

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 03, pp. 28542-28543, March, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

THE ROLE OF MAGNESIUM, COPPER, ZINC AND FERRUM IN RECOVERY OF COLD-SHOCKED BACTERIA

^{1,*}Gamer, M. E. and ²Elsanosi, S. M.

¹Blue Nile National Institute for Communicable Diseases, Gezira University, P.O. Box 101, UAE ²Faculty of Veterinary Medicine, University of Khartoum, P.O. Box 32 Khartoum North, Sudan

ARTICLE INFO	ABSTRACT						
<i>Article History:</i> Received 26 th December, 2015 Received in revised form 15 th January, 2016 Accepted 05 th February, 2016 Published online 31 st March, 2016	This work was conducted to study the role of Mg, Cu, Fe and Zn, on the recovery of cold-shocked bacteria in different combinations. Isolation of bacteria contaminating the frozen foods was performed and a design of a proper medium that recover almost all injured cells was achieved. The studied bacteria were Escherichia coli, Salmonella spp. Staphylococcus aureus and Klebsiellapneumoniae. The organisms were isolated from frozen foods (Sausages, Hamburgers, Meat ball and Ice creams) and identified to the species level. The isolated bacteria were sub cultured in						
Key words:	nutrient broth medium and incubated at 37°C for 24 hours and ten-fold dilutions were prepared for each species of bacteria using normal saline as a diluent. The bacteria were shocked at -20°C for one						
Cold-Shock and Trace elements Recovery.	hour. The frozen bacteria were left to thaw at room temperature for 30min and from the last two edilutions, 0.1ml was transferred to the surface of recovery media and incubated at 37°C for 24 hour Using Miles and Misra (1938) method was applied for counting the bacteria.						

Copyright © 2016, *Gamer and Elsanosi*. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Gamer, M. E. and Elsanosi, S. M. 2016. "The role of magnesium, copper, zinc and Ferrumin recovery of cold-shocked bacteria", *International Journal of Current Research*, 8, (03), 28542-28543.

INTRODUCTION

Food may contain a variety of bacteria such as Salmonella, E. coli, Klebsiella pneumoniae and Staphylococcus aureus. The existence of bacteria in food stuffs can affect the safety and quality of the product and may harm the consumer's health. The injured cells are those bacteria that are most difficult to notice and count even by up-to-date microbiological approaches. Therefore, suitable test methods to detect injured bacteria within foodstuffs should be advocated (Linda, 2001). Organisms and microorganisms require minute quantities of chemical elements (Goldhaber, 2003). Such chemicals were reported by Mertz (1998) were chromium, cobalt, copper, iodine, iron, manganese, molybdenum, nickel, magnesium, selenium, tungsten, vanadium, zinc and perhaps several other elements. The aims of this study were: Isolation of the bacteria incriminated in frozen food adulteration and study the effect of Mg, Cu, Fe and Zn in different combinations for the recovery of cold-shocked bacteria and improve a medium which could recover almost all cold-shocked cells.

**Corresponding author: Gamer, M. E.* Blue Nile National Institute for Communicable Diseases, Gezira University, P.O. Box 101, UAE.

MATERIALS AND METHODS

Recovery medium

Preparation: Nutrient agar was prepared according to Oxoid and different combinations of Mg, Cu, Fe and Zn were prepared before being dispensed onto Petri-dishes as 15-20 ml portions.

Trace elements concentrations: Copper (0.01g), zinc (0.01g), ferric (0.1g), and magnesium (0.05g).

RESULTS AND DISCUSSION

The biogas production increased by 26.6% within 11 days when Fe^{2+} concentration was 25mg/L with VS concentration of 50g/L. With the increase of Fe^{2+} concentration, the biogas production was improved significantly. The biogas production increased by 48.7%, 52.1% and 54.8% at Fe^{2+} concentration of 100, 250, 500mg/L (Demirel and Scherer, 2011). However, the biogas production was inhibited by 57.9% when Fe^{2+} concentration was as high as 5000mg/L. Here our result may substantiate that of Demirel and Scherer (2011) because low concentration of Fe^{+2} was found to be very useful in recovery of shocked cells but dissimilar to its high concentration which diminished the recovering process.

Bacteria	Before freezing	After freezing	Fe+Cu+Zn+Mg	Cu+ Zn+ Fe (10 ⁻⁵)	Cu (10 ⁻⁵) +Fe (10 ⁻⁵)	Fe (10 ⁻⁴)	Cu+Fe (10 ⁻⁵)+Mg (5/100000)	Zn+ Fe (10 ⁻⁵)	Zn+ Fe (10 ⁻⁵) + Mg (5/100000)
			CFU/ml	CFU/ml	CFU/ml	CFU/ml	CFU/ml	CFU/ml	CFU/ml
E. coli	2.9 x 10 ⁹	1.5 x 10 ⁶	1.2×10^{13}	$2 \ge 10^{13}$	$1.5 \ge 10^{14}$	$1.5 \text{ x} 10^{13}$	$1 \ge 10^{14}$	7 x 10 ¹³	2.5 x 10 ¹⁴
Salmonella spp.	3.5 x 10 ⁹	$1 \ge 10^{7}$	$3 \ge 10^{14}$	2.5×10^{14}	6 x 10 ¹³	1.8 x 10 ¹³	2.8 x 10 ¹⁴	2.5 x 10 ¹⁴	$2 \ge 10^{14}$
K. pneumoniae	3.2 x 10 ⁹	М	$1.2 \ge 10^{13}$	$1 \ge 10^{14}$	$1 \ge 10^{14}$	5 x 10 ¹²	$1.5 \ge 10^{14}$	3 1014	$2 \ge 10^{14}$
S. aureus	2.8 x 10 ⁹	$3.5 \ge 10^6$	$1 \ge 10^{14}$	$1.5 \ge 10^{14}$	2.8×10^{14}	2.4×10^{13}	1.2×10^{14}	$5 \ge 10^{13}$	Ν

Table 1. Viable count of the four model bacteria before freezing, after freezing and after recovery

M= No growth, N= Growth inhibited

The addition of Zn at a rate of 256 moll kg¹ to a high pH (pH 7.8) agricultural soil initially resulted in almost complete inhibition of thymidine incorporation, but bacterial growth recovered rapidly, resulting in activity levels similar to or higher than those in the non-contaminated soil after 16 days (Diaz-Ravina and Baath, 1996a). Also the addition of Cu to the same soil resulted in bacterial activity that recovered to levels more than twice that in the control soil after 1 month (Diaz-Ravina and Baath, 1996b). However, bacterial activity only recovered slowly in the most-contaminated soils during the first month. Our results substantiated these findings in which Zn²⁺ and Cu²⁺ play a vital role in recovery of bacterial injures while Cu²⁺ showed surrounded by Klebseilla colonies. Lusk et al., (1968) described the limitation of bacterial *Escherichia coli*, growth on Mg²⁺-poor media, suggesting that bacteria required Mg²⁺ and were likely to activities as mediated division and recovery their nucleic acids after environmental stresses, take this ion from the environment. However, a preliminary report by Marnocha et al., 2011 suggests that certain bacteria can survive or grow at MgSo₄, FeSo₄, and Fe₂ (So₄)₃ media. This observation is in agreement with our results in which we found that Mg²⁺ and Fe played remarkable role in recovering of shocked bacteria. The observation of Gyang et al. (1984) in which selenium injection resulted in increased bacterial activity in cattle that may support our result in the vital role which plays by trace elements in enhancing the bacterial growth. Hiraishi et al., (1991) reported that Zn and Cu are known to be essential for cellular defense against peroxidative damage, likely to our finding in which Zn alone or with Cu refreshed the injured cells. Also closely related situation reported by Borkow et al. (2008) in the human, Cu plays a major role in wound healing, thought that introducing copper into wound dressings would not only reduce the risk of wound and dressing contamination, but also stimulate faster healing and releasing Cu from the dressings directly onto the wound promotes skin regeneration that may connect with our result in which Cu promoted the repairing process of bacterial damage and may represent strong evidence in why Klebsiellapneumonia accumulated around Cu, while this is so is that Cu improves regeneration of damaged tissues in wounds, also it may help recovering damaged bacterial cells. We do not agree to this since this may aggravate the wound conditions.

Acknowledgements

The authors are grateful to Prof. Suleiman M. E. for technical assistance.

REFERENCES

- Borkow, G., Gabbay, J. and Zatcoff, R.C. 2008. Could chronic wounds not heal due to too low copper levels? *Med. Hyp.*, 70: 610-613.
- Demirel, B. Scherer, P. 2011. "Review: Trace element requirements of agricultural biogas digesters during biological conversion of renewable biomass to methane." *Biom.Bioene.*, 35: 992-998.
- Diaz-Ravina, M. and Baath, E. 1996a. Development of Metal Tolerance in Soil Bacterial Communities Exposed to Experimentally Increased Metal Levels. *Appl. Environ. Microbiol.*, 62: 2970-2977.
- Diaz-Ravina, M. and Baath, E. 1996b. Thymidine and leucine incorporation into bacteria from soils experimentally contaminated with heavy metals. *Appl. Soil, Ecol.*, 3: 225-234.
- Goldhaber, S.B. 2003. Regul. Toxicol. Pharmacol., 38: 232-242.
- Gyang, E.O., Stevens, J.B., Olson, W.G., Tsitsmis, S.D. and Usenik, E.A. 1984. *Am. J. Vet. Res.*, 45, 175.
- Hiraishi, H., Terano, A., Ota, A., SMutah, H., Sugimato, T., Razandi, M. and Ivey, K.J. 1991). *Am. J. Physiol*.24: 921–928.
- Linda, E. 2001. Injured bacteria in foods. Nutri.food sci. 31:84-88.
- Lusk, J. E., Williams, R. J. P., Kennedy, E. P. 1968. "Magnesium and the growth of *Escherichia coli*". J. Biol. Chem. 243 (10): 2618–2624.
- Marnocha, C.L., Chevrier, V.F. and Ivey, D.M. 2011. Growth of sulfate-reducing bacteria in sulfate brines and the astrobiological implications for Mars.*Lunar.Plan. Sci. Conf. Abst.*
- Mertz, W. 1998. Biol. Trace. Elem. Res., 66:185-191.
- Miles, M. and Misra, A. 1938. *Methods in Microbiology*, Academic press limited 24/28 oval Road- London NW, 1 7DX .Vol. 22: 17.