
 

 
 

        
 

 
                                                 
 

AN ASYMPTOTIC SOLUTION TO BIO
SWIMMING PHOTOTACTIC

*1Prof. Dr. P.K. Srimani and  

1Department of Computer Science and Mathematics, Bangalore University, Director, R&D, B.U, 
2Department of Mathematics, B.M.S. College for Women, Bangalore

             

 

ARTICLE INFO                                     ABSTRACT
 
 
 

This paper deals with a detailed study of asymptotic solution to bio
a suspension of microscopic swimming phototactic algae. Experimental observations 
indicate that bio convection patterns are modified by illumination. This phenomenon will 
be observed in a large number of different algal species where the cells
water and tend to swim upward on average. The continuum model for phototaxis and 
suspension shading was formulated in a porous medium. Here, the length scale of the 
bulk motions and the concentration distribution are large when compared to
diameters and cell spacing
understand the complexities of the effects of photo taxis on BPC (bio
before moving in to a higher dimension. Further the diffusion tenso
orthotropic tensor. The linear stability problem is discussed in detail and solvability 
conditions are derived up to the third order. Analyses for the two cases namely a) upper 
rigid and b) upper stress free boundary are discussed. Extensiv
various computed results and the permeability number has strong influence on the 
inhibition and enhancement of bio convection.
 

 
INTRODUCTION 
 

World’s major part constitutes biomass. Complex 
bioconvection patterns are observed when suspensions of some 
microscopic swimming algae are placed in a shallow dish. The 
pattern formation depends on many factors; in particular on the 
tactic nature of the microorganism. In this chapter we discuss a 
new generic model for phototaxis in a suspension of 
microscopic swimming algae and study the influence of 
permeability parameter on bioconvection (BPC) in a 
suspension of phototactic algae. Phototaxis is a directed 
swimming response dependent upon the light conditions 
sensed by the microorganisms. The model that is going to be 
discussed for phototaxis also incorporates the effect of shading 
whereby microorganisms nearer the light source absorb and 
scatter the light before it reaches those farther away. Some of 
the recent and important works in bioconvection include Platt, 
1961, Rudraiah and Srimani, 1980, Harashima,et al. 1988, 
Srimani and Sudhakar, 1992, vincent and Hill, 199
and Padmasini 2001, Shu and Ramapriyan, 2005, Ghorai and 
Hill , 2005, Srimani and Anuradha, 2007, Basak 
Srimani and Roopa, 2011 and Srimani and Sujatha,
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ABSTRACT 

This paper deals with a detailed study of asymptotic solution to bio
a suspension of microscopic swimming phototactic algae. Experimental observations 
indicate that bio convection patterns are modified by illumination. This phenomenon will 
be observed in a large number of different algal species where the cells
water and tend to swim upward on average. The continuum model for phototaxis and 
suspension shading was formulated in a porous medium. Here, the length scale of the 
bulk motions and the concentration distribution are large when compared to
diameters and cell spacing. Pure phototaxis is a valid limiting case to consider in order to 
understand the complexities of the effects of photo taxis on BPC (bio
before moving in to a higher dimension. Further the diffusion tenso
orthotropic tensor. The linear stability problem is discussed in detail and solvability 
conditions are derived up to the third order. Analyses for the two cases namely a) upper 
rigid and b) upper stress free boundary are discussed. Extensive graphs are drawn for the 
various computed results and the permeability number has strong influence on the 
inhibition and enhancement of bio convection. 
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World’s major part constitutes biomass. Complex 
bioconvection patterns are observed when suspensions of some 

algae are placed in a shallow dish. The 
pattern formation depends on many factors; in particular on the 
tactic nature of the microorganism. In this chapter we discuss a 
new generic model for phototaxis in a suspension of 

y the influence of 
permeability parameter on bioconvection (BPC) in a 
suspension of phototactic algae. Phototaxis is a directed 
swimming response dependent upon the light conditions 
sensed by the microorganisms. The model that is going to be 

phototaxis also incorporates the effect of shading 
whereby microorganisms nearer the light source absorb and 
scatter the light before it reaches those farther away. Some of 
the recent and important works in bioconvection include Platt, 

rimani, 1980, Harashima,et al. 1988, 
Srimani and Sudhakar, 1992, vincent and Hill, 1996,Srimani 
and Padmasini 2001, Shu and Ramapriyan, 2005, Ghorai and 
Hill , 2005, Srimani and Anuradha, 2007, Basak et al., 2008, 

jatha, 2011. 

 
A detailed review of the literature is available in Padmasini 
(2003), Anuradha (2006) and Hill and Pedley (2005). 
present model constitutes five dimensionless parameters 
together with a parameter that specifies the vertical position of 
the sublayer in the fluid.  Our model considers two cases (i) 
Rigid upper surface (ii) Stress free upper surface.  The 
asymptotic analysis is carried upto the fourth order 
approximation.  The cumulative effect of the other governing 
parameters on the stability conditions as well as on the 
different profiles is remarkable.  The position of the sublayer 
actually depends on the intensity of the light source and the 
solutions are obtained through the solvability
computed results are presented through graphs and are in 
excellent agreement with the available results in the limiting 
cases. 
 

MATERIALS AND METHODS
 
In this section the continuum model in boundary conditions 
and asymptotic analysis are discussed.
 
Nomenclature     

d-Depth parameter, R-Rayleigh number
C-Sub layer positionparameter which specifies the vertical 
position of the sublayer in the  fluid
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This paper deals with a detailed study of asymptotic solution to bio-porous convection in 
a suspension of microscopic swimming phototactic algae. Experimental observations 
indicate that bio convection patterns are modified by illumination. This phenomenon will 
be observed in a large number of different algal species where the cells are denser than 
water and tend to swim upward on average. The continuum model for phototaxis and 
suspension shading was formulated in a porous medium. Here, the length scale of the 
bulk motions and the concentration distribution are large when compared to  cell 
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understand the complexities of the effects of photo taxis on BPC (bio-porous-convection) 
before moving in to a higher dimension. Further the diffusion tensor is a constant 
orthotropic tensor. The linear stability problem is discussed in detail and solvability 
conditions are derived up to the third order. Analyses for the two cases namely a) upper 

e graphs are drawn for the 
various computed results and the permeability number has strong influence on the 
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A detailed review of the literature is available in Padmasini 
006) and Hill and Pedley (2005). The 

present model constitutes five dimensionless parameters 
parameter that specifies the vertical position of 

the sublayer in the fluid.  Our model considers two cases (i) 
Rigid upper surface (ii) Stress free upper surface.  The 
asymptotic analysis is carried upto the fourth order 

ect of the other governing 
parameters on the stability conditions as well as on the 
different profiles is remarkable.  The position of the sublayer 
actually depends on the intensity of the light source and the 
solutions are obtained through the solvability conditions. The 
computed results are presented through graphs and are in 
excellent agreement with the available results in the limiting 

MATERIALS AND METHODS 

In this section the continuum model in boundary conditions 
discussed. 

Rayleigh number,Sc-Schimid number, 
ositionparameter which specifies the vertical 

the sublayer in the  fluid, p̂ -Orientation vector, 
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f(p)-The probability density function, p - The ensemble 

average,  V-Cell swimming velocity, Ic-Critical intensity, Ф-

Microorganisms volume fraction, - Cell volume,ρ-Density of 
the fluid, t*-Time, g-Acceleration gravity, n*-Cell contraction, 
α*-Extinction coefficient, μ-Dynamic viscosity ,k-
Permeability, Pe-Excess pressure, D-Diffusion tensor, H-Depth 
of the layer, v-Kinematic viscosity, VA-Average cell 
swimming speed, Dv-Vertical diffusion parameter, No-Uniform 
cell concentration, K-Dimensionless horizontal wavenumber, 
σ-Growth rate, u*-Average velocity of the material in δv, Pl-
Darcian/porous parameter. 

The Continuum Model 

In this study it is assumed that the length scale of the bulk 
motions and the concentration distribution are large compared 
to typical cell diameters and cell spacing. The algal cells 
themselves are modeled as internally homogeneous, pigmented 

particles of volume v and density ( ,        where

 is the density of the fluid) and possess the same light 

transmittance in all orientations.  The number of cells in a 

small volume  v defined relative to Cartesian axis O x* y* 

z* is n*(x*,t*)v, where z*  is the axis in the vertical  
direction and t* is time.  Neglecting all inertia in the cells 

motion and supposing the suspension is dilute (n* � 1) and 
incompressible then, if u*(x*, t*)  is the average velocity of all 

the material in  V, 

* *u   =0                                           …(1) 

For simplicity, we shall assume that the effect of the cells, on 
the suspension is dominated by the stokelets due to their 
negative buoyancy and that all other contributions to the bulk 
stress are sufficiently small to be neglected. Neglecting all the 
forces on the fluid except the cells negative buoyancy, n*vg

v  where g is the acceleration due to gravity,  the 

momentum equation under the Boussinesq  approximation is . 

*
* * * *2 * *

[ ]
*

Du
P n g k u ue

kDt p

 m
r J r m= - Ñ - D + Ñ -

 

…(2) 

The  system is a sparsely packed fluid saturated porous layer

* *
* *

D
u

Dt t


  


 is the material time 

derivative, k  is a unit vector in the z* direction, eP  is the 

excess pressure above hydrostatic and   is the dynamic  

viscosity of the suspension which, since the suspension is 
dilute, is considered to be that of the fluid,  which is effectively 
water.  The equation for cell conservation is  

*
* *

...(3)
*

n
J

t


  


 

where  J*  (x*, t*)  s  the net flux across a surface element,  

s, at  x*, j*  can be written as 

J* = n*u* + n* * * *DV p nc                      … (4) 

where p   is given by  

� � �( )A AV p v p f p d p  …(5) 

The first term, (n*u*) is the flux due to advection of cells by 
the bulk flow.  The other terms represent fluxes arising from 

the stochastic nature of the cell swimming:  n* cV p  is a mean 

flux due to cell swimming and –D*.
* *n is a diffusive flux of 

cells down the cell concentration gradients. We shall consider 
a fluid saturated porous layer with horizontal  boundaries at z* 
= -H, O  and shall assume that the vertical boundaries are far 
away so that the layer has an effectively infinite width.  The 
suspension is illuminated by parallel light from a uniform 
source of intensity Is ,vertically above the layer. If the light 
absorption by the pure fluid is negligible then the light 
intensity  I (x*)received by the photo receptors of an algal cell 
at the position x*=(x*,y*,z*) is 

* * 0 * *
*( ) exp( ( ', ) ')ZI x I n x t dzs   

  
…(6) 

Here n*(x*) is the concentration of cells at any position x* and 
*   is the extinction co-efficient, which quantifies the strength 

of absorption and scattering of light in the suspension. If the 

critical intensity cI  occurs at position z* =-CH (0   C   1) 

for a vertically uniform concentration  profile 0N  then, for 

cells at x *  correct to O(
* *n H ): 


*

* * *
0( ( ', ) ' )oP I n x t dz CHN kc z   

           
…(7) 

The continuum model is now complete. 

Basic State Solution 

This study presents the results for both free and rigid upper 
horizontal boundaries.  

The boundary conditions for the problem are. 

* *
0 , 0u k on z H           … (8) 

* *
0 , 0J k on z H   

       
…(9) 

For a rigid boundary 

* *
0 , 0u k on z H   

   …(10) 
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whilst for a free boundary,    

2
* *

( . ) 0 .
*2

u k on z H O
z


 





  

…(11) 

When there is no fluid motion the steady equation for 
cell flux becomes on substituting, (4) and (7) into (3) 

*
* * 0

{ ( ( ') ' ) } 00** *

d dn
n V I n x dz CHN Dc vA Z

dz dz
    

 

      
…(12) 

Solving (12) we get, 

*2
1* * 2 * *

( ) ( )
* 22

k Dvn z Sech k z CH
V IcA 

 


 
 
 

           … (13) 

where k*  is a constant of integration  which can be related  to 

0N   the number of cells per unit  volume for the whole layer, 

by  the relation 

0 *
( ') ' 0n x dz N HH               … (14) 

It is apparent from (13)  that the region above z* = -CH  is 
locally  gravitationally stable  and convective  motions 
occurring in the  unstable region  below  z*=  -CH  will 
penetrate  the upper layer. 

Non-Dimensionalization 

Non-dimensionalizing the governing equations (1) to (3) by 
using the following scale length scales(H: H is depth of the 

layer.)Bulk  fluid  velocity: D v /H, Time :  
2

/H Dv ,Cell 

Concentration : 0N (Which is the uniform cell 

concentratin),Diffusion:Dv,Pressure :
2/vvD H

 

Further, 

* D uvU
H


*

0n N n

2
* H

t t
Dv


 

*2 2
2

I

H
  

*
2

VDvp pc e
H




 

*
0c ep p p  *

H


 

* *
*

D
u

tDt


  


2
H

Pl
k p

  : 

porous parameter 

where v  is the kinematic  viscosity  and Dv   is the diffusion 

parameter.  In terms of the new symbols the basic equilibrium 
state can be written as. 

u=0, 
2

2 1
( ) sec ( ( ))

2 2

k
n z h k z C

d
 

  
…(15) 

where the horizontal boundaries are at z=-1,0 and 

HV PAd
DV

  ,     
*

0P I N Hc 
   

...(16) 

Now,
*

K k H   which is obtained  by the equation  (14)  in 

turn gives a transcendental equation. 

1 1
[tanh( ) tanh( ( 1))]

2 2
K KC K C d  

  
…(17) 

Here P is directly proportional to 
*, .cI and  It represents 

the strength of the photo taxis in the suspension. Suppose K <<  
1,  then equation (17)   can be solved approximately to give 

   
1/2

2 1K d d� �   so that  (17) Becomes

   
1/2

2
sec

2

d
n z h z C 

       

                      …(18) 

The governing equations after non demensionalizing are:- 

u O       …(19) 

1 2
C

u
Sc P nk u Plu

t



    

   
…(20) 

   '
n n

n u d n x dz C
t z

 
        

( 1)dn n x dz C
z


    

2
2

2

n
nh

z
k

¶
+ Ñ +

¶   
…(21)                                 

 
Linear Stability analysis 
 
In this section, the linear stability problem is discussed by 
considering a small perturbation to the equilibrium state (15) 

of amplitude where  0 1 in this case. 

1u u  

0 1( , )n n n x t  }   …(22) 
pc = po+pe 

where
2

12
( )0 2 2

K
n Sech K z C

d
 

 
 
 

     …(23) 
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If  1 1 1 1( )u u v w    and HD Dv where   is a positive  

real number then,  substituting the above perturbation  
quantities into  ( 8 ), (9)  and  (01)  and linearizing about the 
(basic  state  by  collecting the 0(ε)  terms), we get the 
following governing equations : 

01u                       … (24) 

1 21 ( , )1 1 1

u
Sc P n x t k u Plue

t



     



  …  (25) 

0 001 1( , ) ( ( ) ) 21 0 0 1

2
2 01 (26)1 12

dnn n
d n x t dz n s ds C n nz z

t dz z

dnn
n wh dzz

k

¶ ¶
+ ò + ò - -

¶ ¶

¶
- Ñ - = -

¶

é ù
ê ú
ê úë û

 Where

3
0N gH

D vV

 





  and 

v
Sc

Dv
 is the Schimid Number                     ... (27) 

and

2 2
2

,
2 2h

x y

 
  

 
 

The pressure is eliminated from the above equations by 
taking the curl  of  (25)  twice and retaining the z-component 
of the result.  This reduces the system into the following 
equation: 

2 2 4
1 2 4 21 1 1

1 12 2 4

2
2 2 1

1 1 2

2h h h

h h

w w w
Sc w w

t z z z

w
n Pl w Pl

z


    
           


   

   

…(28)

  

Now 1 1w and n   can then be resolved into normal  

modes using following substitutions in (28) and (26)  i.e. 

   1 1( ) , exp( ); ( ) , exp( )n z f x y t w w z f x y t   

  

      

… (29) 

Also taking 
2 2 4 4

f k f and f k fh hÑ = - Ñ = we get 

the governing equations as 

2 2
1 2 2 2

12 2

d d
Sc k Pl k w k

dz dz
    
      

     

…(30) 

 

 

0 20 ( ) 2 0

0 0( ) ...(31)0

dn
d s ds dn kz

dz

dnd
d n s ds C wz

dz dz

   



    

   

 

subject to the boundary  conditions 

 0 0
0 0{ ( ) ( ) 0z z

d
d n s ds C dn s ds

dz


       at  z = -1,0      

         …(32)  

Rigid Boundary: 0
dw

w
dz

  at  z = -1,0     …(33) 

Stress free surface:
2

0
2

d w
w

dz
    at z=0          …(34) 

Here  k is a dimensionless horizontal wave number and 
  is the growth rate, and the effects of phototactic motions, 
are incorporated in the terms that are found in the L.H.S  of  
cell  flux equation. 

Equation (31) is a linear integro-differential equation 
with non-constant co-efficients, the solution of which 
represents a problem of considerable difficulty.  Certainly it 
may be reduced to ODE  by substituting  

* 0
( ) ( )z s dsz          …(35) 

Using the above substitutions in (30)  and  (31)  we get 

2 2 *
1 2 2 2

2 2

d d d
Sc k Pl k w k

dz dz dz


    

       
         

…(36) 

   
*

* 2 00 ( ) 2 ( )0 0

dn d
d z dn k d n s ds Cz

dz dz


       

2 * 3 *
0

2 3

dnd d
w

dzdz dz

 
         ...(37) 

The system of equations (36) and (37) is of seventh 
order, as opposed to the original system  which was sixth  
order,  and therefore the additional boundary  conditions are 
required.  This is supplied by observing  equation (35)  i.e.,   

i.e., 
*( ) 0z  at z=0                      …(38) 

Asymptotic solutions 
The asymptotic solution to the normal mode problem 

for rigid and stress free upper surfaces when  0<d<<1  is 
presented in this section. 

Physically this is for shallow layer approximation when 
the scale for the equilibrium  cell distribution is large enough 
when compared to the depth of the layer  that is H.  This 
analysis provides an insight into the fluid mechanics of bio-
convection. When  d<<1,  (17)  can be solved approximately.   

This gives  
1/2

2 ( )k d and n z  is given by (15).  

Now. Put  R d  

 k
k k kd

d
  

22
k dRk  
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(36)   and (37)  yields 

  
2 2 *

2 2 21 2 2

2 2

d d d
Sc d k Pl d k w dRk

dz dz dz


   

      
  

  

        …(39) 

0dn
d

dz

*2 2
2 0

d
dn k d

dz

 f
s k- - +

é ù
ê ú
ë û ( )( )0

o
d n s ds Cz- ò -

2 * 3 *
0

2 3

dnd d
w

dzdz dz

 
         … (40) 

1 12
( ) ( 2 ) (41)1 2 3

S z z zC C    

 

4 3 2 2 3 2 2 3 21
( ) ( 4 3 2 3 6 )2

6
s z z z C z C zC z C zC C z       

 

      
…(42) 

This  leading order balances  obtained are  solvable by 
elementary  methods, but  they either reduced to the balance 
considered below or need numerical solutions  Hill et al.(1989)  
noted that to get non-trivial  solution,  the highest derivatives  
are retained and leading  order balance gives: 

*2 2
2

2 2
1d d w d

Sc d k R
dz dz dz





 

 
 
 



  

……(43) 

Case I: Rigid upper surface   

Expanding the quantities 
*, ,w R   and in power series of d, 

* * , , ,
0 1 0 0

n n n nd w d w R d R dn n n n
n n n n

   
   

      
   

 

we get the following systems. 

Leading order system: 

4 2
11 1

04 2
( )

d w d w
Sc Pl

dz dz
     =   

*
2 0

0

d
K R

dz

 …(44) 

3 *
0

3

d

dz



0

*
0d

dz


=0    …(45) 

Boundary conditions 

Rigid upper surface 

2

2

*
0 0

d

dz


 at   z=-1,0                                           …(46) 

1
1 0

dw
w

dz
  at  z=-1,0                                     …(47) 

Further 

2 *
0

2
0

d

dz


 at  z = 0, 

*
0 ( ) 0z      at  z=0 

Equation  (45)  reduces  to 

*
0 ( )z z    when σ0 =0              …(48) 

And equation (44) yields 

6 4 3 2
2

1 0 1 2
6! 4! 3! 2!

z z z z
w k R Pl k k

 
     

 



 ...(49)                

 

1

4 1

5! 2

Pl
k        , 1

(50)2 5! 12

Pl
k  

 

 

Second order system 

 
4 2 2

1 12 2 1
0 14 2 2

d w d w d w
Sc Pl Sc

dz dz dz
    

 
* *

2 2
0 0

0 1

d d
k R k R

dz dz

 
 

    …(51) 

3 * 2 *
1 0
3 2

d d
C

dz dz

 
 

o dsz

2 * * * *
0 1 0 0

0 12
2 0

d d d d

dz dz dz dz

   
    

  …(52)
 

With the boundary conditions 

2 *
1
2

d

dz


  -2 z-C  =  0           at z=-1,0 

2
2 0

dw
w

dz
    at  z=-1,0 

*
1 (z)=0   at z=0 

Solution 

Integrating and applying the boundary  conditions  we get 

* 3 2
1

1 1

3 2
z C z      …(53) 

  

   
8 7

2

2 0 02
8! 7!

z z
w k R Pl kR PlC 

 

      …(54) 

    
6 5 4 3 2

2

0 1 0 3 42 16! 5! 4! 3! 2!

z z z z z
k R PlR CkR k R k k

 
      

 
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 2

0 1
3 2(4 9 ) (3 10 ) (1 )

5! 14 2 15

k R kRPl Pl
k C C

é ù
= - + - - +ê ú

ê úë û   …(55) 

 

 2

0 1
4

5
2(1 2 ) ( 8 ) (1 )

5! 42 2 12 10

k R Pl kR Pl
k C C

 
         …(56) 

 

Third order system 

4 2 2 2
1 13 3 3 2

0 14 2 2 2

d w d w d w d w
Pl Sc Sc

dz dz dz dz
    

2 2
2 2 21 11 1

2 0 1 12 2
2

d w d w
Sc k Sc k w Plk w

dz dz
         

=

* * *
2 2 2

2 1 0
0 1 1

d d d
k R k R k R

dz dz dz

  
   

  …(57)                     
 


* * **

2* 0 0 01 1
0 2 12 2

d d dds d
S k

dz dz dz dz dz

f f ff
f s k- + + -

2 * 2 * 3 *
0 1 1 2 1

12 2 3z

d d d ds
dz C w

dz dz dz dz

  
     

  …(58)
 

 

Boundary Conditions 

2 *
2

2
0

d

dz




  
at z = 0 

2 *
22

2

5
3

3

d
C C

dz


    at  z  =  -1 3

3 0
dw

w
dz

   

 at  z=-1,0 

*
2 ( ) 0z    at z = 0 

Solution 

2
(59)52 k ks k= -

 2
1 2

5 0

1
(7 8 ) (5 6 ) (4 5 ) (3 4 )

8! 6! 5! 4!

Pl k k
k k R C C C C

 
           

…(60)  

 Taking 02    on the neutral curve expansion   (58) gives 

0

1 21
(7 8 ) (5 6 ) (4 5 ) (3 4 )

8! 6! 5! 4!

R
k kPl

C C C C

k
=

é ù
- + - - - + -ê ú

ê úë û …(61) 

 

Now  Substituting the value of 2  and integrating  (58)  

three  times  and applying  the boundary  conditions  we get 

the expression for *
2  as follows. 

  
2* 10 9 8 7 6

2 0 1 2 1

7 5 1 1
( ) (4 ) 3

10! 9! 8! 7! 6!

Pl CPl
k R z z z k C z k k C z

 
        

 

 2 5 4 2 3
0 2 5

1 1 1
12 ( )

5! 3 6 3

C
k R k C z z C C k z z

 
        

   

...(62) 

where  1k   and 2k   are given by (50) 

Considering the fourth order system,   



* * *
* * 31 2 2 1
1 0 0 1 2

* ** * *
2

0 02 1 1
3 1 2

2 *2 * 2 *
0 0 0 02 1

1 22 2

3 *2 *
32 1 2

2 13

2 2 2

...(63)

z z z

dds ds d d

dz dz dz dz dz

d dd d d
s S k

dz dz dz dz dz

dd d
ds S ds S ds

dz dz dz

dd ds ds
C w w

dz dz dz dz

f f f
f f s s s

f ff f f
s k

ff f

ff

+ - - -

- + + + -

-ò - ò - ò

+ + = - -

 

 

 

Boundary Conditions   

2 *
3

2

d
C

dz


   at   z = 0 

3 * 3 19 5 23 5 1123 0(2 )
2 3 12 3 45 1440 42 84

d kRC C C
C C

dz


       

 
 
 

at  z =  -

1  

*
3 ( ) 0z  at z = 0, 4

4 0
dw

w
dz

    at  z=-1,0 

Applying boundary conditions and substituting for  

* *
0 1 1 2 1 2 0 1, , , , , , 0S S w w       

Integration of Equation (63) between -1 to   0 yields 


3 2

2

0
3

3 2

2 3 95 17
( )
3 2 84 84

20 27 17 16!
( )

10 21 28 72 42

C C C
k R

Pl
C C C



 
    

  
   
  

 


 1 5 6 (8 7)

6! 56

kR Pl
C C

 
     

 3 44 5 (3 4 )
5! 4!

k k
C C

 
     

  …(64)     
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where 3, 4k k  are given by (55)  and (56) 

Taking  3 0 
,
we get the first order Rayleigh number as 

   3 2 3 2

1 0

1
280 420 223 43 480 546 149 3

420 7!

1 3
( ) ( )

2 7 40

Pl
C C C C C C

R R
C

C Pl

 
        

 
      …(65) 

Which is exactly same as that of Vincent and 

Hill(1996) when 

Pl=0. 

Case II:   Stress free upper surface. 

An analysis for stress free upper surface was carried out in a 
similar way.  The solution to the leading order system with 
boundary conditions is as follows. 

 2 6 4 31
1 0 2

1

6! 4! 3!

Pl A
w k R z z z A Z

 
     

 
  …(66)  

1 2

3 1 7

8 48 48 2.6!

Pl Pl
A A


   

  …(67) 

  
 

 2

0
2

25 5
(1 9 ) ( 1)

6! 8 7

k R C
C Pl

 
        …(68)

 

Solving the second order system we get 

  
 

  
   

2 2 2

8 7 60 0
2 0 1

2 22
25 4 30 31

4

2
2

8! 7! 6!

... 69
5! 4! 3!

k R Pl k R PlC k
w z z R R Pl Z

k R C k Ak R
z z z k A z

   
      
   
   

   
      

  
  

   

1
3 0

1 5 21 9
6 9 ...(70)

5! 3 7! 8 8 5 12

RPl Pl
A R C C

      
                 

 

 0 1
4

56
(5 4 ) 15 ... 71

8! 3 6! 4

R R Pl
A Pl C

   
            

The results are computed and presented through graphs. 

RESULTS AND DISCUSSION 

The results of the present investigation are presented in figures 
1 to22. The results are computed for different sets of governing 
parameters (κ, d, C, Pl) for rigid upper and stress free upper 
surfaces. The results for small as well as large i.e. in the range 
0 ≤ Pl ≤ 103 are presented through graphs. The following 
important observations are made from the figures: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Z vs. W; 

Figure 2: Z vs. W;

Figure 3: W vs. K; 
 

Figure 4: W vs. K; 

Figure 5: W vs.K; 
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(i) The velocity profiles are drawn for different combinations 
of the governing parameters. w(z) is negative throughout the  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 6: W vs. K; 

   
Figure 7: W vs. K; 

 
Figure 8: W vs. K; 

 
Figure 9: R vs. C;     

 
Figure10: R vs. C; 
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Figure 11: R vs.D; 

 
Figure 12: R vs. d; 

Figure 13: Phi vs. 

 
Figure 14:Phi vs. K 

15 : Phi vs. k 
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region only when d = 20 and C ≤ 0.3. when Pl is in the range 
10 ≤ Pl ≤ 103. For d=20, Pl=10, C=0.3 and d=0.1, Pl=400, 
C=0.3 the profiles are parabolic with a maximum negative 
value at the middle of the layer (Figures 1 and 2). The 
parabolic nature strongly depends on d, C and Pl. The effect of 
increasing C is to decrease w(z) for a particular wave number 
k. As expected, for small as well as large values of d, w=0 as 
k→0, irrespective of the values of C (Figures 3 to 8). For 
values of C≥ 0.3, w increases continuously with k for a 
particular value of C both in the shallow as well as deep layers 
as in the case of ordinary bioconvection. Further w increases 
with Pl for specific values of k and C. (Figures 5 to 8). This 
clearly predicts that the effect of Darcian parameter is quite 
remarkable in the case of bioconvection. 

(ii) In figures 9 and 10, the variation of total R with respect to 
C is presented for small as well as large values of Pl. It is 
observed that the convection cells grows in the range 0.45 < C 
≤ 0.55. A single peak is observed in both the cases. 

(iii) From figure 11, it is observed that bioconvection is 
enhanced by Pl contrary to the case of ordinary porous 
convection (Rudraiah and Srimani 1980, Srimani 1981) for the 
specified range of the parameters. Further, the effect of 
increase in d is to increase R. From this it can be concluded 
that it is possible to control bioconvection through the Darcian 
parameter. 

(iv) In figures 12 to 15, the graphs of the profiles of 
perturbations to the shading φ (z) vs. k are plotted for different 
values of C and Pl. It is observed that for small as well as large 
Pl, φ (z) remains constant for all values of k in the deep layers. 
Further, φ (z) is negative in the range discussed above. But, in 
the case of a shallow layer, φ (z) continuously increases with k 
for values of C in the range of 0.1 ≤ C ≤ 0.5 and is positive for 
small as well as large values of Pl. In other words, the shading 
never becomes zero. 

(v) In figures 16 and 17, for stress-free upper surface, the 
graphs of the profiles of perturbations to the shading φ (z) vs. z 
are plotted for C=0.5 for deep as well as shallow layers. In the 
case of deep layer φ (z) is negative and is positive for the 
shallow layer case. The behaviour of φ (z) in a shallow layer is 
exactly the opposite that of a deep layer. 

(vi) In figures 18 to 21, the profiles of w vs. k for a deep layer 
are presented for values of Pl=10; 400 and C=0.7, 0.8, 0.9, 1.0 
for the case of stress– free upper surface. A comparison of the 

 
Figure 16: Phi vs.k; 

 
Figure 17: Z vs. Phi; 

 
Figure 18 : Z vs. Phi; 
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Figure 20 : W vs K; 
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Figure 22: W vs. K; 
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results in figures 18 to 21 with those of 3 and 4 clearly shows 
that the values of the vertical velocity are very much higher in 
the case of rigid upper surface and there is a considerable 
difference in the behaviour of bioconvective porous system 
with regard to rigid and stress free upper surfaces. 

Finally, it is concluded that porous/Darcian parameter has a 
remarkable influence on the bioconvective porous system 
irrespective of the nature of the upper boundary. The results 
could be utilized to suppress or enhance bioconvection.  
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