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INTRODUCTION

Throughout we shall deal with C,,, the space of nxn complex
matrices. Let C, be the space of complex n-tuples. For A €

Cou let AT A* and AT denotes the transpose, conjugate
transpose and Moore Penrose inverse of A respectively. A

matrix A is called con-s-k-EP, if p(A):r and

N(A)=N(A"VK) or R(A)=R(KVA") where
p (A) denotes the rank of A, N(A) and R(A) denotes the null

space and range space of A respectively. Throughout let ‘k’
be the fixed product of disjoint transposition in S,=1, 2, n and
K be the associated permutation matrix. Let us define the

function A (x) = (xk(l) > X(2) 2 Xp(m) ) . A matrix A=(a;) €

Cixn 18 8-k symmetric if a;=a | fori,j=1,2,....n.

n—k(j)+1,n-k(i)+
A matrix A € C,, is said to be con-s-k-EP if it satisfies the
condition Ax=0 < A’k (x)=0or equivalently
N(A)= N(ATVK)- In addition to that A is con-s-k-EP <>
KVA is con-EP or AVK is con-EP and A is con-s-k-EP <

AT is con-s-k-EP. Moreover A is said to be con-s-k-EP; if
A is con-s-k-EP and of rank r. For further properties of con-s-
k-EP matrices one may refer [3]. In this paper we give
necessary and sufficient conditions for a schur complement
pivotal transformation in a con-s-k-EP matrix to be con-s-k-
EP. Further it is shown that in a con-s-k- EP, matrix, every
secondary sub matrix of rank r is con-s-k-EP,. Also discussed
the question of expressing a matrix of rank r as a product of
con-s-k-EP, matrices. Necessary and sufficient conditions for
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products of con-s-k-EP; partitioned matrices to be con-s-k-EP,
are given. In this sequel, we need the following theorems.

Theorem 1.1[2]. For 4,B € C

o p(ad)=p(d 4)= ()= p(4)
=p(4)=p(4)=p(4')
(i) p(AB):p(B)—dimN((A)mN(B*)l)

the following hold:

Theorem 1.2[1]. Let A,B € C

nxn’

and U € Cnxn be any
non singular matrix. Then,

) R(4)=R(B)< R(UAU")=R(UBU")
(i)  N(4)=N(B)e N(UAU")=N(UBU")
Theorem 1.3 [9]. LetA,B eC

i N(4)cN(B)<R(B")cR(4")
< B=BA A foral A € A{l}

iy N(4)cN(B")o R(B)cR(4)
& B=AA B forevery A" € A{1}

Definition 1.4[3].
A B

= . A schur complement of A in M is

C D
(M/A)=D—CAB.

Then

Let M be an nxn matrix of the form
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A B
Theorem 1.5 (Theorem 1 [4]). LetM = , Then
C D

p(M)=p(A4)+p(M/4)
With equality if and only if

N(M/4)c N((1-44")B)
N(M[A) < N((1-A4"4)C") ana
(1-44")B(M]A4) < (I1-4"4)=0
In particular, we have the equality if M satisfies
N(A)cN(C)maN (4 )= N(B").
Theorem 1.6(Theorem 1 [3] and [8]). Let

A B
M = , Then

o _LAT + A'B(M/ ) C4 —ATB(M/A)*J
—(M/4) c4' (M/]4)'

& N(4)eN(C),N(4 ) N(B'),
N(M/4) = N(C")wa N(M/4)c N(B)
(M/D)"  —4'B(M/]4)'

-p'c(M/D)  (M]A)
& N(4)eN(C),N(4 ) N(B'),
N(M/D) cN(B") N(M/D)< N(C).
When, p(M )= p(A4) then M=(§ CjB] and

A'PA" A PC
M =[ j where

Also, M =

B'PA" B'PC”
P= (AA* + BB*)_ A(A*A + C*C)_

2. PIVOTAL TRANSFORMATION ON CON-S-K-EP
MATRICES

In this section we have given necessary and sufficient
conditions for a con-s-k-EP matrix to have its secondary sub
matrices and their schur complement to be con-s-k-EP. This is
a generalization of the result found in [7]. As an application it
is shown that the property of a matrix being con-s-k-EP; is
persevered under the secondary pivot transformation. It is
well known that Theorem (1.2) [7], the class of con-EP
matrices is invariant under secondary rearrangement. By a
secondary rearrangement of a sequence matrix M, we mean a
matrix P' MP

0 I
Where P is a permutation matrix[I 0l By a secondary

rearrangement of a square matrix M, we mean a matrix
P"VMP. Similarly the secondary k rearrangement of a square
matrix M we mean a matrix P'KVMP.

A B

Let M be a matrix of the form M=
C D]

@.1)

| ((M/A) (M/B)
and let S be a matrix of the form S = ((M/C) (M/D)
(2.2)

k0 0 v
K= andV = Now,

0 k, v 0
K, v(M/C) K,V(M/D
KvsS=| ' (M/C) KV( )
K,V(M/A) K,V(M/B)

Then,
pr(gvs)p=|® 1] KVM/O K,V(M/D)] (0 1
A T K,V(M/A) K,v(M/B)| (T 0

[K,v(M/A) K,V(M/B) 0 1
T K,V(M/C) K,V(M/D) 10

_[K,Vv(M/B) K,V(M/A)]
" |K,v(M/D) K, V(M/C) |
Let us consider a system of linear equation SZ =t where S is

of the form [2.2] satisfy N(M/C)c N(M/A) and
N(M/C)' «cN(M/D)".

If Z and t are partitioned

X u
conformably as Z ={ j| and 7 =|: i| then the system
y w

becomes [(M/A) (M/B)} |:x} :|:u}
M/C) M/Dy| [ y] |w
= M/IA)x+M/B)y=u
M/ICyx+M/D)yy=w
Since S satisfies N(M/C) < N(M/A) and
NM/C)' = N(M/D)".
Using M/ A)=(M/A)M/C) (M/C) and
M/D)=M/C) (M/C)(M/D) (Theorem (1.3)) we

can solve x and w as,

x=(M/CYu—M/C)'(M /D) y;
w=M /AWM /C)Y'u+(M/B)—(M/A(M/C)(M/D) y.

Thus a matrix S of the form (2.2), that satisfies
N(M/C)c N(M/A) and N(M/C)" = N(M/D)"
can be transformed into the matrix

S | oy -(M/C)"(M/D)

- 2.3)
(M/A)M/C)  [S/(M/D)]
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Since (M/B) is con-s-k,-EP. By definition
N((M/B)'VK,)=N(M/B).

S is called a secondary pivot transform of S. The operation

that transforms S —> é is called secondary pivot.
Lemma 2.1. Let S be a matrix of the form (2.2) with  Thus N(M/B) C N((M/A)TVKz). Since the relations
NM/C)c N(M/A) and NM/B)c N(M/D).

. . N(M/C)c N(M/A),
Then the following are equivalent.
()  Siscon-s-k-EP with k =k k, Where N((M/C)"VK, )= N((M/D)" VK, ),
k=& 0y Vv) N[S/(M/C)] < N(M/D) and
0 K, vV 0

N([S/(M/B)]T VKz)g N((M/A)"VK, ) holds for
K1v (M/A) according to the assumptions (by Theorem (1.6))
(KVS)T is given by the form

N[S/(M/C)] < N(M/D) and
N[S/(M/B)] = N(M/A)
(i)  (M/C)and [S/(M /D)] are con-s-k,-EP, (M/B)

and [S/ M/ C)] are con-s-k,-EP. RV RV O (KM DKV [S 6] ) K4 R V) —IKV(A[C)J:'K:V(.\-I-I)))&V[S(.\l-q]ﬂ

Further RO SUIEV) STy (RVSOUO)
— T
N(M/C)=N[S/(M/B)]= N(M/D)"' VK,) By using
and K, V(M/A) =K, V[S/(M/O)](K,V[S/(M/O)]) (K,v(M/A))and
N(M/B)=N[S/(M/C)]= N(M/A)"VK,). K, V(M/D)=K,V(M/C)(K,V(M/ C))T (K,v(M/D)),
Proof. Since S is con-s-k-EP with k = k; k, where (KVS) (KVS)T reduces to the form
K= K0 , V= 0 Vv , . (v o) (K vourcy) 0
0 K2 v 0 (KVS)(KVS)' = o R
(KZV[S/(M/C)])(KZV[S/(M/C)] )
N(M/C)c N(M/A) and N[S/(M/C)]< N(M/D) 25)
(by Theorem 2.5 [5]) (M/C) is Since the relation N(M/B) € N(M /D),
con-s-k;-EP [S/(M / C)] is con-s-k,-EP. N((M/B)T VKz) c N(ATVKZ),
N(M/C)=N((M/D)" VK, ) and N[S/(M/B)]< N(M/A)and
T
N([S/(M/C)] VKz)g N((M/A)"VK,). N([S/(M/B)]T VK, ) c N((M/D)T VKI) holds for

Since (M/C) is con-s-k;-EP,
N ((M /C)’ VKZ) =N(M/C) [by definition of con-s-k-
EP matrix]. Therefore

N ((M/C)TVKZ)QN((M/D)TVKZ). Since S is con- <Kvs)«[KV[S/<M/C>l‘ —<Kv<wo><K,wM/m)(Kﬁv[s«M/Ql)'}

-(K,v(M/B)) (K, vom/ ) (Kv[simro)) (Kyv[S/M/O)])

K]V(M / B) according to the assumptions (by Theorem
(1.6)) (KVS)Jr is also given by the formula,

s-k-EP, KVS is con-EP implies the secondary rearrangement (2.6)

PTKVSP{KZV(M/B) K,vM/ A)} is also con-EP. Further using +

K,V(M/D) K,V(M/C) (K,v(M/D))=(K,v(M/C))(K,v(M/C)) (K,v(M/D))

Further N (K,V(M/B)) < N(K,V(M/D)) and thatis, (M/D)=(M/C)(M/C)' (M/D) and
N(K,V[S/M/B)]) < N(K,V(M/A)) hold. Henceby g y(mA) )= (K,v (M/B))(K,V(M/B)) (K,v(M/A))
(Theorem (2.5)[6]) K,V(M/B) is con-EP. that is

K,V[S/(M/B)] is con-EP, (M/A)=(M/B)(M/B)" (M/A) in[2.6]
N(K,V(M/B))" € N(K,V(M/A))" and (KVS)(KVS)' reduces to the form,

N(KIV [S/ (M/ B)])T < N(KZV(M/ D))T - Thus we 135 fivisoo (KVI—S/(I\ﬁ:Z;IiationalJournalijurrentReselrch, Vol. 4,
have (M/B) is con-s-k,-EP, [S/(M/B):I is con-s-k,-EP 2.7

Comparing (2.5) and (2.7) we get,

N((M/B)TVKZ)Q N((M/A)TVKZ) and (K,v(M/C))(K,v(M/C)) =(K,v[s/(M/B)])(K,V[s/(M/B)])

N[S/(M/B)]=N((M/D)" VK, ).



K,V(M/C)(M/C) VK, =K,v[S/(M/B)][S/(M/B)] VK,
(M/C)(M/C)" =[S/(M/B)][S/(M/B)]' since
(M/C) and [S/ (M/B)] are con-s-k;-EP.

(K,v(M/C)) (K,v(M/C))=(K,V[s/(M/B)]) (K,V[S/(M/B)])
(M/C) VK K,V(M/C)=[S/(M/B)] VKK,V[S/(M/B)]
(M/C)' (M/C)=[S/(M/B)]'[S/(M/B)]
N(M/C)c N[S/(M/B)]
Similarly, by using the formula (2.5) and (2.7), we obtain the
expressions for (KVS)T (KVS). Comparing, these yields
(M/B)' (M/B)=[S/(M/C)]'[S/(M/C)] which
implies N(M/B)=N[S/(M/C)]. Thus [ii holds, (i
= ®

NI:S/(M/C):I - N(M/D) follows directly
from

N[S/(M/C)]=N(M/B)= N(M/D).
Similarly

N[S/(M/A)]=N(M/A)
follows from N[ S/(M/B)]=N(M/A)= N(M/A).
Now (M/C) is
con-s-k;- EP and [S/ (M / C)] is con-s-k,-EP satisfying the

relation

N(M/C)c N(M/A),

N((M/C)" VK, )= N((M/D)" VK, ),
N[S/(M/C)]=N(M/D)&

N([8/(M/C)] VK, ) = N((M/A)' VK, ). Hence
(by Theorem (2.4) [6]) S is con-s-k-EP, Thus [i] holds.
Theorem 2.8. Let S be a con-s-k-EP, matrix of the form [2.2]

K, 0
with k =k, k, where K = and
0 K,

V:(g U N(M/C) < N(M/A).
N(M/B)c N(M/D),
N[S/(M/C)]=N(M/D) and

N[S/(M/B):I C N(M/A) . Then the following holds.

(1) The secondary sub matrix (M/C) is con-s-k;-EP
and secondary sub matrix (M/B) is
con-s-k-,-EP.

(ii) The schur complement [S/ (M/ C)] is con-s-
k,-EP and [S/(M/B)] is con-s-k;-EP.

(iii) Each secondary pivot transform of S is con-s-k;,-
EP,

Proof. (1) and (ii) are consequences of Lemma 2.5. By
Lemma 2.5. KVS satisfies

N(K,V(M/C))= N(K,V(M/A)) and
N((M/C)" VK, )= N((M/D)" VK, ) hence by

pivoting the block K, VC, the secondary pivot transform S
of S is of the form,

_[ (K,v(M/C))'

K V[S/IM/A)] (K V[sim/O)] )

-(K,v(M/0))' (K,V(M/D))
K,V[S/M/C)]

S (M/C)"VK, ~-(M/C)'(M/D)
[ K,(M/A)M/O)'K,  K,V[S/(M/C)]

In EVS
N((M/C)' VK, )= N(K,V(M/A)(M/C) VK, | =

N((M/A)(M/C)"VK,),

N((M/C)' VK, )T = N((m/c) (M/D))T
Further,
N(RvS/(Kv(M/Q))')=(K,V[S/(M/C)])+(Kov(M/A) (M/C) VK,

(M/€)" VK, )((M/C) (M/D))

=K,V[S/(M/C)]+K,V(M/A)(M/C)" (M/C)(M/C)' (M/D)

=K,V[S/(M/C)]+K,V(M/A)(M/C)' (M/D)
=K,V([$/(M/C)]+(M/A)(M/C) (M/D))
=K,V(M/D)

= (KVs/(K,v(M/C))' ) =K,V[8/(M/C) |=K,v(M/D)

By the assumption

N(K,V[8/(M/€)' )= N(K,V(M/B)) which
impties N|$/(M/C)' |=N(M/B)< N(M/D).
From Lemma 2.5. (M/C) is con-s-k;-EP and (M/B) is con-s-
k,-EP, Therefore (M/C)Jr is con-s-k;-EP [g/(M/C)T} is

con-g-k~-FEP (Rv Theorem 2 11 51 and
136 International Journal of Current Research, Vol. 4

£ g
Also N(KZVS/(M/C)*)= N(K,V(M/B))'

N([S/(M/C)*]T Vsz:N((M/B)T VK, )= N((M/A)" VK, )



Now by applying Theorem (2.4), we are that S is con-s-k-EP.
Now

r=p(S)=p(M/C)+p[S/(M/C)]

(Theorem 1.5.)
=p(M/C)" +p(M/B)

(Theorem 1.1. & by Lemma 2.5. )
=p(M/C)" +p[S/(M/C)' ]
=p(S)

(Theorem 1.5.)

Thus

given on S it can be transformed to its secondary Pivot

transform by pivoting the block K,V (M / B) without
changing the rand.

(S) is con-s-k-EP,. Similarly under the conditions

Remark 2.9. For k(i) = I, the identity transposition Theorem
[2.8] reduces to the results for con-s-EP matrices. It KV=I
then Theorem 2.8 reduces to the (Theorem 1, of [7]).

Remark 2.10. As a special case when S is non singular, then
conditions N(M/C) < N(M/A)and

N(M/B)c N(M/D) automatically hold and [by
Theorem 1.4 ] N[S/(M/D)] and N[S/(M/B)] are
further,  p|S|=p(M/C)+p(M/B).

Hence it follows that each secondary Pivot transform of S is
that the non singular. However we note that the non

non singular,

singularity of S need not imply S is non singular.

0 I 1 1 1
, B= ,C= ,
eelo 1o

1
Example 2.11. A = L

o[, ]

. Schur complement

(M/A)| (M/B)
(M/C) (M/D)}

V=

- o o o
[ =]
e o — o
o o o =

K,V(M/D) =[K2\’(M/A}]T = [2 ! J

1

non singular and I:S/(M/C)] - |:?) i}

K,V(M/B) =[ ;J . Here K, V(M/C) and K,V(M/B) are

0 3
KZV[S/(M/C):|={3 3} is Con-EP,. Therefore

[S/(M/C)] is Con-s-k,-EP,
p(KVS)=p(K,V(M/C))+p(K,V[S/(M/C)]).
Thatis p(S)=p(M/C)+p[S/(M/C)]=3. Since KVS

is symmetric, KVS is Con-EP; which implies S is Con-s-k-
EP;. By (2.9).
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