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INTRODUCTION 
 

Throughout we shall deal with Cnxn the space of nxn complex 
matrices.  Let Cn be the space of complex n

Cnxn, let 
TA  A* and 

†A  denotes the transpose, conjugate 
transpose and Moore Penrose inverse of A respectively.  A 

matrix A is called    con-s-k-EPr if 

   TN A N A VK  or   R A R KVA

 A  denotes the rank of A, N(A) and R(A) denotes the null 

space and range space of A respectively.  Throughout let ‘k’ 
be the fixed product of disjoint transposition in S
K be the associated permutation matrix. Let us define the 

function         x x x x
k 1 k 2 k n

k , , ...., .  A matrix A=(a

Cnxn is s-k symmetric if     ij n k j 1,n k i 1
a a

   


A matrix ACnxn is said to be con-s-k-EP if it satisfies the 

condition Ax=0   
SA k ( ) 0x 

   TN A N A VK .  In addition to that A is con

KVA is con-EP or AVK is con-EP and A is con
TA  is con-s-k-EP.  Moreover A is said to be  con

A is con-s-k-EP and of rank r.  For further properties of con
k-EP matrices one may refer [3]. In this paper we give 
necessary and sufficient conditions for a schur complement 
pivotal transformation in a con-s-k-EP matrix to be con
EP.  Further it is shown that in a con-s-k- 
secondary sub matrix of rank r is con-s-k-EP
the question of expressing a matrix of rank r as a product of 
con-s-k-EPr matrices. Necessary and sufficient conditions for
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the space of nxn complex 
be the space of complex n-tuples.  For A  

denotes the transpose, conjugate 
transpose and Moore Penrose inverse of A respectively.  A 

if  A r   and 

TR A R KVA  where 

denotes the rank of A, N(A) and R(A) denotes the null 

space and range space of A respectively.  Throughout let ‘k’ 
be the fixed product of disjoint transposition in Sn=1, 2, n and 
K be the associated permutation matrix. Let us define the 

.  A matrix A=(aij)

n k j 1,n k i 1     
for i,j=1,2,….n.  

EP if it satisfies the 

( ) 0 or equivalently

.  In addition to that A is con-s-k-EP

EP and A is con-s-k-EP 

EP.  Moreover A is said to be  con-s-k-EPr if 
EP and of rank r.  For further properties of con-s-

In this paper we give 
necessary and sufficient conditions for a schur complement 

EP matrix to be con-s-k-
 EPr matrix, every 

EPr. Also discussed 
the question of expressing a matrix of rank r as a product of 

matrices. Necessary and sufficient conditions for 

 
 products of con-s-k-EPr partitioned matrices to be con
are given.  In this sequel, we need the following theorems.
 

Theorem 1.1[2]. For ,A B C

(i)   * *AA A A A A     

 * †A A A    

(ii)   AB B N A N B   

 

Theorem 1.2[1].  Let ,A B C
non singular matrix.  Then, 

(i)    R A R B R UAU R UBU  

(ii)    N A N B N UAU N UBU  

Theorem 1.3 [9]. Let ,A B C

(i)   N A N B R B R A  

B BA A 

(ii)   * *N A N B R B R A  

B AA B 
Definition 1.4[3].  Let M be an nxn matrix of the form

A B
M

C D

 
  
 

.  A schur complement of A in M is

 M A D CA B  . 

 Available online at http://www.journalcra.com 
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partitioned matrices to be con-s-k-EPr 
In this sequel, we need the following theorems. 

nxnA B C , the following hold: 

     * * TAA A A A A     

   * †A A A      

     *dimAB B N A N B 


  

, nxnA B C , and nxnU C  be any 

   * *R A R B R UAU R UBU    

   * *N A N B N UAU N UBU    

, nxnA B C , Then 

    * *N A N B R B R A  

B BA A  for all {1}A A   

     * *N A N B R B R A  

B AA B  for every {1}A A   

Let M be an nxn matrix of the form

.  A schur complement of A in M is

M A D CA B
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Theorem 1.5 (Theorem 1 [4]). Let
A B

M
C D

 
  
 

, Then 

     M A M A     

With equality if and only if 

    †N M A N I AA B   

    * † *N M A N I A A C   and  

     †† † 0I AA B M A I A A     

In particular, we have the equality if M satisfies 

   N A N C  and    * *N A N B . 

Theorem 1.6(Theorem 1 [3] and [8]). Let  

A B
M

C D

 
  
 

, Then 

   

   

† †† † †

†

† ††

A A B M A CA A B M A
M

M A CA M A

  
 
  

 

   ,N A N C     * * ,N A N B

   * *N M A N C  and    N M A N B  

Also, 
   

   

† ††

†

† ††

M D A B M A
M

D C M D M A

 
 
  

 

   ,N A N C     * * ,N A N B  

   * *N M D N B     N M D N C . 

When,    M A   then A B
M

C CA B
 

  
 

 and 

* * * *

* * * *

A PA A PC
M

B PA B PC

 
  
 

 where 

   * * * *P AA BB A A A C C
 

    

 
2.  PIVOTAL TRANSFORMATION ON CON-S-K-EP 
MATRICES 
 
In this section we have given necessary and sufficient 
conditions for a con-s-k-EP matrix to have its secondary sub 
matrices and their schur complement to be con-s-k-EP.  This is 
a generalization of the result found in [7].  As an application it 
is shown that the property of a matrix being con-s-k-EPr is 
persevered under the secondary pivot transformation.  It is 
well known that Theorem (1.2) [7], the class of con-EP 
matrices is invariant under secondary rearrangement. By a 
secondary rearrangement of a sequence matrix M, we mean a 
matrix PT MP 

Where P is a permutation matrix
0 I

I 0

 
 
 

.  By a secondary 

rearrangement of a square matrix M, we mean a matrix 
PTVMP. Similarly the secondary k rearrangement of a square 
matrix M we mean a matrix PTKVMP. 

Let M be a matrix of the form 
A B

M
C D

 
  
 

                                                                

(2.1) 

and let S be a matrix of the form 
   
   
M A M B

S
M C M D

 
  
 

                             

(2.2) 

1

2

k 0

0 k

 
   

 
and

0

0

 
  
 

v
V

v
.Now, 

1 1

2 2

K (M / C) K (M / D)
KVS

K (M / A) K (M / B)

 
  
 

 
 

 

Then, 

  1 1T

2 2

K (M / C) K (M / D)0 I 0 I
P KVS P

K (M / A) K (M / B)I 0 I 0

    
     
    

 
 

 

2 2

1 1

K (M / A) K (M / B) 0 I

K (M / C) K (M / D) I 0

   
   

  

 
 

 

2 2

1 1

K (M / B) K (M / A)

K (M / D) K (M / C)

 
  
 

 
 

 

Let us consider a system of linear equation SZ = t where S is 

of the form [2.2] satisfy N(M / C) N(M / A)  and 

T TN(M / C) N(M / D) .   If Z and t are partitioned 

conformably as   
 

  
 

x
Z

y
 and 

u
t

w

 
  
 

 then the system 

becomes 
(M / A) (M / B)

(M / C) (M / D)

 
 
 

 
   

   
   

x u

y w
 

                       
( / ) ( / )

( / ) ( / )

  

 

M A x M B y u

M C x M D y w
                                         

 Since S satisfies N(M / C) N(M / A)  and  

T TN(M / C) N(M / D) .    

Using (M / A) (M / A)(M / C) (M / C)   and 

(M / D) (M / C) (M / C)(M / D) (Theorem (1.3)) we 

can solve x and w as, 
† †( / ) ( / ) ( / ) ; x M C u M C M D y  

                                        
† †( / )( / ) ( / ) ( / )( / ) ( / ) . w M A M C u M B M A M C M D y

 
Thus a matrix S of the form (2.2), that satisfies 

N(M / C) N(M / A)  and 
T TN(M / C) N(M / D)

can be transformed into the matrix  

S
 

† †

†

(M / C) (M / C) (M / D)

(M / A)(M / C) S/(M / D)

 
  
 

           (2.3)  
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S  is called a secondary pivot transform of S.  The operation 

that transforms   S S   is called secondary pivot.  
Lemma 2.1. Let S be a matrix of the form (2.2) with 

N(M / C) N(M / A)  and N(M / B) N(M / D).
Then the following are equivalent. 

(i) S is con-s-k-EP with k = k1 k2  Where  

1

2

0
,

0

 
    

  
0

V ,
0

 
  
 




 N S /(M / C) N(M / D)  and 

 N S/(M / B) N(M / A)  

(ii) (M/C) and  S /(M / D) are con-s-k1-EP, (M/B) 

and  S /(M / C)  are con-s-k2-EP.   

           Further 

  T
1N(M / C) N S/(M / B) N((M / D) K )    

and   
           

  T
2N(M / B) N S/(M / C) N((M / A) K ).    

Proof. Since S is con-s-k-EP with k = k1 k2 where 

1

2

0
,

0

 
    

0
V ,

0

 
  
 




  

N(M / C) N(M / A)  and  N S /(M / C) N(M / D)

(by Theorem 2.5 [5]) (M/C) is  

con-s-k1-EP  S /(M / C)   is con-s-k2-EP. 

 T
1N(M / C) N (M / D) K   and                          

     T T
2 2N S/(M / C) K N (M / A) K .   

Since (M/C) is con-s-k1-EP, 

 T
2N (M / C) K N(M / C)   [by definition of con-s-k-

EP matrix]. Therefore 

   T T
2 2N (M / C) K N (M / D) K .   Since S is con-

s-k-EP, KVS is  con-EP implies the secondary rearrangement 

2 2T

1 1

K (M / B) K (M / A)
P KVSP

K (M / D) K (M / C)

 
  
 

 
 

  is also con-EP. 

Further    2 1N K (M / B) N K (M / D)   and   

    1 2N K S/(M / B) N K (M / A)   hold.  Hence by 

(Theorem (2.5) [ 6 ] )   2K (M / B)  is con-EP.  

 1K S/(M / B)   is con-EP, 

   
T T

2 2N K (M / B) N K (M / A)   and  

    
T T

1 2N K S/ M / B N K (M / D) .    Thus we 

have (M/B) is con-s-k2-EP,  S/ M / B    is con-s-k1-EP 

   T T
2 2N (M / B) K N (M / A) K  and 

   T
1N S/ M / B N (M / D) K .     

Since (M/B) is con-s-k2-EP.  By definition 

 T
2N (M / B) K N(M / B).  

Thus  T
2N(M / B) N (M / A) K .   Since the relations 

N(M / C) N(M / A),   

   T T
1 1N (M / C) K N (M / D) K ,   

 N S /(M / C) N(M / D)  and 

    T T
2 2N S/(M / B) K N (M / A) K   holds for 

K1v (M/A) according to the assumptions (by Theorem (1.6)) 

 
†

KVS  is given by the form 

 

 
By using 

      
†

2 2 2 2K (M / A) K S/(M / C) K S/(M / C) K (M / A)    and  

   
†

KVS KVS   reduces to the form  

  
  

     

†
1 1†

†

2 2

K (M/C) K (M/C) 0
KVS KVS

0 K S/(M/C) K S/(M/C)

 
 
  
 

 

 

                       (2.5)     

Since the relation N(M / B) N(M / D),    

   T T
2 2N (M / B) K N A K , 

   N S/(M / B) N M / A and

     T T

1 1N S /(M / B) K N M / D K   holds for 

1K (M / B)  according to the assumptions (by Theorem 

(1.6))   
†

KVS  is also given by the formula,  

 
        

         

†

1 1 1

††

2 1

†

2†

2 2

K K (M/ C) K (M/ D)
KVS

K (M/ A) K S/(M/ C)

S/(M/C) K S/(M/ C)

K (M/ B) K S/(M/C)




 

 
 
   

  



        

(2.6) 
Further using   

           
†

1 1 1 1K M / D K M / C K M / C K M / D      

that is,        
†

M / D M / C M / C M / D   and 

          
†

2 2 2 2K M / A K M / B K M / B K M / A   
  that is   

      
†

M / A M / B M / B M / A   in [2.6] 

   
†

KVS KVS  reduces to the form,    

   
     

     

†

1 1†

†

2 2

K S/(M/B) K S/ M/B 0
KVS KVS

0 K S/ M/C K S/ M/C

     
        

 

 

     (2.7) 
Comparing (2.5) and (2.7) we get,  

           
††

1 1 1 1K M / C K M / C K S / M / B K S / M / B          

 

   
†

1 1 1 1K (M / D) K (M / C) K (M / C) K (M / D) ,   
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      
††

1 1 1 1K M / C M / C K K S/ M / B S/ M / B K            

      
††

M / C M / C S/ M / B S/ M / B         Since 

(M/C) and [S/ (M/B)] are con-s-k1-EP.  

           
††

1 1 1 1K M / C K M / C K S/ M / B K S/ M / B            

       
††

1 1 1 1M / C K K M / C S/ M / B K K S/ M / B            

       
††

M / C M / C S/ M / B S/ M / B         

   N M / C N S/ M / B     

Similarly, by using the formula (2.5) and (2.7), we obtain the 

expressions for     
†

VS VS  . Comparing, these yields 

       
††

M / B M / B S/ M / C S/ M / C          which 

implies    N M / B N S/ M / C .     Thus [ii] holds, (ii) 

  (i) 

   N S/ M / C N M / D    follows directly 

from  

     N S/ M / C N M / B N M / D .      

Similarly  

   N S/ M / A N M / A    

follows from      N S/ M / B N M / A N M / A .   
Now (M/C) is  

con-s-k1- EP and  S/ M / C     is con-s-k2-EP satisfying the 

relation 

   N M / C N M / A ,

     T T

1 1N M / C K N M / D K , 

   N S/ M / C N M / D   & 

     T T

2 2N S / M / C K N M / A K .      Hence 

(by Theorem (2.4)  [6] ) S is con-s-k-EP, Thus [i] holds.   
 
Theorem 2.8. Let S be a con-s-k-EPr matrix of the form [2.2] 

with k = k1 k2 where 
1

2

0
K

0

 
  

 
  and  

0
V ,

0

 
  
 




    N M C N M A ,    

   N M B N M D ,  

   N S/ M / C N M / D     and  

   N S/ M / B N M / A   . Then the following holds.  

(i) The secondary sub matrix (M/C) is con-s-k1-EP 
and secondary sub matrix (M/B) is  

      con-s-k-2-EP.  

(ii) The schur complement  S/ M C    is con-s-

k2-EP  and  S/ M / B     is  con-s-k1-EP.  

(iii)  Each secondary pivot transform of S is con-s-k2-
EPr 
 

Proof. (i) and (ii)  are consequences of Lemma 2.5. By 
Lemma 2.5. KVS satisfies  
 

     1 2N K M / C N K M / A    and  

     T T

1 1N M / C K N M / D K    hence by 

pivoting the block K1VC, the secondary pivot transform 
S  

of S is of the form,  

�
     

      

† †

1 1 1

†

2 1 2

K (M / C) K (M / C) K (M / D)
KVS

K S/(M / A) K S/(M / C) K S/(M / C)

 
 
 
 

  

  

 

�
 

† †
1

†
2 1 2

(M / C) K (M / C) (M / D)
KVS

K (M / A)(M / C) K K S/(M / C)

 
   
 




 

In �KVS  

       † †

1 2 1N M / C K N K M / A M / C K   

   †

1N M / A M / C K ,   

       
T T† †

1N M / C K N M / C M / D  

Further,  
�            † †

1 2 2 2N KVS/ K M / C K S/ M / C K M / A M/ C K        

      

       † †

1M / C K M / C M / D  

         
† †

1 2K S/ M / C K M / A M / C M / C M / C M / D    
 

      
†

2 2K S/ M / C K M / A M / C M / D      

        †

2K S/ M / C M / A M / C M / D     

 2K M / D   

�        
† †

1 2 2KVS / K M / C K S/ M / C K M / D  
 

   

 
By the assumption 

     †

2 2N K S/ M / C N K M / B  
 

    which 

implies       
†

N S / M / C N M / B N M / D .   
 
  

 From Lemma 2.5. (M/C) is con-s-k1-EP and (M/B) is con-s-

k2-EP, Therefore  
†

M C  is con-s-k1-EP  
†

S / M C 
 
   is 

con-s-k2-EP, (By Theorem 2.11. [5]) and 

   
†

M B S M C 
 
   

Also      
T†

2 2N K S/ M / C N K M / B   

       
T† T T

2 2 2N S/ M / C K N M / B K N M / A K       
  
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Now by applying Theorem (2.4), we are that S  is con-s-k-EP.  
Now  

 r (S) (M / C) S/(M / C)                                                                         

(Theorem 1.5.) 

 
†(M / C) (M / B)                                              

(Theorem 1.1. & by Lemma 2.5. ) 

 
† †(M / C) S/(M / C)     

  

 (S)                                                                                                  

(Theorem 1.5.) 

Thus  (S)  is con-s-k-EPr.  Similarly under the conditions 

given on S it can be transformed to its secondary Pivot 

transform by pivoting the block  1K M / B  without 

changing the rand.  
 
Remark 2.9. For k(i) = I, the identity transposition Theorem 
[2.8] reduces to the results for con-s-EP matrices. It KV=I 
then Theorem 2.8 reduces to the (Theorem 1, of [7]). 
 
Remark 2.10. As a special case when S is non singular, then 

conditions N(M / C) N(M / A) and

N(M / B) N(M / D)  automatically hold and [by 

Theorem 1.4 ]  N S/(M / D)    and    N S/(M / B)  are 

non singular, further,   S (M / C) M / B .     
   

Hence it follows that each secondary Pivot transform of S is 
that the non singular. However we note that the non 

singularity of 
S  need not imply S is non singular.  

Example 2.11. 
1 0

A
1 1

 
  
 

 , 
1 1

B
0 1

 
  
 

 , 
1 1

C
0 1

 
  
 

  , 

1 0
D

1 1

 
  
 

 

A B
M

C D

 
  
 

  

1 0 1 1

1 1 0 1
M

1 1 1 0

0 1 1 1

 
 
 
 
 
 

. Schur complement 

of   
1 1

M A
2 1

 
  
 

,  

 

 2

1 1
K V M B

1 2

 
  
 

. Here K1V(M/C) and K2V(M/B) are 

non singular and  
3 3

S M C
0 3

 
    
 

 .  

 2

0 3
K V S M C

3 3

 
    
 

    is Con-EP2. Therefore 

[S/(M/C)] is  Con-s-k2-EP2 . 

       1 2KVS K V M C K V S M C .         

That is       S M C S M C 3.         Since KVS 

is symmetric, KVS is Con-EP3 which implies S is Con-s-k-
EP3. By (2.9). 
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