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This paper studies
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INTRODUCTION 
 

This paper studies the cumulative effect of uniform rotation of 
the system and the heating/cooling from below on the stability 
of a suspension of motile gravitactic microorganisms in a 
shallow sparsely packed horizontal porous layer.  The model 
is based on a continuum model of a suspension of gravitactic 
microorganisms developed earlier by Pedley 
supplemented by an energy equation and a buoyancy term in 
the momentum equation that results from an adverse 
temperature gradient  in the porous layer. The boundaries are 
considered to be rigid, no-slip and zero
boundary conditions are considered along with the above 
boundary conditions. The evolution of such a bioconvective 
system is described by the continuity, momentum, cell 
conservation, flux of micro-organisms and thermal energy 
equations. The basic state solution is determined and the 
perturbed equations are solved using a fast computational 
technique with the MATLAB tool. The Eigen value problem 
is solved and the profiles of the stream function, cell 
concentration, temperature along with the neutral stability 
curves are presented through graphs. The present problem is 
controlled by several non-dimensional parameters such as, 
bioconvection Rayleigh number, Permeability parameter, 
Thermal Rayleigh number, the Schimid number, the Lewis 
number and the Peclet number. For typical values of the 
parameters, the computation is done and the results are 
presented through graphs. It was found that the permeability
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ABSTRACT 

This paper studies the cumulative effect of uniform rotation of the system and the heating/cooling 
from below on the stability of a suspension of motile gravitactic microorganisms in a shallow 
sparsely packed horizontal porous layer.  The bioconvective system is described by the continuity, 
momentum, cell conservation, flux of micro-organisms and thermal energy equations. The basic state 
solution is determined and the perturbed equations are solved using a fast computational techniqu
with the MATLAB tool. The Eigen value problem is solved and the profiles of the stream function, 
cell concentration, temperature along with the neutral stability curves are presented through graphs.
The present results show an excellent agreement with the available results in the limiting cases.
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This paper studies the cumulative effect of uniform rotation of 
the system and the heating/cooling from below on the stability 
of a suspension of motile gravitactic microorganisms in a 
shallow sparsely packed horizontal porous layer.  The model 
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parameter has a remarkable influence on the thermo
which may (i) either stabilize or destabilize the suspension and 
(ii) decrease or increase the wavelength of the bioconvective 
pattern. The phenomena of convective motion of fluid, well
known buoyancy driven phenomena, has attracted many 
researchers over the past few years. In this context, 
bioconvective motion due to the suspensions of 
microorganisms in a fluid/porous layer has been received a 
great deal of attention due to its very wide applications. The 
suspensions of microorganisms subject to spontaneous pattern 
formation were known as long ago as 1848 and the first 
quantitative study of the phenomena was published in 
1911.Most experiments begin with an
suspension of the microorganism of interest, which is obtained 
by stirring. The fluid, which subsequently becomes quiescent, 
spontaneously develops the bioconvective instability as the 
microorganisms swim guided by their various taxes.

Bioconvection is a ubiquitous phenomenon of biological 
systems across spatial scales from cells (Okubo and Levin, 
2002; Pedley and Kessler, 1992) to ecosystems (Mulched et 
al., 2001). The term bioconvection was recently developed in 
fluid mechanics, and refers to flows induced by the collective 
motion of a large number of motile microorganisms (Platt. 
1961). This phenomenon can lead to pattern formation in 
aqueous media when motile microorganisms respond to 
certain stimuli (e.g., gravity, light, nutrients) b
swimming in particular directions (i.e. taxes). The basic 
mechanism underlying this phenomenon is similar to that of 
the well-known Benard thermal convection in the sense that 
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which may (i) either stabilize or destabilize the suspension and 
(ii) decrease or increase the wavelength of the bioconvective 

convective motion of fluid, well-
known buoyancy driven phenomena, has attracted many 
researchers over the past few years. In this context, 
bioconvective motion due to the suspensions of 
microorganisms in a fluid/porous layer has been received a 

of attention due to its very wide applications. The 
suspensions of microorganisms subject to spontaneous pattern 
formation were known as long ago as 1848 and the first 
quantitative study of the phenomena was published in 
1911.Most experiments begin with an initially uniform 
suspension of the microorganism of interest, which is obtained 
by stirring. The fluid, which subsequently becomes quiescent, 
spontaneously develops the bioconvective instability as the 
microorganisms swim guided by their various taxes. 
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both are due to the force of buoyancy resulting from a density 
gradient which, in the case of bioconvection, occurs when a 
large number of microorganisms (which are slightly heavier 
than water) accumulates in a certain region of the fluid 
medium, while in the case of Benard convection, a density 
gradient is due to a temperature gradient (Childress et al., 
1975; Pedley and Kessler, 1992).A thorough survey of 
literature pertaining to the subject reveals the following points: 
The phenomenon of bioconvection patterns in suspensions of 
swimming cells has been observed several decades ago. Ever 
since common algae, such as Chlamydomonasnivalis, Euglena 
viridis, Crypthecodiniumcohnii and the ciliated protozoan 
Tetrahymenapyriformis were isolated, plumes of aggregating 
cells have been noticed in the culturing flasks. Platt (1961) 
coined the term ‘‘bioconvection’’ to describe the phenomenon 
of pattern formation in shallow suspensions of motile micro-
organisms at constant temperature, on a par with those found 
in convection experiments. However, this is by no means the 
first documented observation, which goes back to at least 1848 
e.g., Wager (1911). Other experimental investigators have 
included Loeffer and Mefferd (1952) Nultsch and Hoff (1972) 
Plesset and Winet (1974) and, more recently, Kessler, (1984), 
(1985b) Bees (1996) and Bees and Hill (1998).  Bioconvection 
is generally due to an overturning instability caused by micro-
organisms swimming to the upper surface of a fluid which has 
a lower density than the micro-organisms. The first models of 
bioconvection were developed by Plesset and Winet (1974). 
They considered Rayleigh-Taylor instability in a continuously 
stratified, two-layer model and were able to investigate the 
preferred pattern wavelength as a function of the upper layer 
depth and the cell concentration. Levandowsky et al. (1975) 
investigated bioconvection patterns and proposed a more 
realistic model (Childress et al. (1975)) in which the micro-
organisms could swim but were constrained to swim upwards 
only, due to their asymmetric density distribution. Their 
application of the Boussinesq approximation implies that the 
only way in which the cell concentration can affect the fluid 
flow is through vertical variations in the fluid density. One 
class of phenomena for which mathematical modeling is well 
advanced is spontaneous pattern formation, which has been 
observed in laboratory suspensions of swimming 
microorganisms from a variety of phyla, including algae 
(Wager, 1911; Kessler, 1985; Bees and Hill, 1997), protozoa 
(Platt, 1961; Childress et al., 1975) and bacteria (Kessler et al., 
1994). The mechanism of pattern formation is a convective 
one, driven by the up-swimming of cells that are denser than 
the medium in which they swim, and is called bioconvection 
(Platt, 1961), the mathematical modeling of which has been 
discussed by Pedley and Kessler (1992a,b).Some of the recent 
works include Srimani and Sudhakar( 1992), Srimani and 
Padmasini(2001), Srimani and Anuradha (2007), Srimani and 
Roopa(2011), Srimani  and Sujatha(2011). 

MATERIALS AND METHODS 
 
In this section the continuum model in boundary conditions 
and asymptotic analysis are discussed. 
 
Mathematical Formulation   
 
In this section, in order to study the instability of motile 
suspension in a horizontal thermally stratified porous layer 
(sparsely packed), the mathematical formulation is discussed. 

The randomly swimming microorganisms are assumed to be 
gravitactic in behavior and on the average swimming 
upwardly with a constant velocity. Here, we consider a 2D-
thermally stratified porous layer of infinite horizontal extent 
containing a large number of gravitactic microorganisms 
swimming in the porous layer with an upward velocity Vc. 
The major assumptions are(i)all the physical properties of the 
fluid are assumed to be constant (ii) the porous layer is 
isotropic and homogeneous (iii) the density of the medium is 
everywhere constant except in the buoyancy force term 
(Boussinesq approximations). The pattern formation within 
the suspension is described by the Navier-Stokes equation 
with Boussinesq approximation for the fluid flow, the 
diffusion convection equation for the concentration of the 
motile microorganisms together with the thermal energy 
equation for the temperature. For the forthcoming section, the 
stability of the equilibrium diffusive-conductive state is 
discussed through the linear stability analysis for a wide range 
of the swimming velocity and permeability of the medium the 
governing equations are: 
Continuity equation 
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The boundary conditions at the impermeable boundaries are 
the condition of rigid no-slip and zero-flux: 
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And the thermal boundary conditions are 
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Dimensionless Equations 
 
The governing equations along with the boundary conditions  
aredimensionalised by using the following scales: 

 

, ' , 'c c

c

D nHV n
u u n T T T

H D
    

  , I

H
    ,

2

,
c

H
t t

D



2

' , ,c wD
P P g g k

H

 
 



  
…(8) 

127                  International Journal of Current Research, Vol. 4, Issue, 03, pp.126-131, March, 2012 
 



 
Dimensionless equationsare : 
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Boundary conditions (in terms of dimensionless variables): 
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Equation (9)  can be reduced to  
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22H




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Equation (13) is resolved into the following equations  

to eliminate the pressure  
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Differentiating (15)  with respect to z  and (16)  w. r .t 
to x  and taking the difference,  the following equation results: 
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Substituting (17) in (20) : 

 

2
1 2 2 2

1 2 2
1

yy

T

Sc v v
t

Sc Ran Ra LeT
t

 
    

 

 
   

 

  ...(21) 

 

Substituting for xv     in the above equation: 
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Finally the governing equations are: 
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Thus, we have a sixth-order differential equation in ψ 

in the rotating case. 
 

Basic state solution 
 

In the basic state the fluid is motionless and 
accordingly  a possible equilibrium state can be determined: 
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Now solving (26)  and (27) ,we obtain 
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1bT y                        …(29) 

 
Linear stability analysis 
 
It is a well-known fact that, the linear stability analysis with 
regard to a convection problem, facilitates the prediction of 
critical conditions and provides the base for the nonlinear 
analysis. To study the linear stability, a small perturbation to 
the basic state is considered. A  small perturbation is given to 
the basic state  to study the linear stability analysis: 
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The quantities 1 , 1n  and 1T  can be resolved into normal 

modes by considering the solution of the form 
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     

…(37) 

 
The boundary conditions are 
 

1
1 0, 0, 0, 1

d
at y

dy


      

      …(38) 

1
1 1, 0 0,1

dn
n Pe T at y

dy
     

      …(39) 
 
The equations (6), (7) and (8) in the boundary conditions   (8)  
and (9)  are solved numerically.  For this purpose, CODES are 
designed and implemented through MATLAB. The computed 
results are presented through graphs and the accuracy 
achieved is remarkable. 

 

RESULTS AND DISCUSSION 
 
In this section, the results of the linear stability analysis of a 
suspension of gravitactic microorganisms in a horizontal 
sparsely packed porous layer heated or cooled from below and 
subject to a uniform rotation about the vertical axis are 
presented. Predictions are made with regard to the markedly 
different behaviour of rotating and non-rotating systems. The 
boundaries are assumed to be rigid and hence no-slip and 
zero-flux conditions are applied along with the thermal 
boundary conditions. A computer code is designed and 
implemented by using MATLAB. The coupled differential 
equations are solved numerically by using the boundary 
conditions. The computed results are presented through graphs 
in figures 1 to 9. In all our computations, the typical values of 
the Schmid number Sc  = 1.0 and Lewis number Le = 1.0 are 
considered. The results are computed for small as well as large 
rotation rates. The parameters being (i) the bioconvection 
Rayleigh number Ra (ii) the thermal Rayleigh number RaT (iii) 

the Taylor number   (iv) the Schmidt number Sc (v) the 
Lewis number Le and (vi) the peclet number Pe. From the 
figures, the following observations are made: 
 

(In the figures,   = t; the Taylor number) 
 

I. Figures 1 to 3 present the graphs of stream function (ψ vs. 
y) for the combinations of the parameters (Pe, t, RaT) = 
(0.1, 5, 5000), (0.1, 10, 5000), (0.1, 0.15, 5000) 
respectively. The figures clearly indicate the 
drastically/markedly different behaviour of rotating and 
non-rotating bioconvective porous systems with the 
suspension of gravitacticmicroorganisms.Even for small 
rotation rates considered here, the stream function profiles 
exhibit highly nonlinearities throughout the region under 
consideration. The random behaviour of the curves 
suggests that there might be an oscillatory type of 
bioconvective mechanism under the constraint of uniform 
rotation as in the case of ordinary convection. 

II. The variation of critical wave number αc with the thermal 
Rayleigh number RaT for different rotation rates (= 5, 10, 
15) and Pe = 0.1, 1, 10 are presented through graphs in 
figures 4 to 6. In all the three cases, the qualitative as well 
as the quantitative nature of the curves is almost the same 
and the effect of rotation is significant for certain values 
of RaT. Further, in all the cases, αc increases with RaT 
continuously. 

III. The variation of critical bio-Rayleigh number with the 

thermal Rayleigh number (Rac vs. RaT) for t =   = 5, 10, 
15 and Pe = 0.1 are presented through graphs in figures 7 
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to 9. In all the cases, the curves exhibit the same peculiar 
behaviour. The interesting observations are (a) only for t 

=  = 15 the curve exhibits a maximum for RaT= 1.5 x 

104 and local minima for certain values. But, for t =   = 
10 and 5, the curves show exactly an opposite behaviour. 
This clearly indicates the sensitivity of BPC system for 
rotation.  A very interesting and remarkable feature of the 
present study is that the cumulative effect of thermal 
stratification and rotation on bioconvection in suspensions 
of gravitactic microorganism is highly of stochastic type 
and challenges for an in-depth research which might 
explore certain hidden phenomenological aspects. This 
markedly different behaviour of rotating and non-rotating 
bioconvective systems with the suspension of gravitactic 
microorganisms is quite interesting from the experimental 
as well as theoretical view points. No work in this 
direction is available. The results of the present 
investigation are in excellent agreement with the earlier 
works in the limiting cases as discussed earlier. 

 
 

Figure 1: ψ vs. Y 

 
 

Figure 2: ψ vs. Y 

 
 

Figure 3 :ψvs.Y 

 
 

Figure 4 :αc   vs. RaT 
 

 
 

Figure 5 :αc   vs. RaT 
 

 
              

Figure 6 :αc   vs. RaT 
 

 
 

Figure  7 :  RaC vs. RaT 
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Figure  8 : RaC vs. RaT 

 
 

Figure  9 : RaC vs. RaT 
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