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INTRODUCTION 
 
Statistical behavior of thermodynamic system is described by 
Boltzmann transport equation when the system is not in 
thermo-dynamical equilibrium. Boltzmann equation refers to 
any kinetic equation that describes the changes of a 
macroscopic quantity in a thermodynamic system. In 
macroscopic scales where the gas and fluid are regarded as a 
continuum, their motion is described by the macroscopic 
quantities such as macroscopic mass density, bulk velocity, 
temperature, pressure, stresses and heat 
equation can be use to determine physical quantities like heat 
energy, momentum, thermal conductivity and electrical 
conductivity (Encyclopedia of Physics, 1991
quantities depends on a distribution function which
as the average occupancy f (p,  r, t) of a point in phase space is 
called distribution function. The distribution function may 
change as a result of the scattering, the flow of electron in real 
space determined by their velocity (v) and the flow of electron 
in K-space, which is determined by the time derivatives, 
momentum (P) (Michael Shur, 1995). 
conductivity of free electron, it is necessary to assume a 
sample in which there is no electric current but in which there 
exist a temperature gradient.  
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Statistical behavior of thermodynamic system is described by 
Boltzmann transport equation when the system is not in 

dynamical equilibrium. Boltzmann equation refers to 
any kinetic equation that describes the changes of a 

ermodynamic system. In 
macroscopic scales where the gas and fluid are regarded as a 
continuum, their motion is described by the macroscopic 
quantities such as macroscopic mass density, bulk velocity, 
temperature, pressure, stresses and heat flux. Boltzmann 
equation can be use to determine physical quantities like heat 
energy, momentum, thermal conductivity and electrical 

Encyclopedia of Physics, 1991). These physical 
quantities depends on a distribution function which is defined 

occupancy f (p,  r, t) of a point in phase space is 
called distribution function. The distribution function may 
change as a result of the scattering, the flow of electron in real 
space determined by their velocity (v) and the flow of electron 

which is determined by the time derivatives, 
, 1995). For the thermal 

conductivity of free electron, it is necessary to assume a 
sample in which there is no electric current but in which there 
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The distribution function at any point is characterized by the 
local temperature and must be regarded as a 
position as well as energy (John  and 
1961; Agarwal, 1998; Kittel, 1996).
specimen with temperature gradient 
the measurement of the thermal conductivity, the experimenta
conditions are such that the electric current in the metal is zero 
but not the electric field E0. The temperature gradient produces 
a drift velocity of the electrons, and a small electric field is set 
up such that the electric current in the metal is zer
Boltzmann transport equation, besides thermal gradient  
��/��, includes a term containing an electric field E
Boltzmann Transport equation is given by
 

pr gradFfgradv
t

f








..

 
In the relaxation approximation, the Boltzmann 
equation is given by 
 





.. fgradFfgradv

t

f
pr




 

Where 0f and f are equilibrium distribution function and non 

equilibrium distribution function respectively. 
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The distribution function at any point is characterized by the 
local temperature and must be regarded as a function of 

(John  and Kelvey, 1966; Smith, 
1996). Let us consider a metallic 

specimen with temperature gradient ��/�� along x-axis. In 
the measurement of the thermal conductivity, the experimental 
conditions are such that the electric current in the metal is zero 

The temperature gradient produces 
a drift velocity of the electrons, and a small electric field is set 
up such that the electric current in the metal is zero. Thus the 
Boltzmann transport equation, besides thermal gradient  

, includes a term containing an electric field E0. The 
Boltzmann Transport equation is given by 

collt
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   …………… (1) 

In the relaxation approximation, the Boltzmann Transport 


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0ff
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are equilibrium distribution function and non 

equilibrium distribution function respectively.   is 
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momentum relaxation time. This relaxation time is assumed to 
be a function of wave vector or a function of the electron 
energy. This Boltzmann transport equation may be regarded as 
the continuity equation for the distribution function. 
 
The Boltzmann transport equation along X-axis under the 

steady state and under the condition 






 


0ff  << 1, is given by 
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The electron gas in metals obey Fermi-Dirac distribution 
function and temperature gradient occurs along the x axis. If 
	�� is equilibrium Fermi-Dirac distribution function so this 
function is given by 
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1
0




 F

f        ………………………… (4) 

 

Where f is Fermi energy and   is statistical temperature. 
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And 
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The values of equation (5) and (6) substitute in equation (3), 
we get 
 




















 




 0

0
0 qE

x

T

T

f
vff F

x




    ………………………… (7) 

 
In the presence of electric field and temperature gradient, the 
gas is in non-equilibrium state. Now the number of occupied 
electronic states per unit volume is given by 
 

    2
1

2
3

3
2

2
2 


 m

h
D 

            …………………………… (8) 
 

The number of electrons at absolute  zero temperature is given 
by 
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By the use of  equation (8) and (9) we can write 
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The thermal current density Qx along the x-axis with kinetic 
energy  and velocity vx of electrons is given by 
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By the use of equation (7), we get 
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Since, average of vx

2 is taken over the Fermi surface. 
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By the use of equation(13) we get from equation (12) as 
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Consider a general form of equation as 
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Then the solution of equation (16) is given by 
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By the  use of equation (15) and (16) we get 
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The electric current density along the x-axis is given by 
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By the use of equations (10),(13) and (19) we get 
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By the use of equation (16) and (20) we get 
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But occurence of temperature gradient the current density (Jx) 
is zero 
 
Thus we get from equation (21) as 
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Now on substituting E0 in equation (18) we get 
 

dx

dT

I

I
I

T
Q x 










1

2
2

3

1                    ...……………. (23) 

 

And at Fermi surface, F  , by the use of equation (17) we 

get 
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Now 
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From equation (25) and (26) 
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By the use of equation (23) and (27) 
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By the definition of thermal conductivity 
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From the equation (28) and (29) we get expression of thermal 
conductivity 

m

TkN
K F

3

22 


                  ………………………………… (30) 
 
Where N is concentration of electron, 
This is the thermal conductivity. 
This derivation is derived on basis of constant relaxation time. 
 

RESULTS AND DISCUSSION 
 
The Equation (30) is used for study of metals and 
semiconductors. Thermal conductivity depends on 
temperature. At very low temperatures impurities and defect 
scattering is dominant. In this study relaxation time is 
independent of temperature but, at high temperature the 
phonon scattering is dominant (7). The approach of Boltzmann 
transport equation is followed to describe the transport of 
charge and kinetic energy of electrons by a statistical 
distribution of mobile electrons behaves like an electron gas. 
Therefore, the behavior of the electronic contribution to the 
thermal conductivity of metals is depends on temperature. 
Thermal conductivity expression is also used in calculation of 
Lorentz number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Conclusion 
 

In this study the relaxation time is kept constant. The equation 
(30) is valid for Fermi surface. 
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