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In this paper, we describe a representation for spatial information, called the stochastic map, and associated 
procedures for building it, reading information from it, and revising it incrementally as new information is 
obtained. The ma
all the available information. The procedures provide a general solution to the problem of estimating uncertain 
relative spatial relationships and trajectory
the previous, very conservative, worst
context of state
Traditionally, the dynamic model, i.e., the equations of motion, of a robotic system is derived from Euler
Lagrange (EL) or Newton
generalized coordinates, whereas the NE equations are based on the Cartesian coordinates. The NE equations 
consider various forces and moments on the free body diagram of each link of the robotic system at hand, and, 
hence, require the calculation of the constrai
motion of the coupled system. Hence, the principle of elimination of constraint forces has been proposed in the 
literature. One such methodology is based on the Decoupled Natural Orthogonal C
reported elsewhere. It is shown in this paper that one can also begin with the EL equations of motion based on the 
kinetic and potential energies of the system, and use the DeNOC matrices to obtain the independent equations of 
motion. The advantage of the proposed approach is that a computationally more efficient forward dynamics 
algorithm for the serial robots having slender rods is obtained, which is numerically stable. The typical six
of-freedom PUMA robot is considered
obstacle avoidance, motion planning and dynamic simulation comes in the trajectory generation part. Spatial 
description and trajectory generation work simultaneously for the proper func
trajectory generation is in common usage in robotics to provide smooth, continuous motion from one set of n joint 
angles to another, for instance for moving between two distinct Cartesian poses for which the inverse pose 
has yielded two distinct sets of n joint angles. The joint
joints independently but simultaneously.
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INTRODUCTION 
 
In many applications of robotics, such as industrial automation, 
and autonomous mobility, there is a need to represent and 
reason about spatial uncertainty. In the past, this need has been 
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ABSTRACT 

In this paper, we describe a representation for spatial information, called the stochastic map, and associated 
procedures for building it, reading information from it, and revising it incrementally as new information is 
obtained. The map contains the estimates of relationships among objects in the map, and their uncertainties, given 
all the available information. The procedures provide a general solution to the problem of estimating uncertain 
relative spatial relationships and trajectory description. The estimates are probabilistic in nature, an advance over 
the previous, very conservative, worst-case approaches to the problem. Finally, the procedures are developed in the 
context of state-estimation and filtering theory, which provides a 
Traditionally, the dynamic model, i.e., the equations of motion, of a robotic system is derived from Euler
Lagrange (EL) or Newton–Euler (NE) equations. The EL equations begin with a set of generally independent 

ized coordinates, whereas the NE equations are based on the Cartesian coordinates. The NE equations 
consider various forces and moments on the free body diagram of each link of the robotic system at hand, and, 
hence, require the calculation of the constrained forces and moments that eventually do not participate in the 
motion of the coupled system. Hence, the principle of elimination of constraint forces has been proposed in the 
literature. One such methodology is based on the Decoupled Natural Orthogonal C
reported elsewhere. It is shown in this paper that one can also begin with the EL equations of motion based on the 
kinetic and potential energies of the system, and use the DeNOC matrices to obtain the independent equations of 

otion. The advantage of the proposed approach is that a computationally more efficient forward dynamics 
algorithm for the serial robots having slender rods is obtained, which is numerically stable. The typical six

freedom PUMA robot is considered here to illustrate the advantages of the proposed algorithm. Moreover 
obstacle avoidance, motion planning and dynamic simulation comes in the trajectory generation part. Spatial 
description and trajectory generation work simultaneously for the proper func
trajectory generation is in common usage in robotics to provide smooth, continuous motion from one set of n joint 
angles to another, for instance for moving between two distinct Cartesian poses for which the inverse pose 
has yielded two distinct sets of n joint angles. The joint-space trajectory generation occurs at runtime for all n 
joints independently but simultaneously. 
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In many applications of robotics, such as industrial automation, 
and autonomous mobility, there is a need to represent and 
reason about spatial uncertainty. In the past, this need has been  
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circumvented by special purpose methods such as precision 
engineering, very accurate sensors and the use of fixtures and 
calibration points. While these methods sometimes supply 
sufficient accuracy to avoid the need to represent uncertainty 
explicitly, they are usually costly. An alternative approach is to 
use multiple, overlapping, lower resolution sensors and to 
combine the spatial information (including the uncertainty) 
from all sources to obtain the best spatial estimate. 
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p contains the estimates of relationships among objects in the map, and their uncertainties, given 
all the available information. The procedures provide a general solution to the problem of estimating uncertain 

description. The estimates are probabilistic in nature, an advance over 
case approaches to the problem. Finally, the procedures are developed in the 

estimation and filtering theory, which provides a solid basis for numerous extensions. 
Traditionally, the dynamic model, i.e., the equations of motion, of a robotic system is derived from Euler–
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Fig 1. Configuration Parameters 
 
This integrated information can often supply sufficient 
accuracy to avoid the need for the hard engineered approach. 
In addition to lower hardware cost, the explicit estimation of 
uncertain spatial information makes it possible to decide in 
advance whether proposed operations are likely to fail because 
of accumulated uncertainty, and whether proposed sensor 
information will be sufficient to reduce the uncertainty to 
tolerable limits. In situations utilizing inexpensive mobile 
robots, perhaps the only way to obtain sufficient accuracy is to 
combine the (uncertain information from many sensors. 
However, a difficulty in combining uncertain spatial 
information arises because it often occurs in the form of 
uncertain relative information. This is particularly true where 
many different frames of reference are used, and the uncertain 
spatial information must be propagated between these frames. 
This paper presents a general solution to the problem of 
estimating uncertain spatial relationships, regardless of which 
frame the information is presented in, or in which frame the 
answer is required, previous methods for representing spatial 
uncertainty in typical robotic applications numerically 
computed min-max bounds on the errors. Brooks developed 
other methods for computing min-max bounds symbolically. 
These min-max approaches are very conservative compared to 
the probabilistic approach in this paper, because they combine 
many pieces of information, each with worst case bounds on 
the errors. Working on problem in off-line programming of 
industrial automation tasks, proposed operations that could 
reduce graphs of uncertain relationships (represented by 
multivariate probability distributions) to a single, best estimate 
of some relationship of interest. The current paper extends that 
work, but in the formal setting of estimation theory, and does 
not utilize graph transformations. In summary, many important 
applications require a representation of spatial uncertainty. In 
addition, methods for combining uncertain spatial information 
and transforming such information from one frame to another 
are required. This paper presents a representation that makes 
explicit the uncertainty of each degree of freedom in the spatial 
relationships of interest. A method is given for combining 
uncertain information regardless of which frame it is presented 

in, and it allows the description of the spatial uncertainty of 
one frame relative to any other frame. The necessary 
procedures are presented in matrix form, suitable for efficient 
implementation. In particular, methods are given for 
incrementally building the best estimate "map" and its 
uncertainty as new pieces of uncertain spatial information are 
added. 
 
A typical robotic task is to grasp a work piece supplied by a 
conveyer belt or similar mechanism in an automated 
manufacturing environment, transfer it to a new position and 
place it correctly on a second work piece. (i.e. placing micro-
processors on a PCB).  To do this the end effector of the robot 
must be correctly positioned relative to the work piece. 
 
 Robots often operate in situations without the assistance of 

sophisticated jigs and fixturing. 
 They have many more degrees of freedom than a CNC 

machine would have. 
 There may be some variation in the exact position of the 

work piece presented. 
 
The problem presented to the engineer is: 
 
Firstly, how can one position the end effector of a robot in the 
correct position initially to grasp the work piece? Secondly, 
how best to move the robotic arm to move the part without 
impacting any surrounding equipment (or people) and 
reposition the manipulator to the new position? The key 
information needed to complete the task is: 
 
 Where is the work piece 
 Where is the end effector 
 In the case of a mobile robot one may also ask the 

important question; where is the robot. 
 
We need to introduce a set of tools and notations for describing 
positions and orientations. It is important to note that these 
tools are not specific to robotics, but rather are tools that come 
from the more general discipline of engineering dynamics. 
Start with an inertial frame of reference. Inertial frame of 
reference: Also termed the universe coordinate system/frame 
or base frame. Is a frame of reference in which dynamics of an 
object are inertial. Usually has a fixed stationary origin 
 

.  
 

Fig. 2. Manipulator 
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Fig. 3. Object Tracing 
 
Specifying Positions 
 
A position in space may be denoted by a triple of numbers:  
 

 
 
Position itself is a physical quantity independent of any frame. 
However it is often useful to express the position of a point in 
space relative to some frame. The left superscript on AP 
denotes the frame {A} in which the position is expressed. If 
one considers a different base frame {B}, the location of the 
physical point P does not change, however the triple of reals 
(i.e. BP) that denote its position in the new coordinates system 
of {B} certainly do 
 
AP≠B P 
 
In fact, as we shall see later, 
AP = A PBorg +

B P 
 
Where A PBorg denotes the position of the origin of {B} 
expressed in frame {A}. 
 
Specifying Orientations 
 
A single point in space has no orientation. We are usually 
interested in describing the orientation in space of some rigid 
body (e.g. robot end effector). The approach is to attach a 
frame fixed to the body. Associate the coordinate system (XA; 
YA; ZA) to the inertial frame of reference {A}. The objects 
(XA; YA; ZA) are unit vectors representing the coordinate 
directions in {A}. By construction 
 

 
 
Attach a frame to the body in space whose orientation we wish 
to describe. Denote this frame by {B}. Assume the situation 
that the origin of {B} is coincident to {A}, i.e. only orientation 
is important. Then associate the coordinate system (XB; YB; 
ZB) to {B} so that the change in orientation from the inertial 
frame to the new frame is a rotation of the basis (XA; YA; ZA) 

to the new basis (XB; YB; ZB). Note that by convention, all 
frames of reference are right-hand frames. The coordinate 
directions (XB; YB; ZB) fully determine the orientation of {B}, 
and we can describe this orientation with respect to the frame 
of reference {A} by the triple of vectors (AXB; AYB; AZB). 
Compact notation is achieved by grouping the triple of vectors 
representing the orientation {B} relative to the frame of 
reference {A} by a matrix, 
 

 
 
Such a matrix is known as a rotation matrix. How can one 
explicitly calculate the values of the entries of a rotation 
matrix? Let <X; Y> denote the usual inner (i.e. dot) product 
between two vectors. 
 

 
 
Since YA and XB are unit vectors, their dot product is given 
by the cosine of the angle between them, 
<YA; XB> = r21 = cos (Ѳ) 
 
It is for this reason that the entries of a rotation matrix are 
known as direction cosines. 
 
Properties of Rotation Matrices 
 

 
 
All rotation matrices are orthogonal matrices RTR = I3. (i.e. 
both the rows and columns form an orthonormal basis; each 
row/column has length 1, an each are mutually perpendicular). 
Due to the symmetry of the inner product. 
 

 
 
Recalling the orthogonal property one has, 
 

 
 
Thus, the rotation matrix representing {B} with respect to {A} 
is the inverse of the matrix representing {A} with respect to 
{B}. 
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In fact rotation matrices form a group in matrix space termed 
the special orthogonal group, 
 

 
The Group operations are, 
R.Q = RQ; Group multiplication 
R-1 = RT; Inverse operation 
 
Rotation Matrices as Transform Mapping 
 
We have seen that one use of a rotation matrix is to define the 
orientation of one frame with respect to another. Another use 
for a transformation matrix is as a transform mapping, i.e. a 
mapping that takes a vector quantity expressed in one frame, 
and expresses it in another. A representation of a vector V 
relies on a frame of reference 
 

 
 
A vector may be represented in different frames of reference. 
For example if BV is known then, 
 

 

 
 

 
 
Thus, the second interpretation is that the rotation matrix is a 
mapping between representations of free vectors.
 
Frame analogy & transformations 
 
Stochastic Map 
 
Our knowledge of the spatial relationships among objects is 
inherently uncertain. A manmade object does not match its 
geometric model exactly because of manufacturing tolerances. 
Even if it did, a sensor could not measure the geometric 
features, and thus locate the object exactly, 
measurement errors. And even if it could, 
sensor cannot manipulate the object exactly 
because of hand positioning errors. These errors can be 
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In fact rotation matrices form a group in matrix space termed 

 

 

one use of a rotation matrix is to define the 
orientation of one frame with respect to another. Another use 
for a transformation matrix is as a transform mapping, i.e. a 
mapping that takes a vector quantity expressed in one frame, 

her. A representation of a vector V 

A vector may be represented in different frames of reference. 

 

Thus, the second interpretation is that the rotation matrix is a 
representations of free vectors. 

Our knowledge of the spatial relationships among objects is 
inherently uncertain. A manmade object does not match its 

because of manufacturing tolerances. 
a sensor could not measure the geometric 

exactly, because of 
even if it could, a robot using the 

exactly as intended, 
because of hand positioning errors. These errors can be 

reduced to negligible limits for some tasks, by "pre
engineering" the solution 
environment and using specially
equipment - but at great cost 
rather than treat spatial uncertainty as a side issue in 
geometrical reasoning, we believe it must be treated as an 
intrinsic part of spatial representations. In this paper, uncertain 
spatial relationships will be tied togeth
called the stochastic map. 
 

Fig. 4. Stochastic Frames
 
It contains estimates of the spatial relationships, their 
uncertainties, and their inter
structure will be described, followed by methods for extr
information from it. Finally, a procedure will be given for 
building the map incrementally, as
obtained. To illustrate the theory, we will present an example 
of a mobile robot acquiring knowledge about its location and 
the organization of its environment by making sensor 
observations at different times and in different pl
 
Representation 
 
In order to formalize the above ideas, we will define the 
following terms. A spatial relationship 
the vector of its spatial variables, 
and orientation of a mobile robot can be described by its 
coordinates, z and y, in a two dimensional cartesian reference 
frame and by its orientation, given as a rotation about the 
axis: 
 

 
 
An uncertain spatial relationship,
by a probability distribution over its spatial variables 
a probability density function that assigns a probability to each 
particular combination of the spatial variables, x:
 
P(x) = f(x) dx 
 
Such detailed knowledge of the probability distribution is 
usually unnecessary for making decisions, such as whether the 
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reduced to negligible limits for some tasks, by "pre-
engineering" the solution - structuring the working 
environment and using specially-suited high-precision 

 of time and expense. However, 
rather than treat spatial uncertainty as a side issue in 
geometrical reasoning, we believe it must be treated as an 
intrinsic part of spatial representations. In this paper, uncertain 
spatial relationships will be tied together in a representation 

 
 

Stochastic Frames 

It contains estimates of the spatial relationships, their 
uncertainties, and their inter-dependencies. First, the map 
structure will be described, followed by methods for extracting 
information from it. Finally, a procedure will be given for 

incrementally, as new spatial information is 
obtained. To illustrate the theory, we will present an example 
of a mobile robot acquiring knowledge about its location and 
the organization of its environment by making sensor 
observations at different times and in different places. 

In order to formalize the above ideas, we will define the 
spatial relationship will be represented by 

spatial variables, x. For example, the position 
and orientation of a mobile robot can be described by its 

and y, in a two dimensional cartesian reference 
given as a rotation about the z 

spatial relationship, moreover, can be represented 
over its spatial variables - i.e., by 

a probability density function that assigns a probability to each 
particular combination of the spatial variables, x: 

Such detailed knowledge of the probability distribution is 
usually unnecessary for making decisions, such as whether the 

ocesses, spatial description, sensor integration and trajectory  
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robot will be able to complete a given task (e.g. passing 
through a doorway). Furthermore, most measuring devices 
provide only a nominal value of the measured relationship, and 
we can estimate the average error from the sensor 
specifications. For these reasons, we choose to model an 
uncertain spatial relationship by estimating the first two 
moments of its probability distribution-the mean, x and the 
covariance, C(x), defined as: 
 

 
 
where E is the expectation operator, and 2 is the deviation from 
the mean. For our mobile robot example, these are: 
 

 
 
Interpretation 
 
For some decisions based on uncertain spatial relationships, we 
must assume a particular distribution that fits the estimated 
moments. For example, a robot might need to be able to 
calculate the probability that a certain object will be in its field 
of view, or the probability that it will succeed in passing 
through a doorway. Given only the mean, x, and covariance 
matrix, C(x), of a multivariate probability distribution, the 
principle of maximum entropy indicates that the distribution 
which assumes the least information is the normal distribution. 
Furthermore if the spatial relationship is calculated by 
combining many different pieces of information the central 
limit theorem indicates that the resulting distribution will tend 
to a normal distribution: 
 

 
 
We will graph uncertain spatial relationships by plotting 
contours of constant probability from a normal distribution 
with the given mean and covariance information. These 
contours are concentric ellipsoids (ellipses for two dimensions) 
whose parameters can be calculated from the covariance 
matrix, C(x). It is important to emphasize that we do not 
assume that the uncertain spatial relationships are described by 
normal distributions. We estimate the mean and variance of 
their distributions, and use the normal distribution only when 
we need to calculate specific probability contours. In the 
figures in this paper, the plotted points show the actual 
locations of objects, which are known only by the simulator 
and displayed for our benefit. The robot's information is shown 
by the ellipses which are drawn centered on the estimated 

mean of the relationship and such that they enclose a 99.9% 
confidence region (about four standard deviations) for the 
relationships. 
 
Object Sensing 
 
Throughout this paper we will refer to a two dimensional 
example involving the navigation of a mobile robot with three 
degrees of freedom. In this example the robot performs the 
following sequence of actions: 
 
 The robot senses object #1 
 The robot moves. 
 The robot senses an object (object #2) which it determines 

cannot be object #l. 
 Trying again, the robot succeeds in sensing object #1, thus 

helping to localize itself, object #1, and object #2. 
 

 
 

Fig. 5. The robot senses object 1 and moves 
 
Figure shows two examples of uncertain spatial relationships - 
the sensed location of object #1, and the end-point of a planned 
motion for the robot. The robot is initially sitting at a landmark 
which will be used as the world reference location. There is 
enough information in our stochastic map at this point for the 
robot to be able to decide how likely a collision with the object 
is, if the motion is made. In this case the probability is 
vanishingly small. The same figure shows how this spatial 
knowledge can be presented from the robot's new reference 
frame after its motion. As expected, the uncertainty in the 
location of object #1becomes larger when it is compounded 
with the uncertainty in the robot's motion. 
 

 
 

Fig. 6. The robot senses object 2 
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From this new location, the robot senses object #2. The robot 
is able to determine with the information in its stochastic map 
that this must be a new object and is not object #1which it 
observed earlier. 
 

 
 

Fig. 7. The robot senses object 1 again 
 
In Fig 7, the robot senses object #1again. This new sensor 
measurement acts as a constraint and is incorporated into the 
map, reducing the uncertainty in the locations of the robot, 
object #1 and Object #2. 
 
Frame Analogy 
 
We have used the term frame to this point as some coordinate 
system either translated or rotated relative to some base inertial 
coordinate system. In general we would like our frames both 
translated and rotated relative to the inertial system. So a 
general frame of reference {B} is fully specified by: 
 
1.The position of the origin of the frame (expressed in the 
inertial frame of reference). 
 
APBorg origin of frame {B} relative to frame {A} 
 
2.The orientation of the frame, expressed as a rotation matrix 
relative to a reference frame. 
 
ABR Orientation of {B} relative to {A} 
 RB, R Orientation of {B} relative to inertial frame 
 
 
Mapping between Frames 
 
As in the pure rotation case, we are interested in deriving 
something like a rotation matrix that allows: 
 
1. A description of an arbitrary frame in a concise format 
2. The machinery to be able to transfer the description of 
vector quantities from one frame to another. 
 
Assume an inertial frame {A}, and another frame {B} which is 
located somewhere in space and has arbitrary orientation to 
{A} (maybe {B} could be attached to the robot end effector for 
example). It is clear to see that any point P expressed in terms 
of frame {B}, i.e. BP, can be expressed in terms of frame {A} 
according to: 
 
AP: = ABRBP + APBorg 

However, while this description solves 1, it provides a clumsy 
solution to 2. The trick here is to embed R3 into R4 by creating 
the matrix operator, denoted as AB T, by forming the matrix 
 

 
 
where this matrix is termed a homogeneous transformation 
matrix, so that the previous expression for AP can be arrived at 
as: 
 

 
 
The theory of homogeneous transformations is also heavily 
used in the Computer Graphics and Computer Vision fields, 
where the last row in A

BT can be other than [0, 0, 0, 1] to effect 
perspective and scaling operations. This more general 
machinery takes care of the special pure-translation and pure-
rotation cases. 
 
Transformation Operator 
 
A third interpretation of a homogeneous transform is as a 
transformation operator on a vector quantity in a single frame. 
Imagine we have a vector P expressed in a frame {A}, and we 
wish to rotate and translate that vector by some amount with 
respect to {A}. A homogeneous transform can be shown to 
achieve this operation. Although this operation seems quite 
different to the mapping interpretation introduced previously, 
the mathematics behind it is the same. Intuitively, one can see 
why this is the case: 
 
1.Keeping the vector unmoved and expressing it in a frame 
that has been translated and rotated backwards" (i.e. the 
mapping between frames interpretation), is the same 
mathematically as 
 
2.Keeping the frame unmoved and translating and rotating the 
vector forwards" (the operator interpretation). Since the 
operator interpretation is relevant to a single frame, we can 
drop the previous pre-super/subscripts, and simply use the 
notation T. 
 
Robot kinematics 
 
Introduction 
 
Kinematics is the science of motion which treats motion 
without regard to the forces which cause it. Within the science 
of kinematics one studies the position, velocity, acceleration, 
and all higher order derivatives of the position variables. 
Hence, the study of the kinematics of robots refers to all 
geometrical and time-based properties of the motion. A very 
basic problem to be solved is: How to relate the robot’s 
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configuration or pose to the position and orientation of its end 
effector. A configuration of an n-degree of freedom robot is an 
n-vector (q,q...qn) 1 2, where each i q is either a rotational joint 
angle or a prismatic joint translation. This is known as the 
forward kinematics of the robot.  
 

 
 

Fig. 8. Robot Kinematics 
 
This is the static geometrical problem of computing the 
position and orientation of the end-effector of the robot. 
Specifically, given a set of joint angles, the forward kinematic 
problem is to compute the position and orientation of the TCP 
relative to the base frame. Sometimes we think of this as 
changing the representation of robot position from joint space 
description into a cartesian space description. The following 
problem is considered the inverse kinematics: Given the 
position and orientation of the end-effector of the robot, 
calculate all possible sets of joint angles which could be used 
to attain the given position and orientation. The inverse 
kinematics is not as simple as the forward kinematics. Because 
the kinematic equations are nonlinear, their solution is not 
always easy or even possible in a closed form. The existence of 
a kinematic solution defines the workspace of a given robot. 
The lack of a solution means that the robot cannot attain the 
desired position and orientation because it lies outside the 
robot’s workspace. In addition to dealing with static 
positioning problems, we may wish to analyse robots in 
motion. Often in performing velocity analysis of a mechanism 
it is convenient to define a matrix quantity called the jacobian 
of the robot. The jacobian specifies a mapping from velocities 
in joint space to velocities in cartesian space. The nature of this 
mapping changes as the configuration of the robot varies. At 
certain points, called singularities, this mapping is not 
invertible. An understanding of this phenomenon is important 
to designers and users of robots. 
 

Definitions 
 
• A robot maybe thought of as a set of bodies connect 

edinachain by joints. 
• These bodies are called links. 
• Joints form a connection between a neighbouring 

pairoflinks 
 
Properties 
 
• Normally robots consist of joints with one degree of 

freedom (1DOF). 

• Revolute/prismatic joints 
• n-DOF joints can be modelledasnjointswith1 DOF 

connected withn-1links of zero length 
• Position in garobot in 3-space a minimum of six joints is 

required 
• Typical robot consist of6joints 
• Join taxis are defined by lines in space 
• Alinkcanbespecifiedbytwonumberswhichdefinetherelativel

ocationofthetwo joint axes in space: link leng than d link 
twist 

• Linklength:measuredalongthelinewhichismutuallyperpendic
ulartobothaxes 

• Link twist:measured in the plane defined by the 
perpendicular axis 

 
Link Connection Description by Denavit-Hartenberg 
Notation 
 
Neighbouring links have a common joint axis between them 
Parameters: 
 
• Distance along common axis from one link to the other 

(link offset) 
• Amount of rotation about this common axis between one 

link and its neighbour (joint angle) 
 

 
 

Fig. 9. The length and twist of a link 
 
A serial link robot consists of as equence of links connected 
together by actuated joints. For ann DOF robot, there                       
will been joints and n links. Thebaseoftherobotislink0andis not 
considered one of the (n=6) links. Link 1is connected to the 
base link by joint1. There is no joint at the end of the final link 
(TCP). The only significance of links is that they maintain 
affixed relationship between the robot joints at each end of the 
link. Any link can be characterized by two dimensions: the 
common normal distance ai (called link length) and the angle 

Ѳi(called link twist) between the axes in a plane perpendicular 

to ai (see Fig 9). Generally, two links are connected a teach 

join taxis. 
 
The axis will have two normals to it, one for each link. The 
relative position of two such connected links is given by di, the 

distance between the normals along the joint axis, and Ѳi the 

angle between the normals measured in aplane normal to the 
axis. di and Ѳi are called the distance and the angle between 

the links, respectively. Inordertode scribe the relationship 
between links, we will assign coordinate systems (frames) to 
each link. We will first consider revolute joints in which Ѳi is 
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the joint variable. The origin of the frame of linki is set to beat 
the inter section of the common normal between the axes of 
jointsiandi+1andtheaxisofjointi+1.Incase of intersecting joint 
axes, the origin is at the point of intersection of the joint axes. 
If the axes are parallel, the origin is chosen to make the joint 
distance zero for the next link whose coordinate rig in is 
defined. The axis for linki will be aligned with the axis of 
jointi+ 1. The axis will be aligned with any common normal 
which exists and is directed along the normal from jointi to 
jointi + 1. In case of intersecting joints, the direction of the axis 
is parallel or antiparallel to the vector cross product zi-1xzi. 

Notice that this condition is also satisfied for the axis directed 
along the normal between joints i and i+ 1. Ѳi is zero for the i-

th revolute joint when xi-1 and xi are parallel and have the 

same direction.  In case of prismatic joint, the distance di is the 

joint variable. The direction of the joint axis is the direction in 
which the joint moves. The direction of the axis is defined but, 
un like a revolute joint, the position in space is not defined. In 
the case of a prismatic joint, the length ai has no meaning and 

is setto zero. The origin of the frame for a prismatic joint is 
coincident with the next defined link origin. The zaxis of the 
prismatic joint is aligned with theaxisofjointi+1.The xi axis is 

parallelor ant parallel to the vector cross product of the 
direction of the prismatic joint and zi. For a prismatic joint we 

will define the zero position when di=0. With the robot in its 

zero position, the positive sense of rotation or revolute jointsor 
displacement for prismatic joints can be decided and the sense 
of the direction of thez axis determined. The origin of the base 
link (zero) will be coincident with the origin of link 1 If it is 
desired to define a different reference frame, then the 
relationship between the reference and base frames can be 
described by affixed homogeneous transformation. At the end 
of the robot, the final displacement 6 or rotation Ѳ6 occurs 

with respecttoz 5.The origin of the frame for 

link6ischosentobecoincidentwiththat of the link 5 frame. If a 
tool (or end effector) is used who seorigin and axes do not 
coincide with the frame of link 6, the tool can be related by 
affixed homogeneous trans formation to link 6. Having 
assigned frames to all links according to the preceding scheme, 
we can establish the relationshipbetweensuccessiveframesi-1, I 
by the following rotations and translations: 
 

 
 

(a) Ѳi=the angle between Xi-1 and Xi measured about Zi-1 

(b) di=the distance from Xi-1 to Ximeasured along Zi-1 

(c) ai=the distance from Zi-1 to Zi measured along Xi 

(d) αi= the angle between Zi-1 and Zi measured about Xi 
 

Due to the authors of this method attaching frames to links, 
these four parameters are called the Denavit Hartenberg 
parameters (DH parameters).  
 
Forward Kinematics 
 
Forward kinematics refers to the use of 
the kinematic equations of a robot to compute the position of 

the end-effector from specified values for the joint parameters. 
Given the joint values of the robot within degrees of freedom, 
the homogenous matrix defining the position and orientation of 
the TCP is: 
 

 
 
The vectors p,n,o,a are described in the base (world) frame. 
This mapping from robot coordinates to world coordinates is 
unique. 
 

 
 
Forward kinematics: mapping from robot coordinates to 
world coordinates 
 
Inverse Kinematics 
 
The reverse process that computes the joint parameters that 
achieve a specified position of the end-effector is known 
as inverse kinematics. Given the position and orientation of the 
TCP with respect to the base frame calculate the joint 
coordinates of the robot which correspond it. 
 
Inverse kine matics: mapping from world coordinates to 
robot coordinates 
 
Trajectory generation & motion planning 
 
Introduction 
 
Scope: methods of computing a trajectory in multidimensional 
space 
 
Definition: trajectory refers to a time history of position, 
velocity and acceleration for each degree of freedom. 
 
Issues: 
 
 Specification of trajectories 
 Motion description easy for robot operators 
 Start and end point 
 Geometrical properties 
 Representation of trajectories in the robot control 
 Computing trajectories on-line (a trun time) 
 
General considerations 
 
 Motion of robot is described as motion of TCP (tool frame) 
 Supports robot operator’s imagination 
 Decoupling the motion description from any robot,  
  end-effector (modularity) 
 Exchange ability with other robots 
 Supports the idea of moving frames (conveyer belt) 
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Basic problem: move the robot from the start position, given 
by the tool frame Tinitial to the end position given by the tool 

frame Tfinal. 

 
Spatial motionconstraints: 
 
 Specification of motion might include so called via points 
 Viapoints:intermediate points bet 
 Weenstart and end points 
 
Temporal motion constraints: 
 
 Specification of motion might include elapsed time between 

via points 
 
Requirements: 
 
 Execution of smooth motions 
 Smooth (motion) function:functionand its first derivativeis 
continuous 
 Jerky motions increase wear on the mechanism (gears)and 
cause vibrations by exciting resonances of the robot. 
 
There are two methods of path generation: 
 
 Joints pace schemes: paths hapes in space and time are 

described in terms of functions of joint angles. This motion 
type is named Point-to-Pointmotion (PTP) 

 Cartesian space schemes: path shapes in space and time are 
described in terms of functions of Cartesian co ordinates. 
This motion type is named Continuous Pathmotion (CP) 

 

Trajectory Generation in Joint Space (PTP Motions) 
 

 Path shape (in space and time) described in terms of 
functions of joint angles 

 Description of path points (via points plus start and end 
point) interms of tool frames 

 Each path point is converted in to joint angles by 
application of inverse kinematics 

 Identifying as mooth function for each of then joints 
passing through the via points and ends at the target point 

 Synchronisation of motion (each joint starts and ends at the 
same time) 

 Joint which travels the longest distance defines the travel 
time (assuming same maximal acceleration for each joint) 

 In between via points the shape of the path is complex if 
described in artesian space 

 Joint space trajectory generation schemes are easy to 
compute 

 Each joint motion is calculated independently from other 
joints 

 

Many, actually infinite, smooth functions exist for such 
motions. 
 

Four constraints on the (single) joint function q (t) are 
evident: 
 

 Start configuration q(0) = qA, end configuration end B 
q(tend) = qB 

 Velocities q(0) = 0, q(tend)=0 
 

 
  

Fig. 10. PTP motion between two points 
 
Four constraints can be satisfied by a polynomial of degree 3 
or higher. 
 
In case of via points the velocity is not zero. 
 
 Start configuration q(0) = qA, end configuration end q(tend) 

= B 
 Velocities q(0)=q0, q(tend) = qB 
 
Choosing velocities by 
 
 Robot user 
 Automatically chosen by the robot control 
 
Using these type of polynomials does not in general generate 
time optimal motions. 
 
Linear function with parabolic blends: 
 

 
 

Fig. 11. Path with trapezoidal velocity profile 
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Smooth motion constructed by adding parabolic blends to the 
linear function 
 
Assumptions: 
 
 Constant acceleration during blend 
 Same duration for the (two) parabolic blends
 Therefore symmetry about the halfway point in time t
 
Trajectory Generation in Cartesian Space 
 
Robot user would like to control the motion between start and 
end point several possibilities: 
 
 Straight line motion (TCP follows a straight line)
 Circular motion (TCP follows a circle segment)
 Spline motion 
 Inverse kinematics needs to be calculated at run time
 Computational expensive (depending on the robot)
 
Issues: 
 
 Interpolation of TCP position (linear change of 

coordinates) 
 Interpolation of orientation (linear change of matrix 

elements would fail) 
 
Motion Planning 
 
Motion planning (also known as the "navigation problem" or 
the "piano mover's problem") is a term used in
process of breaking down a desired movement task into 
discrete motions that satisfy movement constraints and
possibly optimize some aspect of the movement. For example, 
consider navigating a mobile robot inside a building to a 
distant waypoint. It should execute this task while avoiding 
walls and not falling down stairs. 
 

 
Fig. 12. Motion Planning 

 29369         Pavleen S Bali et al. Obstacle avoidance &
generation in the domain of embedded systems, mechatronics, artificial intelligence, robotics and machine learning

 
Smooth motion constructed by adding parabolic blends to the 

Same duration for the (two) parabolic blends 
point in time th 

 

Robot user would like to control the motion between start and 

line motion (TCP follows a straight line) 
motion (TCP follows a circle segment) 

kinematics needs to be calculated at run time 
expensive (depending on the robot) 

of TCP position (linear change of 

of orientation (linear change of matrix 

(also known as the "navigation problem" or 
the "piano mover's problem") is a term used in robotics for the 
process of breaking down a desired movement task into 
discrete motions that satisfy movement constraints and 
possibly optimize some aspect of the movement. For example, 

inside a building to a 
distant waypoint. It should execute this task while avoiding 

 

A motion planning algorithm would take a description of these 
tasks as input, and produce the speed and turning commands 
sent to the robot's wheels. Motion planning algorithms might 
address robots with a larger number of joints (e.g., industrial 
manipulators), more complex tasks (e.g. manipulation of 
objects), different constraints (e.g., a car that can only drive 
forward), and uncertainty (e.g. imperfect models of the 
environment or robot). Motion planning has several robotics 
applications, such as autonomy,
in CAD software, as well as applications in other fields, such 
as animating digital characters,
intelligence, architectural design,
study of biological molecules. 
 
Configuration Space 
 
A configuration describes the pose of the robot, and 
the configuration space C is the set of all possible 
configurations. For example: 
 
 If the robot is a single point (zero

dimensional plane (the workspace), C is a plane, and a 
configuration can be represented using two parameters (x, 
y). 

 If the robot is a 2D shape that can translate and rotate, the 
workspace is still 2-dimensional. However
Euclidean group SE (2) = 
the special orthogonal group
configuration can be represented
θ). 

 If the robot is a solid 3D shape that can translate and rotate, 
the workspace is 3-dimensional, but C is the special 
Euclidean group SE (3)= R
requires 6 parameters: (x, y, z) for translation, 
angles (α, β, γ). 

 If the robot is a fixed-base manipulator with N revolute 
joints (and no closed-loops), C is N

 
Free Space 
 
The set of configurations that avoids collision with obstacles is 
called the free space Cfree. The complement of C
called the obstacle or forbidden region. Often, it is 
prohibitively difficult to explicitly compute the shape of C
However, testing whether a given configu
efficient. First, forward kinematics
the robot's geometry, and collision detection
geometry collides with the environment's geometry.
 
Robotic programing languages
 
Introduction: 
 
Robot programming systems are the interface between the 
robot and the human user. The sop
interface is becoming very important as robots are applied to 
more and more demanding industrial applications. In 
considering the programming of manipulators, it is important 
to remember that they are typically only a minor part 
automated process. The term work cell is used to describe a 
local collection of equipment which may include one or more 
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sent to the robot's wheels. Motion planning algorithms might 
address robots with a larger number of joints (e.g., industrial 

complex tasks (e.g. manipulation of 
objects), different constraints (e.g., a car that can only drive 

(e.g. imperfect models of the 
Motion planning has several robotics 

autonomy, automation, and robot design 
software, as well as applications in other fields, such 

digital characters, video game artificial 
architectural design, robotic surgery, and the 

 

A configuration describes the pose of the robot, and 
C is the set of all possible 

int (zero-sized) translating in a 2-
dimensional plane (the workspace), C is a plane, and a 
configuration can be represented using two parameters (x, 

If the robot is a 2D shape that can translate and rotate, the 
dimensional. However, C is the special 

 R2  SO (2) (where SO (2) is 
special orthogonal group of 2D rotations), and a 

configuration can be represented using 3 parameters (x, y, 

If the robot is a solid 3D shape that can translate and rotate, 
dimensional, but C is the special 

R3  SO (3), and a configuration 
requires 6 parameters: (x, y, z) for translation, and Euler 

base manipulator with N revolute 
loops), C is N-dimensional. 

avoids collision with obstacles is 
. The complement of Cfree in C is 

called the obstacle or forbidden region. Often, it is 
prohibitively difficult to explicitly compute the shape of Cfree. 
However, testing whether a given configuration is in Cfree is 

forward kinematics determine the position of 
collision detection tests if the robot's 

geometry collides with the environment's geometry. 

obotic programing languages 

Robot programming systems are the interface between the 
robot and the human user. The sophistication of such a user 
interface is becoming very important as robots are applied to 
more and more demanding industrial applications. In 
considering the programming of manipulators, it is important 
to remember that they are typically only a minor part of an 
automated process. The term work cell is used to describe a 
local collection of equipment which may include one or more 
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robots, conveyor systems, part feeders and fixtures. At the next 
higher level, work cells might be interconnected in factory 
wide networks so that a central control computer can control 
the overall factory flow. 
 
Levels of Programing 
 
Three levels of robot programming exist: 
 
 Teach In programming 
 Explicit robot languages 
 Task level programming languages 
 
Teach in Programming 
 
The robot will be moved by the human user through interaction 
with a teach pendant (sometimes called teach box). Teach 
pendant are hand-held button boxes which allow control of 
each robot joint or of each cartesian degree of freedom. 
Today’s controllers allow alphanumeric input, testing and 
branching so that simple programs involving logic can be 
entered. 
 
Explicit Robot Languages 
 
With the arrival of inexpensive and powerful computers, the 
trend has been increasingly toward programming robots via 
programs written in computer programming languages. 
Usually these computer programming languages have special 
features which apply to the problems of programming robots. 
An international standard has been established with the 
programming language IRL (Industrial Robot Language, DIN 
66312) 
 
Task Level Programming 
 
The third level of robot programming methodology is 
embodied in task-level programming languages. These are 
languages which allow the user to command desired sub goals 
of the task directly, rather than to specify the details of every 
action the robot is to take. In such a system, the user is able to 
include instructions in the application program at a 
significantly higher level than in an explicit programming 
language. A task-level programming system must have the 
ability to perform many planning tasks automatically. For 
example, if an instruction to grasp the bolt is issued, the 
system must plan a path of the manipulator which avoids 
collision with any surrounding obstacles, automatically choose 
a good grasp location on the bolt, and grasp it. In contrast, in 
an explicit robot language, all these choices must be made by 
the programmer. The border between explicit robot 
programming languages is quite distinct. Incremental advances 
are being made to explicit robot programming languages which 
help to ease programming, but these enhancements cannot be 
counted as components of a task-level programming system. 
True task-level programming of robots does not exist yet in 
industrial controllers but is an active topic of research. 
 

Requirements of a Robot Programming Language 
 

Important requirements of a robot programming language are: 
 

 World modelling 
 Motion specification 
 Flow of execution 
 Sensor integration 
 
World Modelling 
 
 Existence of geometric types to present 
 joint angle sets 
 Cartesian positions 
 Orientations 
 Representation of frames 
 Ability to do math on structured types like frames, vectors 

and rotation matrices 
 Ability to describe geometric entities like frames in several 

different convenient representations with the ability to 
convert between representations 

 
Motion Execution: 
 
 Description of desired motion (motion type, velocity, 

acceleration) 
 Specifications of via points, goal points, corner smoothing 

parameters 
 Ability to specify goals relative to various frames, 

including frames defined by the user and frames in motion 
(on a conveyor for example) 

 
Flow of Execution: 
 
 Support of concepts like testing and branching 
 Looping, calls to subroutines 
 Parallel processing, signal and wait primitives 
 Interrupt handling 
 
Sensor Integration: 
 
 Interaction with sensors 
 Integration with vision systems 
 Sensor to track the conveyor belt motion 
 Force torque sensor for force control strategies 
 

DISCUSSION AND CONCLUSION 
 
This paper presents a general theory for estimating uncertain 
relative spatial relationships between reference frames in a 
network of uncertain spatial relationships. Such networks arise, 
for example, in industrial robotics and navigation for mobile 
robots, because the system is given spatial information in the 
form of sensed relationships, prior constraints, relative 
motions, and so on. The theory presented in this paper allows 
the efficient estimation of these uncertain spatial relations. 
This theory can be used, for example, to compute in advance 
whether a proposed sequence of actions (each with known 
uncertainty) is likely to fail due to too much accumulated 
uncertainty; whether a proposed sensor observation will reduce 
the uncertainty to a tolerable level; whether a sensor result is 
so unlikely given its expected value and its prior probability of 
failure that it should be ignored, and so on. This paper applies 
state estimation theory to the problem of estimating parameters 
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of an entire spatial configuration of objects, with the ability to 
transform estimates into any frame of interest. The estimation 
procedure makes a number of assumptions that are normally 
met in practice. The angular errors are "small". This 
requirement arises because we linearize inherently nonlinear 
relationships. In Monte Carlo simulations, angular errors with 
a standard deviation as large as 5O gave estimates of the means 
and variances to within 1% of the correct values. Estimating 
only two moments of the probability density functions of the 
uncertain spatial relationships is adequate for decision making. 
We believe that this is the case since we will most often model 
a sensor observation by a mean and variance, and the 
relationships which result from combining many pieces of 
information become rapidly Gaussian, and thus are accurately 
modelled by only two moments. Although the examples 
presented in this paper have been solely concerned with spatial 
information, there is nothing in the theory that imposes this 
restriction. Provided that functions are given which describe 
the relationships among the components to be estimated, those 
components could be forces, velocities, time intervals, or other 
quantities in robotic and non-robotic applications. 
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