisfy their clients expectations from both infrastructure and services

DevOps is a collection of best practices and
standards that formulate the required model that enables those organizations to evolve and adapt to the
target spectrum. This paper provides a new innovative DevOps transformation framework adopting a

ve or metric phased approach that can be utilized by any organization aims to transform
delivery model into the DevOps model. The edge of the proposed framework is that it provides a
structured and quantitative mechanism via different transformation phases to measure both the current
state in the assessment phase via clear KPI (Key Performance Indicators) and CSF (Critical Success
Factors), and then isolate the gaps covered within the assessment phase to move to the next state via

ns. Thus instead of following qualitative measures, like those adopted by
the proposed goal-oriented framework

quantitatively measures any project/organization maturity using metric phased approach, against
different capabilities, with different capability levels. This is done by reviewing the observed
project/organization behaviors against the standard framework description described at each capability

ribution License, which permits unrestricted

also attempts to bridge the traditional organizational process
evelopment and operations teams (Akerele,

vOps lays in bridging the current
gap between the different technical roles within the same team
who work in silos. Thus, The DevOps approach is built around
those who believe that the application of a combination of
appropriate technology and attitude can revolutionize the
world of software development and delivery especially these
different roles share the same objective which is the delivery of
a successful products under a stressful market conditions

The key for any organization to get benefit
from the DevOps model is to follow the below best practices:

Faster release cycles, combined with massively
scalable cloud environments, demand the ability to automate
every aspect of the release process. Tools such as Puppet and

eliminate manual processes and replace them with
simpler, standardized and highly repeatable software

Many system administrators are
already comfortable using tools like Perl, a tool that was

a programming language for automating

INTERNATIONAL JOURNAL
 OF CURRENT RESEARCH

”, International Journal of Current

Infrastructure via APIs: Infrastructure APIs give Operations
a standard framework for provisioning and configuring cloud-
based infrastructure components. By offering access to these
components, infrastructure APIs simplify the process of
deploying and managing cloud-based applications allowing
programmatic changes to the infrastructure.

Continuous learning: It’s not enough for Development and
Operations to agree to work together. They must also agree on
the processes for experimentation and continuous improvement
in delivering new applications and deploying updates to
existing applications. DevOps works together to select and
implement which platforms provide the best foundation for key
activities such as automation and self-service delivery models.

Platform-based development: Platform as a service (PaaS)
cloud computing services provide the entire infrastructure from
hardware and operating systems to databases and middleware
— required to develop and run applications. Developers can
build applications faster and cheaper using a platform-based
approach, but doing so requires the right tools and the right
understanding of how to adapt their code to a PaaS
environment.

Focus on organizational process alignment: According to
[S. Stuckenberg], the most successful DevOps models focus on
organizational issues and process alignment, including
leadership. Especially these processes which impact the release
delivery/cycle by smoothing the value gained from each
process via clear KPIs and measurements.

Leverage internal talent: It’s often easier and more efficient
to identify members that already have the right skills to build a
DevOps engine. Server and storage infrastructure support
personnel, for example, are probably already well-versed in the
scripting, configuration management and automation skills
required to drive the “ops” side of DevOps.

Create a continuous feedback loop: In order to support
continuous delivery and integration of applications, DevOps
must also put the processes in place to collect and implement
feedback – and not just from IT staff like business users and
other involved stakeholders. The paper is organized as follows:
section II gives a background for the DevOps maturity model
where the transformation framework is based; section III
provides the main construction of the proposed transformation
framework; section IV Validate the new DevOps
transformation framework via use case; section V is the
conclusion for what has been presented in the paper (Schaefer
et al., 2013).

DevOps maturity model background

To enable organizations get the most outcomes/value from the
DevOps, a transformation framework is proposed to first
assess the current state of the organization/department, and
then apply the proposed transformation framework according
to the gap assessment results. This transformation framework
will apply set of processes and best practices to make the
organization operating model adaptable with the DevOps
model. The proposed model is based on the maturity model
introduced in (Samer, 2015). With five levels of maturity. Each
level is assessed against 4 dimensions (Quality, Automation,
communication/collaboration, and governance) as described in
DevOps maturity model in Fig 1. To move from one any
maturity level to the following one, organization needs to
improve against the 4 dimensions. This proposed model is
inherited from HP model [HP model] to cover the entire life
cycle of the any delivered service E2E (End to End).

At the initial level of DevOps maturity, organizations are
capable of doing ad hoc deployments of services when they are
ready, but they have a hard time predicting when those
services will be production quality and are dependent on the

Fig. 1. DevOps maturity model

 283087 Samer I. Mohamed. Goal oriented DevOps transformation framework – Metric phased approach

actions of talented resources. At that level of maturity, there
are many manual steps involved in deploying a new version of
software service/application. As a result, a full service release
cycle (inclusive of testing) can take days or even weeks to
complete. The results of maintaining an initial level of maturity
are that it’s difficult for business leaders to predict when new
software services will be released to their clients, and the
teams that construct these services will usually deliver them
later than predicted or expected from the clients. Clients will
also frequently encounter regressions in functionality or
system errors caused by mistakes in manual processes. As a
result, organizations with an initial level of DevOps maturity
will find their capacity to innovate through custom software
severely constrained (Humble and Molesky, 2011). At the
managed level of DevOps maturity, software development
teams are able to work with business leaders to set release time
boxes. Software development teams then vary the scope of the
work performed and the effort applied to meet the agreed
release date. At the managed level, delivery time boxes are
usually still outside the bounds of what the business may need.
As a result, a managed level of DevOps maturity is
characterized by frequent negotiations over the priority of
requirements, defects, and system capabilities versus budget
and the release window. Because this negotiation process
continues throughout the release, it’s critical to have an
identified product owner who can examine functionality and
quality trade-offs and maintain customer support for the
service while it’s being developed.

At this level, business sponsors regularly participate in
scope/resource/date trade-offs and are well informed about the
progress of service development. Accordingly, development
teams should be capable of setting a release date for a service
and then managing their development schedule to meet that
date (more or less). Business sponsors may choose to slip a
release date if the scope of the project changes or unforeseen
risks occur that need to be dealt with before deploying the
service. The development team’s basic release capability at the
managed level, gives business sponsors some visibility into
service development and provides limited opportunities for
course corrections and re-prioritization of requirements for
subsequent development releases (Sacks, 2012). While the
speed of service releases increases under a managed state of
DevOps maturity, there is still enough latency to prevent
release on demand. Projects that implement Agile development
practices like regular integration and backlog management
should find that they have the necessary process discipline to
achieve a managed state, where even if they can’t release new
capability as fast as business sponsors need it, they can
demonstrate regular process and confirm that an envisioned
service will function as planned while meeting desired
business objectives and performance measures (Samer, 2015).
At the defined level of DevOps maturity, the release process
becomes a regular key indicator of project health. Most
development teams that operate at this level of maturity create
a build at least once a day from trunk, and developers will
ensure they don't have more than a day's work sitting on a local
branch in version control. Accordingly, branches to the main
release trunk are short-lived, and the result is a significant
reduction in system integration issues which tend to fester
when individual developers or sub-teams maintain private

builds or source code branches. At the defined level of
maturity, deployment of new service versions is further
accelerated by automating the process of provisioning
integrated environments. In most cases, development teams at
this level focus on automating deployment into a system test
environment. When a team reaches the defined state of
maturity, the result is a regular release cadence. The release
time box is well defined, and it’s easy to identify early warning
sign that a project is in trouble. This makes it possible to exert
early corrective actions like scope reduction, resource
augmentation, and a schedule re-plan. While service delivery is
much more predictable than the initial or managed level of
maturity, it may still not be as fast as business leader’s desire.

At the measured level DevOps of maturity, they reach a critical
plateau where they can deploy a new release whenever one is
needed. From a business perspective, the speed of service
development meets or exceeds that capacity of the business to
assimilate new services. At this level of maturity, software
development team no longer hinders business innovation, but
on the other side it enables it. As development teams reach this
level of maturity, a shift in organization structure. Instead of
vertically organized centres of excellence (e.g., business
analysts, development, quality assurance/testing, infrastructure
and operations/support), we see an organizational shift to
cross-functional product teams. Individual roles become less
important than the tasks that need to be completed to release
new capability/service, and teams are likelier to self-organize
their works. As part of this transition, the entire team assumes
responsibility for service-level agreements associated with
their product. And it’s not just service testing and deployment
that folds into the cross-functional organization. User
experience should also be integrated into development teams at
this level. At that level of maturity, teams find that they have
eliminated all remaining bottlenecks in downstream build, test,
and deployment phases. Deployments of individual changes in
source code can now be performed in minutes, and there’s no
reason a team can’t do multiple deployments to production in a
single day. As software development teams move to this level
of maturity, delivery teams prioritize keeping the main code
trunk deployable over doing new work. Development teams
don’t let the integration build stay broken for more than a few
minutes and anybody is empowered to revert breaking changes
from version control.

The focus of testing services also shifts up the development
process. Test-driven development and acceptance-test-driven-
development become core processes for development teams.
These tests are layered on top of pre-flight builds to provide
semantic validation of system function in addition to technical
validation. At the optimizing level of DevOps maturity,
software development teams drive a continuous stream of
incremental innovation. They form hypotheses about customer
needs and how they can serve them, run experiments to test
these hypotheses with customers, and then use feedback from
their experiments to make design and service implementation
decisions based on the best course of action. In this hypothesis-
driven development model, software development teams focus
on optimizing cycle time in order to learn from customers in
production, by gathering and measuring system feedback.
Asynchronous services allow load balancing work distribution

 28309 International Journal of Current Research, Vol. 08, Issue, 03, pp. 28307-28313, March, 2016

among different variants of the same service. Software
development teams are able to inject probes into real-time
production operations to monitor application load, deploying
more resources as necessary at this level. Developers also test
and evaluate the system as it functions in production — they
may even initiate failures to make sure that the system takes
proper corrective action. At the optimizing level, database
changes are decoupled from application deployments, and
individual service endpoints are decoupled from each other
(Komi-Sirviö and Tihinen, 2013). Software development teams
at this level of DevOps maturity, can initiate business change
by running experiments and proving business value. As the
cost of each service deployment trends toward zero, the cost of
running discrete experiments also drops significantly and
becomes largely a factor of development labor costs.

Proposed transformation framework

The proposed framework based on the GQM (Goal Question
Metric) approach (Sacks, 2012). First step, is to clarify the
goal/s to be achieved from the transformation with respect to
various models of quality and relative to particular
environment. Second, set of questions is used to define models
of the object of study and then focuses on that object to
characterize the assessment or achievement of a specific goal.
Third and last step, a set of metrics, based on the models, is
associated with every question in order to answer it in a
measurable way. These metrics/measurements associated with
each goal should reflect/influence what matter to business and
map this then to activities/tasks done by individual/s to lead to
this influence. The transformation framework consists of
around 14 capabilities that form the major components where
any organization should adopt to follow DevOps delivery
model. These capabilities vary between operational, delivery,
governance, management, communication and process aspects.
Each one of these capabilities assessed against different criteria
to measure the different dimensions of the corresponding
capability. DevOps maturity levels described in the previous
section is utilized to measure the maturity level of each
capability criteria. Each criteria has a standard description
against each maturity levels (level 1 to level 5) where
organization or project should meet to achieve such maturity
level of the corresponding capability criteria. To summarize
the list of transformation capabilities, a brief description for
each one along with the corresponding criteria will be listed as
follows:

1. Operational management

 Incident management methodology
 Responsible teams
 Troubleshooting and incident analysis approach
 Incident monitoring and communication tracking
 Incident notification and alerts mechanism
 Incident response strategy.

2. Service management

 Service management strategy
 Adopting standards sharing approach
 Collaboration cross teams

 Communication style cross teams
 Delivery model cross teams

3. Governance and process management

 Service delivery model is available and up-to-date
(including engagement model, org chart, team structure,
R&R)

 Service operation model is available and is reflecting
the operation for the specific service

 The governance model for service delivery is defined
and standardized (including RACI model,
accountability)

 Standard SOW is available and is specific for the
service

 Standard SLA is available and is specific for the service
 Estimation techniques are standardized

4. Build and continuous integration management

 Build strategy
 Build and integration cross environments
 Versioning control for the build artifacts
 Reporting mechanism/hierarchy
 Build automation
 Automation approach for continuous

deployments/integration
 Provisioning strategy
 Deployable status to mainline

5. Tools and automation

 Tooling matrix for build and run is defined and
standardized

 Tools packages are identified for large, medium and
small implementations (including tiers of tools,
implementation plan, price & cost)

 Service automation and tooling support business
objectives

 Tool matrix for automation is defined, and its
implementation plan is established

6. Quality assurance and testing management

 Testing strategy
 Testing Automation and responsibility
 Testing phase involvement within development life

cycle
 Development involvement through testing
 Release cycle impact with testing
 Regression bugs exists

7. Project and delivery management

 Project management strategy
 Delivery approach
 Prioritization for operational versus new features
 Collaboration support cross teams handling approach
 R&R (Roles and Responsibilities) is clear for all
stakeholders

 28310 Samer I. Mohamed. Goal oriented DevOps transformation framework – Metric phased approach

8. Collaboration and communication management

 Organization/process model
 Communication style
 Collaboration style between Dev/Ops
 Level of continuous improvement
 Team organization
 Process documentation
 Reporting hierarchy
 Metrics and measurement techniques

9. Feedback and continuous improvement

 Feedback loops strategy
 Monitoring and alerting applied on which components
 Service monitoring metrics applied level
 Alerting and monitoring scope
 Service failures proactive versus reactive

10. Vendor management

 Vendor management strategy
 Services management approach
 Handling of incident management

Table 1. Project current state for Change management capability criteria

Criteria Project behavior/state

Change management strategy Cross functional
Change management control board formulation Sign-off by CCB (Change Control Board) is mandatory
Change automation Automation is applied for new artifacts via switches constantly
Review process for each change Changes are not applied to main line unless being approved/tested on non-

production environments by authorized persons
Feedback loops implemented Application changes only automated where no feedback loops implemented
Data migration strategy Manually handled

Table 2. Project level for Change management capability criteria

Criteria Project behavior/state

Change management strategy Level 4
Change management control board formulation Level 1
Change automation Level 5
Review process for each change Level 5
Feedback loops implemented Level 1
Data migration strategy Level 1

Table 3. Actions, CSFs, KPIs for the Change management capability criteria

Criteria CSFs KPIs Actions

Change management strategy Not applicable Not applicable Not applicable
Change management control
board formulation

Decentralized auditing
approach for the change
management process 1

%Reduction in the review time for
any change

The successful adoption of DevOps
methodologies often entails a close look at
organizational structures, roles and
responsibilities where teams have a broader
view and responsibility for the entire release
process rather than individual roles

Change automation Time to market is very
critical

#succeeded deployments versus total
number of rollouts on all
environments

As developers increasingly define infrastructure
resources via code, operations require the
capability to understand capacity requirements
for the applications as they are being built. By
integrating application performance
management data with capacity planning tools,
teams can reduce waste by avoiding
overspending on unnecessary infrastructure,
reduce risk and guarantee service delivery

Review process for each
change

Decentralized auditing
approach for the change
management process

%Reduction in the review time for
any change

Highly mature release and deployment practices
incorporate comprehensive views of release
trends, enabling managers to monitor and audit
the entire deployment process. This should be
supplemented with process interaction during
execution for real-time remediation

Feedback loops implemented How fast user feedbacks
are incorporated in the
development cycle

I increased customer and user
satisfaction with plans and
communications

Increasingly teams collaborate towards building
a shared set of metrics, testing and release
processes associated with meeting business
outcomes. These may include transaction counts
and web-site performance to meet conversion
rates and reducing lead times to meet business
demand for new services

Data migration strategy Ensure data migrations are
clearly integrated with the
application deployments
with clear rollback plans

Increased score in surveys of
customer, user and service operation
function satisfaction with release
and deployment management

Include the data migrations into the deployment
track for any application to minimize
probability for roll backs

 28311 International Journal of Current Research, Vol. 08, Issue, 03, pp. 28307-28313, March, 2016

11. Continuous deployment management

 Deployment approach
 Fully automated
 Data based related deployment approach
 Release cycle and cadence
 Deployment cross environments mechanism

12. Configuration management

 Configuration management strategy
 Versioning control for the environments
 Configuration Items control and management

13. Technology and architecture management

 Technology style
 Custom versus rigid based
 Static versus dynamic

14. Change management

 Change management strategy
 Change management control board formulation
 Change automation
 Review process for each change
 Feedback loops implemented
 Data migration strategy.

Framework validation

To put the transformation framework into action, a use case is
used to show how the transformation model can be utilized via
practical case from within one of the organization running
projects (Fitzpatrick and Dillon, 2011). I preferred to pick a
sample critical capability like ‘change management’ and try to
assess the project current change management
process/behavior against the transformation framework
standard capability/criteria. The assessment is done by
matching the observed/current project/organization behavior
against the capability/criteria levels behavior/description as
detailed in the transformation framework. The closest match
will indicate the current maturity level of this capability
criteria. This process will then be repeated against the other
criteria related to each and every capability that mentioned in
the previous section. The outcomes from this initial assessment
will be considered as gap assessment for the
organization/project around the current DevOps maturity level.
It can be then used to draft next milestones to move towards
the next maturity level of the transformation towards the final
goal which is reaching optimized level of maturity to
maximize the outcomes from adopting the DevOps model. To
show how the above mentioned process can be applied, I will
assume the current project state for the change management
capability criteria is as follows:

Applying the process described in the previous sections, the
DevOps process auditor will first use the transformation
framework to assess the current project/account state based on
gap assessment against each capability criteria. I’ll show this
for the change management capability and the same process

can be applied similarly against the rest of other 13
capabilities. Thus the process will follow the below mentioned
workflow steps:

 Compare each and every capability criteria against the
project behavior for the same criteria as given in Table
1.

 Find the best and close match between the project
behavior for specific criteria and level of the
corresponding criteria in the transformation framework.

 Assign the matched level to selected criteria.
 Apply the above process for all the capability criteria to

get the maturity level and current state for each and
every capability criteria.

Start with the change management capability criteria
mentioned in Table 1, and use the above mentioned process,
you will reach to the criteria levels as described in Table 2.
The results shown in Table 2 clarify the current project status
measured against the DevOps transformation framework.
Where the project is very high mature (level 5) in some criteria
like (Change automation, Review process), high mature in
change management strategy (level 4) and still building up the
skills/caliber for change management control board, feedback
loops implementation and data migration strategy criteria.
These results can be used by the project team to draft the future
action plan to build on for those criteria/areas where at lower
maturity levels. The framework helps the project team to build
the action plan to cover the current gap by proposing set of
actions along with set of assessment criteria or CSFs (Critical
Success Factors) and KPIs (Key Performance Indicators) to
measure the progress and clarify clear objective/goal towards
building high mature criteria for all the capabilities. To show
how this applies for the change management capability, a
sample of set of actions, CSFs, KPIs, will be described in
Table 3.

The table shows the data for each and every criteria within the
change management capability. Project team can build on the
given CSFs, KPIs, and proposed improvement actions for each
and every capability to move towards higher DevOps maturity
level and transform their current delivery practices by adopting
the best practices and standards proposed by the DevOps
transformation framework. To show for example as per Table
3, Change management automation criteria shows that time to
market is the Critical Success Factor (CSF) along with number
of succeeded deployments versus the total number of
deployments within specific range of time is considered as Key
Performance Indicator (KPI) to measure the
performance/progress of the project against clear quantitative
metric. This process can then be repeated regularly every six
months or so based on the maturity of the organization and
project budget to apply such transformations while satisfying
the delivery commitments towards business users and clients.

Conclusion

This research work presents a new approach for both
measuring/assessing the DevOps maturity level of any
organization/project using set of capabilities/criteria and
helping the organization/project to transform their current

 28312 Samer I. Mohamed. Goal oriented DevOps transformation framework – Metric phased approach

maturity level based on the outcomes from the initial gap
assessment. The uniqueness of the proposed framework is
three folds, first the simplicity of the proposed mechanism to
assess and transform based on the goals set by the
organization/project in quantifiable or metric approach.
Second, adopting quantitative or metric approach to measure
the performance and progress through the transformation
process for each and every capability. Third, Using CSF, KPIs,
and set of improvement actions that guide the
project/organization to move towards higher maturity level in
smooth and seamless manner. Future plan based on work
introduced in this paper will be focused to build on this
transformation framework and design a tool to calculate the
overall maturity level of each organization/project based on the
assessment outcomes using simple GUI algorithm with user
friendly interface that can be used by any process owner or
organization aims to invest on their DevOps capabilities. The
objective of this work is basically target to standardize the
DevOps process/best practices to be adopted by most of
current IT organization due to the main value/need expected
from DevOps to fulfil current market demand (Loukides et al.,
2012).

REFERENCES

Akerele, O., M. Ramachandran, and M. Dixon. System

dynamics modeling of agile continuous delivery process. In
Proceedings - AGILE 2013, pages 60(63), 2013.

Bang, S., S. Chung, Y. Choh, and M. Dupuis. A grounded
theory analysis of modern web applications: Knowledge,
skills, and abilities for devops. In RIIT 2013 - Proceedings
of the 2nd Annual Conference on Research in Information
Technology, pages 61(62), 2013.

Bass, L., R. Je_ery, H. Wada, I. Weber, and L. Zhu. Eliciting
operations requirements for applications. In 2013 1st
International Workshop on Release Engineering, RELENG
2013 - Proceedings, pages 5(8), San Francisco, CA, 2013.

Cukier, D. Devops patterns to scale web applications using
cloud services. In Proceedings - SPLASH '13, pages
143{152, Indianapolis, Indiana, USA, 2013.

Debois, P. Opening statement. Cutter IT Journal, 24(8):3{5,
2011.

DeGrandis, D. Devops: So you say you want a revolution?
Cutter IT Journal, 24(8):34{39, 2011.

Feitelson, D., E. Frachtenberg, and K. Beck. Development and
deployment at facebook. IEEE Internet Computing,
17(4):8{17, 2013.

Fitzpatrick, L. and M. Dillon. The business case for devops: A
five-year retrospective. Cutter IT Journal, 24(8):19(27),
2011.

Heiko Koziolek. Goa, Question Metric, solume 4909 of the
series lecture notes in computer science pp39-42.

Hosono, S. and Y. Shimomura. Application lifecycle kit for
mass customization on PaaS platforms. In Proceedings -
2012 IEEE 8th World Congress on Services, SERVICES
2012, pages 397(398), Honolulu, HI, 2012.

Humble, J. and J. Molesky. Why enterprises must adopt
devops to enable continuous delivery. Cutter IT Journal,
24(8):6(12), 2011.

Jez Humble, Chris Read, Dan North, The Deployment
Production Line, Proceedings of Agile 2006, IEEE
Computer Society http://h30499.www3.hp.com/t5/
Business-Service-Management-BAC/DevOps-and-Ops
Dev-How-Maturity-Model-Works/ba-p/6042901#.VNgkE
KP8IiQ (Available Jan 2015)

Keyworth, B. Where is it operations within devops? Cutter IT
Journal, 24(12):12(17), 2011.

Kitchenham, B. Procedures for performing systematic reviews,
2004.

Komi-Sirviö, S, and Tihinen, M. 2003. Great Challenges and
Opportunities of Distributed Software Development - An
Industrial Survey. In proceedings of the 15th International
Conference on Software Engineering and Knowledge
Engineering, SEKE2003, San Francisco, USA pp. 489 –
496

Le-Quoc, A. Metrics-driven devops. Cutter IT Journal,
24(12):24(29), 2011.

Loukides, M. What is DevOps? O'Reilly Media, Sebastopol,
CA, 2012.

Neely, S. and S. Stolt. Continuous delivery? easy! Just change
everything (well, maybe it is not that easy). In Proceedings
- AGILE 2013, pages 121(128), 2013.

Phifer, B. Next-generation process integration: CMMI and
ITIL do devops. Cutter IT Journal, 24(8):28{33, 2011.

Pruijt, H. Multiple personalities: the case of business process
reengineering. Journal of Organizational Change
Management, 11(3):260(268), Jan. 1998.

Roche, J. Adopting devops practices in quality assurance.
Communications of the ACM, 56(11):38(43), 2013.

Sacks, M. DevOps principles for successful web sites. In Pro
Website Development and Operations. Springer, 2012.

Samer, I. Mohamed DevOps shifting software engineering
strategy - value based perspective, manuscript Volume 17,
Issue 2, Ver. IV (Mar – Apr. 2015), PP 51-57.

Schaefer, A., M. Reichenbach, and D. Fey. Continuous
integration and automation for devops. Lecture Notes in
Electrical Engineering, 170 LNEE:345(358), 2013.

Shang, W. Bridging the divide between software developers
and operators using logs. In Proceedings - International
Conference on Software Engineering, pages 1583(1586),
2012.

Stuckenberg, S., E. Fielt, and T. Loser. The impact of
software-as-a-service on business models of leading
software vendors: Experiences from three exploratory case
studies. In PACIS 2011 - 15th Paci_c Asia Conference on
Information Systems: Quality Research in Pacic, 2011.

Tessem, B. and J. Iden. Cooperation between developers and
operations in software engineering projects. In Proceedings
- International Conference on Software Engineering, pages
105(108), 2008.

Walls, M., Building a DevOps Culture. O'Reilly Media,
Sebastopol, CA, 2013.

Webster, J. and R. T. Watson. Analyzing the past to prepare
for the future: Writing a literature review. MIS Q., 26(2):
xiii xxiii, June 2002.

 2813 International Journal of Current Research, Vol. 08, Issue, 03, pp. 28307-28313, March, 2016

