
 

 
 

        
 

 
                                                 
 

COMPARISON OF POWER VALUES IN GENERALIZED LINEAR MIXED MODEL (GLMM) UNDER THE 
DIFFERENT ESTIMATION METHODS

1Md. Abu Manju* and 

1Assistant Director, Statistics Department, Bangladesh Bank, Head Office, Dhaka, Bangladesh, 
2Professor, Department of Statistics, University of Chittagong, Bangladesh

 

ARTICLE INFO                                     ABSTRACT
 
 

In longitudinal studies, the Generalized Estimating Equation (GEE) and Maximum Likelihood 
(ML) methods are commonly used to estimate the parameters of Generalized Linear Mixed 
Models (GLMM). Power and sample size estimat
longitudinal study design and planning of modern clinical trials. In this paper, the power of the 
Wald Test for two different estimation methods of parameters in GLMM was compared. The data 
employed in this study 
was found in which the power values were better under ML approach than GEE approach for the 
GLMM.
 
 
 
 

 

 
 

INTRODUCTION 
 

Generalized linear mixed-effects models, more commonly 
known as generalized linear mixed models (GLMM), are 
widely commonly frequently used in longitudinal data 
analysis. The GLMM are natural combinations of two 
modeling strands, the linear mixed models and the generalized 
linear models. Linear mixed models (e.g., Hartville, [5]; Laird 
and Ware, [8] are linear regression models that include 
normally distributed random effects in addition to fixed 
effects. A natural application is to longitudinal data where 
random effects vary between subjects and induce within
subject dependence among repeated measurements after 
conditioning on observed covariates. Generalized linear 
models Nelder and Wedderburn, [11]; Wedderburn, R. W. M. 
[20] unify regression models for different response types such 
as linear models for continuous responses, logistic models for 
binary responses, and log-linear models for counts.
are the generalized linear models that include multivariate 
normal random effects in the linear predict
contributions explicitly discussing this idea are Wong and 
Mason [19] and West [22] in frequentist and Bayesian 
settings, respectively. The term “generalized linear mixed 
model” appears to have been coined by Gilmour, Anderson, 
and Rae [21], although it’s widespread use is probably due to 
the highly cited paper by Breslow and Clayton [2]. In social 
statistics and other areas, generalized linear mixed models are 
also known as hierarchical, multilevel, or random
models.  
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ABSTRACT 

In longitudinal studies, the Generalized Estimating Equation (GEE) and Maximum Likelihood 
(ML) methods are commonly used to estimate the parameters of Generalized Linear Mixed 
Models (GLMM). Power and sample size estimation constitutes an important component for 
longitudinal study design and planning of modern clinical trials. In this paper, the power of the 
Wald Test for two different estimation methods of parameters in GLMM was compared. The data 
employed in this study were diabetes mellitus data with three consecutive follow ups. A pattern 
was found in which the power values were better under ML approach than GEE approach for the 
GLMM. 
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effects models, more commonly 
known as generalized linear mixed models (GLMM), are 
widely commonly frequently used in longitudinal data 
analysis. The GLMM are natural combinations of two 

d the generalized 
linear models. Linear mixed models (e.g., Hartville, [5]; Laird 
and Ware, [8] are linear regression models that include 
normally distributed random effects in addition to fixed 
effects. A natural application is to longitudinal data where the 
random effects vary between subjects and induce within-
subject dependence among repeated measurements after 
conditioning on observed covariates. Generalized linear 
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as linear models for continuous responses, logistic models for 
linear models for counts. GLMMs 

are the generalized linear models that include multivariate 
normal random effects in the linear predictor. Early 
contributions explicitly discussing this idea are Wong and 
Mason [19] and West [22] in frequentist and Bayesian 
settings, respectively. The term “generalized linear mixed 
model” appears to have been coined by Gilmour, Anderson, 

ough it’s widespread use is probably due to 
the highly cited paper by Breslow and Clayton [2]. In social 
statistics and other areas, generalized linear mixed models are 
also known as hierarchical, multilevel, or random-coefficient 

 
The simplest cases of GLMMs are the random
models with a single normally distributed random effect. 
Random-intercept models are sometimes referred to as 
variance components, error components, or random
models. Early applications of such m
random-intercept probit models discussed by Lawley [9], in 
psychometrics. Similar models were later considered by 
Heckman and Willis [27] in econometrics. Pierce and Sands 
[13] and Anderson and Aitkin [1] discussed random
logit models, and Hinde [6] and Brillinger and Preisler [28] 
discussed random-intercept Poisson models.
 
Introducing random effects with conjugate distributions into 
special cases of generalized linear models has a very long 
history, including the negative binom
Greenwood and Yule, [4] and the beta
proportions Skellam, [18]. Although these models, which are 
strictly not GLMMs, a major limitation is that they cannot be 
extended to random-coefficient models where the effects o
covariates vary randomly between subjects. 
Albert [23] discussed a generalized estimating equation (GEE) 
approach to fit the GLMM and both classes of models 
(Subject-Specific & Population Average) for discrete and 
continuous outcomes. The subject-
assumed to follow a Gaussian distribution, simple 
relationships between the Population Averaged (PA) and 
Subject Specific (SS) parameters are available. Actually the 
SS model is the simplest example of GLMM. Sometimes we 
have to make a definite decision one way or another about a 
particular hypothesis in the GLMM; in this situation a test of 
hypothesis is appropriate. Although in science we never accept 
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The simplest cases of GLMMs are the random-intercept 
models with a single normally distributed random effect. 

intercept models are sometimes referred to as 
variance components, error components, or random-effects 
models. Early applications of such models include the 

intercept probit models discussed by Lawley [9], in 
psychometrics. Similar models were later considered by 
Heckman and Willis [27] in econometrics. Pierce and Sands 
[13] and Anderson and Aitkin [1] discussed random-intercept 

models, and Hinde [6] and Brillinger and Preisler [28] 
intercept Poisson models. 

Introducing random effects with conjugate distributions into 
special cases of generalized linear models has a very long 
history, including the negative binomial model for counts 
Greenwood and Yule, [4] and the beta-binomial model for 
proportions Skellam, [18]. Although these models, which are 
strictly not GLMMs, a major limitation is that they cannot be 
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covariates vary randomly between subjects. Zeger, Liang, and 
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approach to fit the GLMM and both classes of models 
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a hypothesis outright, but rather continually modify our ideas 
and laws as new knowledge is obtained, in some situations, 
such as in clinical practice, we cannot afford this luxury. To 
understand the concepts of validity and power, it will be 
helpful if we consider the case in which a decision must be 
made, one way or the other, with the result that some wrong 
decisions will inevitably be made. Clearly, we wish to act in 
such a way that the probability of making a wrong decision is 
minimized. Repeated measurements arising from longitudinal 
studies occur frequently in applied research. Methods to 
calculate power in the context of repeated measures are 
available for experimental settings where the covariate of 
interest is a discrete treatment indicator. However, no closed 
form expression exists to calculate power for generalized 
linear models with non-zero within-cluster correlation that are 
common in epidemiological and observational studies in 
which the covariate of interest varies over time and is often 
measured on a continuous scale, and where the researchers 
control for several potential confounders. Gastan, McLaren & 
Delfinob [29] discussed a procedure to calculate power of the 
test for the normal linear mixed model, and the logistic 
regression model, both with repeated measurements and non-
zero within-cluster correlation. Correlated binary data are 
common in biomedical studies. Such data can be analyzed 
using Liang and Zeger’s generalized estimating equations 
(GEE) approach. An attractive point of the GEE approach is 
that one can use a misspecified working correlation matrix, 
such as the working independence model (i.e., the identity 
matrix), and draw (asymptotically) valid statistical inference 
by using the so-called robust or sandwich variance estimator. 
Wei Pan [24] derived some explicit formulas for sample size 
and power calculations under various common situations. 
Gwowen Shieh [15] described A direct extension of the 
approach described in Self, Mauritsen, and Ohara [17] for 
power and sample size calculations in generalized linear 
models is presented. The major feature of the proposed 
approach is that the modification accommodates both a finite 
and an infinite number of covariate configurations. Gwowen 
Shieh [30] wrote another paper in which A method is 
proposed for improving sample size calculations for logistic 
and Poisson regression models by incorporating the limiting 
value of the maximum likelihood estimates of nuisance 
parameters under the composite null hypothesis. The method 
modifies existing approaches of Whitteinore [25] & Signorini 
[31] provides explicit formulae for determining the sample 
size needed to test hypotheses about a single parameter at a 
specified significance level and power. Özdemir and Eyduran 
[12] described a study comparatively analyzed in point of 
power of test of Chi-Square and Likelihood Ratio Chi-Square 
statistics. Steven G. Self & Robert H. Mauritsen [16] proposed 
an approach for estimating power/sample size within the 
framework of generalized linear models. This approach is 
based on an asymptotic approximation to the power of the 
score test under contiguous alternatives and is applicable to 
tests of composite null hypotheses. The power properties of 
traditional repeated measures and hierarchical linear models 
have not been clearly determined in the balanced design for 
longitudinal studies. Hua Fang, Gordon P. Brooks & Maria L. 
Rizzo [7] proposed a procedure A Monte Carlo power analysis 
of traditional repeated measures and hierarchical multivariate 
linear models under three variance-covariance structures. In 
methodology we have discussed the estimation procedure of 
GLMM by ML & GEE approaches and the procedure of 

conducting the power function for Wald Chisquare test. 
Actually we have tried to show whether there exist any 
differences in power values of the same test due to different 
methods of estimation. In results section we have illustrated 
our methodology for subject-specific logistic regression 
model. 
 

METHODOLOGY 
 

Let ity  denote the tth observation in the ith cluster, 

iTt ,,1  . Let itx  denote a column vector of values of 

explanatory variables, for fixed effect model parameters . 

Let iu  denote the vector of random effect values for cluster i. 

This is common to all observations in the cluster. Let itz  

denote a column vector of their explanatory variables. Often, 

the random effect is univariate.  Conditional on iu   , a GLMM 

resembles an ordinary GLM. Let )( iitit uYEu  . The linear 

predictor for a GLMM has the form 
 

  iititit uzxg                  (1.0) 

 

for link function  g . The random effect vector iu is 

assumed to have a multivariate normal distribution ),0( N . 

The covariance matrix   depends on unknown variance 

components and possibly also correlation parameters. Denote 

),()var( itiit vuY  where the variance function )(v  

describes how the (conditional) variance depends on the mean 

and   is an unknown dispersion parameter. The variability 

among iu   induces a nonnegative association among the 

responses, for the marginal distribution averaged over the 

subjects. This is caused by the shared random effect iu  for 

each observation in a cluster. In (1.0), the random effect enters 
the model on the same scale as the predictor terms. This is 
convenient but also natural for many applications. For 
instance, random effects sometimes represent heterogeneity 
caused by omitting certain explanatory variables. 
 
Estimation of GLMM by MLE 
 
Maximum Likelihood Method: Model fitting is rather complex 
for GLMMs. The main difficulty is that the likelihood 
function does not have a closed form. Numerical methods for 
approximating it can be computationally intensive for models 
with multivariate random effects. In this section we outline the 
basic ideas of ML fitting of GLMMs. The GLMM is a two-
stage model. At the first stage, conditional on the random 
effects, observations are assumed to follow a GLM. That is, 

observation ity   in cluster i has distribution in the exponential 

family with expected value itu   linked to a linear predictor, 

  iititit uzxg    

Then, iit uz  is a known offset and observations in a cluster are 

independent. At the second stage, the random effects  iu  are 
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assumed independent from a ),0( N distribution. For 

example the simplest example of the GLMM is the Subject-
Specific logistic regression model or logistic regression model 
with the random intercept and the form of the model  

)1.1.......()]1([log iitiit uxuYPit    

where iidui ~  ),0( 2N  

For a discrete variable, denote the vector of all the 
observations by y and the vector of all the random effects by 

u. Let );( uyf denote the conditional mass function of y, 

given u. Let );( uf  denote the normal density function for 

u. The likelihood function );,( yl   for a GLMM is the 

probability mass function ),;( yf  of y, viewed as a 

function of  and  . This mass function refers to the 

marginal distribution of y after integrating out the random 
effects, 

  duufuyfyfyl );();(),;();,(        … (1.2) 

It is often called a marginal likelihood. For example, the 

likelihood functions );,( 2 yl   for the logistic-normal 

model (1.1)  
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The likelihood function is evaluated numerically and 

maximized as a function of  and . Many methods have 

been developed to do this. We next discuss one of the popular 
methods.  

 
Gauss–Hermite Quadrature Method 
 
The integral determining the likelihood function has 
dimension that depends on the random effects structure. Gauss 
Hermite quadrature is a method for approximating the integral 

of a function )(f multiplied by another function having the 

shape of a normal density. The approximation is a finite 
weighted sum that evaluates the function at certain points. In 
the univariate normal random effects case, the approximation 
has the form 
 

 


 


q

k
kk sfcduuuf

1

2 )()exp()(  

with weights  kc  and quadrature points  ks  that are 

tabulated. The approximation improves as q, the number of 
quadrature points, increases. The approximated likelihood can 
be maximized with standard algorithms such as Newton 

Raphson, yielding ML estimates ̂  and ̂ . Inverting an 

approximation for the observed information matrix provides 
standard errors for the ML estimates. For complex models, 
second partial derivatives for the Hessian may be computed 

numerically rather than analytically. Adequate approximation 

usually requires larger q for standard errors than for ̂ . 

 
Estimation of GLMM by GEE 
 
GEE Approach: Zeger, Liang and Albert (1988) discussed a 
procedure to estimate GLMM by Generalized estimating 
Equation (GEE) approach. To use the GEE approach for the 

GLMM, we calculate the marginal moments, i  and iV , from 

the conditional moments and the random effects distribution, 
F. We then solve the equation  
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discussed by Liang and Zeger (1986). Given the conditional 
moments in  

  iititit uzxg    

and a distribution, F, for the random effects, the marginal 

expectation, i  has the form of  

it =  ity =   iit uy | =

   )(1
iiitit udFuzxh   

 The marginal covariance matrix is  

   )|cov()|(cov iiiii uYuYV   

with s, t element 
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where )(1
iititit uzxhu     and I(s=t) is the indicator 

function with value 1 if s = t and 0 otherwise. Having 

evaluated i and iV  for each subject/cluster, we solve the 

GEE given in (1.3) for  . Note that the GEE is a function of 

F, which is assumed to be known at a given iteration. For 
example If we consider the Subject-Specific logistic 
regression model/Logistic normal regression model and 

assuming iidui ~  ),0( 2N , the expression for the 

marginal mean simplifies by Zeger et al. (1988) and given by  
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26.01
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Expanding the link function in a Taylor series about 0iu  

gives the approximation  
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Where 

L i = diag











 

iit ntxu
u

uh ,...,1,,)(1
  

Using iV
~

, as an approximation to iV , we have that conditional 

on F, )ˆ(  K  is asymptotically multivariate Gaussian 

with mean 0 (if an exact expression for it  is used and small 

bias otherwise) and with variance that can be consistently 
estimated by 
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The approximate estimates of variance covariance matrix of 
the random effects is  

̂       111   iiiiiiiiii ZZZLAVLZZZ   

and the estimates of the scale parameter is 

   
 

 




K

i

n

t it

ititiitit
i

g

zDzLy

1 1

22

ˆ

ˆˆˆˆ



  

 
Hypothesis Tests 
After estimating t 

he vector of regression coefficients ̂ , it may be of interest to 

test hypotheses concerning the elements of  . Consider 

hypotheses of the form dCH :0  
where C  is a pc  matrix of constants imposing c  linearly 

independent constraints on the elements of   and d  is a 

1p  vector of constants. There exists a established property 

that the ML estimates are approximately normally distributed 
with respective mean and variance and Liang and Zeger 
(1988) shown that the GEE estimates also normally distributed 

with respective mean and variance. Again since ̂   is 

asymptotically normal, so the Wald test statistic  

     dCCVarCdCQC 
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has an asymptotic 
2
c  distribution if 0H  is true.  

 
Power of the Wald Test 
 
Now we are interested to test the null hypothesis

dCH :0  against alternative hypothesis

dbCH :1 , where C  is a pc  matrix of constants 

imposing c  linearly independent constraints on the elements 

of   and d  is a 1p  vector of constants. To construct the 

power function of the Wald test, at first we have to know the 

distribution of Wald test under alternative hypothesis 1H . 

PHILLIPS, P. C. B. [14] discussed the exact distribution of the 
Wald test under alternative hypothesis. According to 
PHILLIPS, P. C. B. [14], the probability density function of 

the Wald statistic (w) under 1H  is given by  
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with the non centrality parameter is 

bCCbbVbmm 112 )(     

where 2
1

2
1

2
1

2
1 



CVCVL   
According to Shieh, G. [15], to calculate the power function, 

at first we have to find the )1(100  th percentile of a 

central chi-square distribution with p d.f., denoted by 


2

1, c

and then find the non centrality parameter 
2  of the non 

central chi-square distribution with c d.f such that the 100

th  percentile, denoted by )( 22

,


c
 is equal to 



2

1, c
, 

mathematically it can be written as  

  )(1, 1)(

2
22 

  pF
c

 

where  1p  denotes the  th1  percentile of the central 

chi-square 


2

1, c
 and )( 1)( 22  pF

c

 is the cumulative 

density of the noncentral chisquare distribution with c degrees 

of freedom and noncentrality parameter 
2  at 1p .  

 

RESULTS AND DISCUSSION 
 
In this section, we have illustrated the general approach with 
an example. For illustration purposes, we fitted Subject-
Specific logistic regression model which is considered as the 
simplest case of GLMM for the repeated measures and the 
parameters have estimated by MLE and GEE approaches. To 
carry out the analysis we had used the repeated measures data 
of diabetes mellitus. Here the follow up data on 965 patients 
registered Bangladesh Institute of Research and Rehabilitation 
in Diabetes, Endocrine and Metabolic Disorders' (BIRDEM) 
in 2002 was used to identify the risk factors responsible for the 
transitions from controlled diabetic state as well as confirm 
diabetic to controlled stage of diabetes. Here we had taken into 
account the 3 consecutive visits of the patients from the 
registration. The response variable was defined in terms of the 
observed glucose level two hours of 75gms-glucose load 
follow up visit. The cut-off point for the blood glucose level is 
11.1 mmol/liter. If the observed response was less than 11.1, 
then the patient was defined as non diabetic (categorized as 0) 
if the response was greater than or equal to 11.1 then the 
patients was said to be diabetic (categorized as 1). In our study 
we considered two covariates age and sex respectively. The 
variable age represents the age of the respondents at each visit, 
which is used as a continuous variable directly in the analysis.  
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Table 1. Fixed Effect Estimates of Subject-Specific Logistic Regression Model Obtained by Maximum Likelihood (ML)  
Methods with Associated Wald Test 

 

Variables 
 

Estimated 
Coefficients 

Standard Error (Coefficients 
/S.E)^2 

Odds- Ratio P-value 

Intercept 
(Fixed) 

-0.129146 0.171574 0.567009 ------- 0.45162 

Age -0.001502 0.003171 0.224676 0.998499 0.63560 
Sex -0.248922 0.076806 10.504081 0.779640 0.00119* 

 
 

Table 2. Random Effect Estimates of Subject-Specific Logistic Regression Model Obtained by  
Maximum Likelihood (ML) Methods 

 

Variables Estimated 
Variance 

Std. Dev. 

Intercept 
(Random) 

0.018059 0.13438 

 
 

Table 3. Variance Covariance Matrix of the Estimated Fixed Effect Parameters of Subject-Specific Logistic Regression Model 
Obtained by Maximum Likelihood (ML) Methods 

 

 Constant Age Sex 

Constant 0.0294376090  -0.0004494745 -0.0022280906 
Age -0.0004494745 1.005209e-05 -0.0000244092 
Sex -0.0022280906 -0.0000244092 0.0058992143 

 
Table 4. Fixed Effect Estimates of Subject-Specific Logistic Regression Model Obtained by Generalized Estimating Equation 

(GEE) Approach with Associated Wald Test 
 

Variables Estimated 
Coefficients 

 Standard 
Error 

(Coefficients 
/S.E)^2 

Odds- Ratio P-value 

Intercept 
(Fixed) 

-0.146814 0.197544 0.552341 ------- 0.457362 

Age -0.001503 0.004138 0.131994 0.998497 0.716373 
Sex -0.247109 0.094552 6.830247 0.781055 0.008962 

 
 

Table 5. Random Effect Estimates of Subject-Specific Logistic Regression Model Obtained by  
Generalized Estimating Equation (GEE) Approach 

 

Variables 
 

Estimated 
Variance 

Std. Dev. 

Intercept 
(Random) 

0.015135 0.12302 

 
 

Table 6. Variance Covariance Matrix of the Estimated Fixed Effect Parameters of Subject-Specific  
Logistic Regression Model Obtained by Generalized Estimating Equation (GEE) Approach 

 

 Constant Age Sex 

Constant 0.039152492 -0.000766086 -0.002768442 
Age -0.000766086 1.709722e-05 -4.592932e-05 
Sex -0.002768442 -4.592932e-05 8.966033e-03 

 
 

Table 7. Comparison of Power for Testing the Null Hypothesis 0: 20    Against the Alternative Hypothesis 0: 21    

by the Wald Chisquare Test When the Parameters are Estimated by Maximum Likelihood (ML) & Generalized Estimating 
Equation (GEE)  Approaches Respectively 

  

Parameter Values -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 

Power Values under ML Method 0.999 0.974 0.740 0.255 0.255 0.740 0.974 0.999 
Power Values under GEE Method 0.987 0.885 0.558 0.183 0.183 0.558 0.885 0.987 

Power Differences 0.012 0.089 0.182 0.072 0.072 0.182 0.089 0.012 
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The variable sex is dichotomous, where 0 stands for female 
and 1 stands for male.  
 

The logistic regression model is given by  
 

ii
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i
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iiiii sexageitsexageYit   210)(log),,|1(log  
 

such that the population-averaged odds ratio for sex given by 
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represents the ratio of the odds of a given patient having with 
confirmed diabetic if the patient is a male compared to the 
odds of the same confirmed diabetic if the patient is a female. 
Alternatively, ratio of the odds among male patients with 
confirmed diabetic having the same value of unobserved 
random effect to the ratio of the odds of those confirmed 
diabetic patients with the same value of unobserved random 

effect who are female.  Let 2̂  be the estimated coefficient of 

the covariate sex under ML or GEE approach. We are 

interested to test the null hypothesis 0: 20    against the 

alternative hypothesis 0: 21   by the Wald test.  

 
We have discussed the issue of power calculations in GLMM 
with correlated data. We have presented relevant formulas for 
several important special cases. In this paper, we have 
developed a systematic approach to power analysis for the 
most popular longitudinal data approaches, the GEE and 
MLE. By extending existing methods to accommodate more 
practical considerations, this unified approach improves the 
limitations of these methods and provides a quite general 
approach for power and sample size estimation in GLMM for 
repeated measures. The approach presented here allowed us to 
compute power for a relatively complex study for which no 
exact methods are available. This study compares the 
performance of different methods of estimation for GLMM 
using the power values.  
 
According to the diabetes data considered in the study, we 
may conclude that if we are interested to calculate power 
values of the Wald test, we should use the ML method of 
estimation because the Wald test gives greater power values 
under this method of estimation than the method GEE. Under 
both the method of estimations the fixed effect covariate sex 
shows the significance contribution to the diabetes status by 
the Wald Chisquare test and gives the approximate estimates -
0.25.  
 
Table 7 shows that power differences increases if the 
parameter values tend to the magnitude 0.25 which means that 
the proposed Wald Chisquare test detects highly the effect size 
under the ML methods of estimation. Most longitudinal 
studies, consider varying follow up times for the subjects 
which produces the missing data. In the article, the GEE and 
ML methodologies with non missing data was addressed. 
Hence, a common, constant number of follow ups for each 
subject was considered. 

 
 
 

 
 
Power Curves Comparison for Testing the Null Hypothesis 

0: 20    Against the Alternative Hypothesis

0: 21    by the Wald Chisquare Test When the 

Parameters are Estimated by Maximum Likelihood (ML) and 
Generalized Estimating Equation (GEE) Approaches 
Respectively 
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