

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 10, pp.39782-39787, October, 2016 **INTERNATIONAL JOURNAL OF CURRENT RESEARCH**

RESEARCH ARTICLE

STRONG LINE DOMINATION IN GRAPHS STRONG

M. H. Muddebihal and *Nawazoddin U. Patel

Department of Mathematics Gulbarga University, Kalaburagi – 585106, Karnataka, India

ARTICLE INFO ABSTRACT ARTICLE INFO

Article History: Received $20th$ July, 2016 Received 20th July, 2016
Received in revised form 22nd August, 2016 Accepted 08 th September, 2016 Published online 30th October, 2016

Key words:

Dominating set, Independent domination/Line graph, Roman domination, Edge domination/ Strong split domination, Strong Line domination. Strong Line

For any graph $G = (V, E)$, the Line graph $L(G)$ of a graph G is a graph whose set of vertices is the union of the set of edges of \vec{G} in which two vertices are adjacent if and only if the corresponding edges For any graph $G = (V, E)$, the Line graph $L(G)$ of a graph G is a graph whose set of vertices is the union of the set of edges of G in which two vertices are adjacent if and only if the corresponding edges of G are adjacent in $\langle V[L(G)] - D \rangle$ is strongly dominated by at least one vertex in D. Strong Line domination number $\gamma_{SL}(G)$ of G is the minimum cardinality of strong Line dominating set of G. In this paper, we study $\gamma_{SL}(G)$ of G is the minimum cardinality of strong Line dominating set of G. In this paper, we study graph theoretic properties of $\gamma_{SL}(G)$ and many bounds were obtain in terms of elements of G and its relationship with other domination parameters were found.

Subject Classification number: AMS - 05C69, 05C70. **Subject**

Copyright © 2016, Muddebihal and Nawazoddin U. Patel. This is an open access article distributed under the Creative Commons Attribution License, which **Copyright © 2016, Muddebihal and Nawazoddin U. Patel.** This is an open access article distributed under the Cree
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is proper Subject Classification number: AMS - 05C69, 05C70.
man domination,
gle domination,
ong Line domination. Strong split domination,
ong Line domination. Strong split domination,
ong Line domination.
The Davis of Line of the C

39782-39787.

INTRODUCTION INTRODUCTION

In this paper, all the graphs consider here are simple and finite. In this paper, all the graphs consider here are simple and finite.
For any undefined terms or notation can be found in Harary (Harary, 1972). In general, we use $\langle x \rangle$ to denote the subgraph induced by the set of vertices Λ and $N(\nu)$ and denote open (closed) neighborhoods of a vertex \vec{v} . Let $deg(\vec{v})$ is the degree of vertex **v** and as usual $\mathcal{Q}(\mathcal{Q})(\mathcal{Q}(\mathcal{Q}))$ is the minimum (maximum) degree. A vertex of degree one is called an end vertex and its neighbor is called a support vertex. The degree of an edge $e = uv$ of G is defined by $deg(e) = deg(u) + deg(v)$ and $\delta'(G)(\Delta'(G))$ is the minimum an end vertex and its neighbor is called a support vertex. The vertex degree of an edge $e = uv$ of G is defined by adjace deg $(e) = deg(u) + deg(v)$ and $\delta'(G)(\Delta'(G))$ is the minimum $v_t(G)$ (maximum) degree among the edges of G . The is the minimum number of vertices (edges) in vertex (edge) cover of G. The notation $\beta_0(G)(\beta_1(G))$ is the maximum cardinality of a vertex (edge) independent set in \mathcal{G} . A set $S \subset V(G)$ is said to be a dominating set of G, if every vertex (edge) cover of **G**. The notation $\beta_0(G)(\beta_1(G))$ is the commation maximum cardinality of a vertex (edge) independent set in **G**. a connecte A set $S \subseteq V(G)$ is said to be a dominating set of **G**, if every restrained cardinality of vertices in such a set is called the domination number of \bullet and is denoted by $V(G)$. The concept of edge dominating sets were also studied by Mitchell and Hedetniemi in (Mitchell and Hedetniemi, 1977). (Harary, 1972). In general, we use $\langle X \rangle$ to denote the subgraph induced by the set of vertices \hat{X} and $N(v)$ and $N(v)$ there denote open (closed) neighborhoods of a vertex \hat{v} . Let $deg(v)$ comminimum is the degree cardinality of vertices in such a set is called
number of \boldsymbol{G} and is denoted by $\boldsymbol{\gamma(G)}$. The
dominating sets were also studied by Mitchell
in (Mitchell and Hedetniemi, 1977). Il the graphs consider here are simple and finite.

ined terms or notation can be found in Harary

cover the called an edge on F. Equiviliant Equivalent in the set of vertices X and $N(v)$ and $N(v)$ there exists an edge

**Corresponding author: Nawazoddin U. Patel, *Corresponding U. Patel,*

Department of Mathematics Gulbarga University, Kalaburagi - 585106, Karnataka, India.

An edge dominating set of \overline{G} if every edge in $\overline{E} - F$ is adjacent to at least one edge in \overline{F} . Equivalently, a set \overline{F} edges in \overline{G} is called an edge dominating set of \mathbf{G} if for every edge $e \in \mathbf{E} - \mathbf{F}$, there exists an edge $e_1 \in F$ such that θ and θ_1 have a vertex in common. The edge domination number $\gamma(G)$ of graph \tilde{G} is the minimum cardinality of an edge dominating set of \overline{G} . A dominating set \mathcal{S} is called the total dominating set, if for every vertex $v \in V$, there exists a vertex $u \in S$, $u \neq v$ such that u is adiacent to \overline{v} . The total domination number of \overline{G} is denoted by $r_t(G)$ is the minimum cardinality of total dominating set of G. A dominating set $S \subseteq V(G)$ is a connected dominating set, if the induced subgraph $\leq s$ > has no isolated vertices. The connected domination number $\gamma_{\epsilon}(G)$ of G is the minimum cardinality of a connected dominating set of \mathcal{G} . A dominating set $\mathcal{S} \subseteq V(G)$ is restrained dominating set of \overline{G} , if every vertex not in \overline{S} is adjacent to a vertex in S and to a vertex in $V(G) - S$. The restrained domination number of a graph \overline{G} is denoted by $\gamma_r(G)$ is the minimum cardinality of a restrained dominating set in \overline{G} . The concept of restrained domination in graphs was introduced by Domke *et al.* (1999). A dominating set \overline{D} of a graph $G = (V, E)$ is an independent dominating set if the induced subgraph $\leq D$ > has no edges. THE TRIME IS the same of disposition and the same of the same of

The independent domination number $\mathfrak{t}(G)$ of a graph G is the minimum cardinality of an independent dominating set (Haynes *et al*., 1997; Robert B.Allan and Renu Laskar, 1978). The concept of a dominating set \overline{D} of a graph \overline{G} is a strong split dominating set if the induced subgraph $(V - D)$ is totally disconnected with at least two vertices. The strong split domination number $v_{ss}(G)$ of graph G is the minimum cardinality of a strong split dominating set of \overline{G} . A dominating set \overline{D} of a graph \overline{G} is a global dominating set if \overline{D} is also a dominating set of \overline{G} . The global domination number $v_g(G)$ in the minimum cardinality of a global dominating set of ϵ . This concept was introduced independently by Brigham and Dutton (Brigham and Dutton, 1990; Sampathkumar, 1989). The concept of Roman domination function (RDF) on a line graph $L(G) = (V, E)$ is a function $f: V' \rightarrow \{0, 1, 2\}$ satisfying the condition that every vertex \boldsymbol{u} for which $f(u) = 0$ is adjacent to at least one vertex of \mathbf{v} for which $f(\mathbf{v}) = 2$ in $L(G)$. The weight of a Roman dominating function is the value $f(V) = \sum_{u \in V} f(u)$. The minimum weight of a Roman dominating function on a line graph $L(G)$ is called the Roman domination number of a graph $L(G)$ and is denoted by $\gamma_R(L(G))$ (see (9)). The concept of domination in graphs with its many were found in graph theory (Haynes *et al*., 1998; Haynes *et al*., 1999; Kulli *et al*., 1999; Panfarosh *et al.*, 2014). Analogously, a dominating set \overline{D} of a line $L(G)$ is a cototal dominating set if the induced subgraph with $\langle \nu(L(G)) - D \rangle$ has no isolated vertices. The cototal domination number $v_{\text{ct}}(L(G))$ is the minimum cardinality of a cototal $N(L) = V(L)$ dominating set of $L(G)$ (Panfarosh *et al.*, 2014). The concept of Strong domination was introduced by Sampathkumar and Pushpa Latha in (1996) and well studied in (Muddebihal and Nawazoddin U. Patel, 2014; Muddebihal and Nawazoddin U. Patel, 2015; Muddebihal *et al*., 2015). Given two adjacent vertices μ and ν we say that μ strongly dominates ν if deg (u) \ge deg (v). A set $D\subseteq V(G)$ is strong dominating set of G if very vertex in $V - D$ is strongly dominated by at least one vertex in \overline{D} . The strong domination number $\gamma_s(G)$ is the minimum cardinality of a strong dominating set of \mathbf{C} . A dominating set **D** of a graph $L(G)$ is a strong Line dominating set if every vertex in $\langle V[L(G)] - D \rangle$ is strongly dominated by at least one vertex in \overline{D} . Strong Line domination number $v_{\text{SL}}(G)$ of \overline{G} is the minimum cardinality of strong Line dominating set of $\mathcal G$. In this paper, many bounds on $v_{st}(G)$ were obtained in terms of elements of \mathbf{G} but not the elements of $L(\mathbf{G})$. Also its relation with other domination parameters were established. We need with deg $(u_i) \ge 3.1 \le i \le k$ the following theorem for our further results.

Theorem A(4): for any (p, q) graph G , $r(G) = \frac{p}{2}$.

Main results

Theorem 1: For any non trivial (p,q) tree with $p \ge 3$ and m end vertices, then $y_{5L}(G) \leq m$. Equality holds if $T = P_n, 4 \le n \le 7$

Proof: Let $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(T)$ be the set of all end vertices in 7 with $|A| = m$. Suppose $D \subset V - A$ be the set of all non end vertices then each block incident with the vertices of \overline{D} gives a complete subgraph in $L(T)$.

If $\deg(u) \geq 2$, $u \in V(L(T))$, then $D' = \{u_1, u_2, u_3, \dots, u_m\} \subseteq V[L(T)]$ such that $\deg(u_m) \geq \deg(u_k)$ $\forall u_k \in V(L(T)) - D'$ and $\forall u_m \in D$ Suppose $D'' = \{u_1, u_2, u_3, ..., u_i\}$, $1 \le i \le m$ with $D' \subset$ $V[L(T)] - D$ and $\deg(u_i) = \deg(u_i)$ $\forall u_i \in V[L(T)] - D$ Then $[D' \cup D'']$ forms a minimal Strong dominating set of $L(T)$. Therefore, $|D' \cup D''| \le m$ which gives $\gamma_{SL}(G) \le m$. For equality if P_n , $4 \le n \le 7$ holds, then for each P_4 , P_5 , P_6 and P_7 have $m = 2$ Since by Theorem A, $v_{5L}(P_n) = 2 = m + 4 \le n \le 7$ Then deg $(u_i) \ge \deg(u_k)$ $\forall u_i \in D'$ and $\forall u_k \in V(L(G)) - D'$ Hence the equality.

Theorem 2: For any connected (p,q) graph q , $\gamma_{SL}(G) + \gamma(G) \leq P - 1$

Proof: Let $R = \{v_1, v_2, v_3, \dots, v_m\} \subseteq V(G)$ be the set of vertices with $\deg(v_i) \geq 2, \forall v_i \in R, 1 \leq j \leq m$ Further let there exists a set $R_1 \subset R$ of vertices with $diam(u, v) \geq 3$, $\forall u, v \in R_1$ which covers all the vertices in \overline{G} . Clearly \overline{R}_1 forms a dominating set of \overline{G} . Otherwise if $\frac{diam(u,v)}{ }$ < 3 then there exists at least one vertex $x \notin R_1$ such that $R' = R_1 \cup \{x\}$ form a minimal γ - set of G. Now by definition of $L(G)$, let $H = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[L(G)]$ be the set of vertices such that $\{u_i\} = \{e_i\} \in E(G)$, $1 \le i \le n$ where $\{e_i\}$ are incident with the vertices of \overline{R} . Further let $D \subseteq H$ be the set of vertices $deg(w) \ge 3$ for every $w \in D$ such that $N[D] = V(L(G))$ and if $\forall v_i \in V[L(G)] - D$ Then $\{D'\} \cup \{v_i\}$ Strong line dominating set. Clearly $|\{D\} \cup \{v_i\}| \cup |R'| = |V(G)| - 1$ and hence $\gamma_{SL}(G) + \gamma(G) \le P - 1$

Theorem 3: For any connected (p, q) graph G , $\gamma_{SL}(G) \leq p - \gamma_t(G)$

Proof: Let $H = \{v_1, v_2, v_3, \dots, v_m\}$ be the minimum set of vertices which covers all the vertices in ϵ . Suppose $deg(v_j) \ge 1, \forall v_j \in H_1, 1 \le j \le m$ in the subgraph $\le H_1 >$ then H_1 forms a γ_t (G) – set of G. Otherwise if deg (v_j) < 1 then attach the vertices $w_i \in N(v_i)$ to make $\deg \ge 1$ such that $\langle H_1 \cup \{w_i\} \rangle$ does not contains any isolated vertex. Clearly $H_1 \cup \{w_i\}$ forms a minimal total dominating set of $\,$. Now in (G), let $A \subset V(L(G))$ be the set of vertices corresponding to the edges which are incident to the vertices of \overrightarrow{H} in \overrightarrow{G} . Let there exists a subset $D = \{u_1, u_2, u_3, \dots, u_k\}$ of vertices and $N[u_i] = V(L(G))$ Further $|\deg(u) - \deg(w)| \leq 2 \forall u \in D$ and $w \in V[L(G)] - D$ has at least one vertex in \overline{D} . Clearly \overline{D} forms a minimal Strong dominating set in $L(G)$. Therefore it follows that $|D| \leq |V(G)| - |H \cup \{w_i\}|$ and hence $\gamma_{SL}(G) \leq P - \gamma_t(G)$ For any connected (p,q) graph G ,
 $g(x) = \{v_1, v_2, v_3, \dots, v_m\}$ be the minimum set

thich covers all the vertices in G . Suppose
 $v_i \in H_1 \cup 1 \leq j \leq m$ in the subgraph $\in H_1 \geq h$ then
 $g(x) = s e t$ of G obterwise if $\deg(g$ *A* 1 be the minimum set

vertices in G . Suppose
 P subgraph $\leq H_1 \geq$ then

rwise if deg $(v_j) \leq 1$ then

rake deg ≥ 1 such that

isolated vertex. Clearly

nating set of G . Now in

vertices corresponding to
 Y_H (*G*) $\leq p - \gamma_r$ (*G*).
 Proof: Let $H = \{v_1, v_2, v_2, \dots, \dots, v_m\}$ be the minimum set

of vertices which covers all the vertices in G . Suppose
 $\deg(v_i) \geq 1, \forall v_i \in H_1, 1 \leq j \leq m$ in the subgraph $\lt H_1 >$ then
 H_ **Proof:** Let $H = \{v_1, v_2, v_3, \dots, v_m\}$ be the minimum set

of vertices which covers all the vertices in \overline{G} . Suppose
 $\text{deg}(v_j) \geq 1, \forall v_j \in H_1, 1 \leq j \leq m$ in the subgraph $\lt H_1 \geq$ then
 H_1 forms a $\gamma_r(G) - s\epsilon t$ o

Theorem 4: For any connected (p,q) graph G , $\gamma_{SL}(G) + \gamma_c(G) + 2 \leq \alpha_o(G) + \beta_o(G) + \gamma(G)$

Proof: Let $A = \{v_1, v_2, v_3, ..., ..., v_m\} \subseteq V(G)$ be the set of vertices with $\deg(v_j) \geq 2, \forall v_j \in A, 1 \leq j \leq m$ which are at distance at least two covers all the edges in \overline{G} . Clearly $|A| = \alpha_0(G)$. Further if for any vertex $x \in A$, $N(x) \in V(G)-A$. Then A itself is an independent vertex set. Otherwise $A_1 \cup A_2$ where $A_1 \subseteq A$ and $A_2 \subseteq V(G)-A$ forms a maximum independent set of G with

Now let $S = A \cup A$ where $A \subseteq A$ and $A \subseteq V(G) - A$ be the minimal S set of vertices which covers all the vertices in G . Clearly S forms a minimal X - set of G. Suppose the subgraph $\langle S \rangle$ has $A = \{v_1, v_2, ..., v_i\} \subseteq V(L(T))$ be the set of vertic only one component. Then S itself is a connected dominating S itself set of G. Otherwise if the subgraph $\langle S \rangle$ has more than one $\frac{G}{\langle \text{Jac}(x), \text{Jac}(y) \rangle}$ component, then attach the minimum number of vertices $\{w_j\} \in V(G) - S$ where $\deg(w_j) \geq 2$, which are between the vertices of S such that $S_1 = S \cup \{w_j\}$ forms exactly one component in S_2 the subgraph $\langle S_1 \rangle$. Clearly S_1 forms a minimal X_{ϵ} - set of G. Let $D = {u_1, u_2, u_3, ..., u_k} \subseteq C$ where C is the set of vertices corresponding to the edges which are incident with the vertices of S in G. The minimal set of vertices with $N[D] = V(L(G))$ **Theorem** 7: A and $\forall u_k \in D$ has degree greater or equal to those vertices $u_j \in V(L(G)) - D$. Clearly *D* forms a Strong line dominating set in $L(G)$ Therefore $|D|\cup|S_1|+2\leq |A|\cup|A_1\cup A_2|\cup|S|$ and hence $X_{st}(G) + X_{s}(G) + 2 \leq \Gamma_0(G) + S_0(G) + X(G)$ International Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016
 $S = A \cup A'$ where $A \subseteq A$ and $A' \subseteq V(G) - A$ be the minimal
 $S = A \cup A'$ where $A' \subseteq A$ and $A' \subseteq V(G) - A$ be the minimal
 $S = A \cup A'$ where **19784**
 *Mermational Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016***

Now let** $S = A \cup A$ where $A \subseteq A$ and $A \subseteq V(G) - A$ be the minimal Suppose the set V_2 dominates V_6 . Then S

tet of *International Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016

where* $A \subseteq A$ *and* $A' \subseteq V(G) - A$ *be the minimal

Suppose the set* V_2 *dominates* V_1 *. Then* $S = V_1 \cup V_2$ *form

incide covers all t* **D**
 **Durational Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016

Now let** $S = \lambda \cup A$ **where** $\Lambda \subset \Lambda$ **and** $A' = V(G) - A$ **be the minimal express in** G **. Clearly** S **

For the second all the vertices Example 10 International Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016

V let** $S = A \cup A$ **where** $A \subset A$ **and** $A' \subseteq V(G) - A$ **be the minimal Suppose the set** V_2 **dominates** V_1 **. Then

one compon 19794**
 International Journal of Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016

Now let $S = A \vee A$ where $A \subseteq A$ and $A' \subseteq V(G) - A$ be the minimal Suppose the set V , dominates V . Then S

but intern **EXERCISE THE CONDUCT THE CONDUCTER CONSULTER (EXECUT) THE CONDUCTER (EXECUT) AND CONDUCTER (EXECUT) AND CONDUCTER (EXECUT) AND CONDUCTER (EXECUT) AND CONDUCTER (EXECUT) THE CONDUCTER (EXECUT) AND CONDUCTER (EXECUT) AND C EXAMPLE AT A SURFADE AT A SURFADE AT A SURFADE IN THE CALCULATION (S) FOR A CONSIDENT (S)** $\mathcal{E} = \{c, \mathcal{E} \}$ **and** $\mathcal{E} = \{c, \mathcal{E} \}$ **and SPARE THE CONDUCT ACT CALCE ANTERNATION** (SEE ALT FOR A SURVEY) **FOR A CONDUCT ANTERNATION** (SEE ALT FOR CONDUCT) **FOR A CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT CONDUCT** *Letermational Journal is Current Research, Vol. 06, Leave, 10, <i>np.37932-39787, October, 2016*
 \sqrt{A} where $A' \in V(G) - A_{\text{DS}}$ the number of G , Clearly S minimal Sompose the set V dominates V . Then $\bar{B} = V_e / V_e$ *Marmational Journal Bcearch, Vol. 68, Izme, 10, npm3 (2017)237-2078). Codobe, 2016
* λ *-4 where* λ *-2 and* λ *⁻²* $\mathcal{C}(\mathcal{V})$ *-4 be the minimal Suppose the set* V_i *dominates* V_i *. Then* $S = V_i \cup V_i$ *forms and* N_i *-set* Now let $5 = A \cup A$ where $4 \subset 4$ and $A \subset V(G) = 3$ **cominalisation** $\mathbf{R} = \mathbf{R} \times \mathbf{R}$ *i* (a) $\mathbf{R} = \mathbf{R} \times \mathbf{R} \times \mathbf{R}$ (a) $\mathbf{R} = \mathbf{R} \times \mathbf{R} \times \mathbf{R}$ (a) $\mathbf{R} = \mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \mathbf{R} \times \mathbf$

Theorem 5: For any connected (p,q) , graph G , . $x_{_{SL}}(G) + x_{_r}(G) \le r_{_1}(G) + s_{_1}(G) + u'(G)$

Proof: Let $A = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the maximal set of edges with $N(e_i) \cap N(e_j) = e$ for every $e_i, e_j \in A$, $1 \le i \le n$. $1 \le j \le n$ and $e \in E(G) - A$. Clearly A forms a maximal independent edge set in G. Suppose $B = \{v_1, v_2, ..., v_n\}$ be the set of vertices which are incident with the edges of \overline{A} and if $|B|=P$. Then A itself is an edge covering number. Otherwise consider the minimum number of edges ${e_n} \subseteq E(G) - A$ such that $A_1 = A \cup {e_m}$ forms a minimal edge covering set of G. Let $C = \{v_1, v_2, ..., v_k\} \subseteq V(G)$ be the set of all end vertices. Then $S = C \cup C'$ where $C \subseteq V(G)-C$ be the set of Si vertices covering all the vertices with $diam(u, v) \ge 3 \quad \forall u \in C$, $v \in C$ or for every vertex $w \in V$ $(G)-S$ there exists at least one vertex $z \in V(G) - S$ where $z \cap w = \emptyset$ and $y \in S$. Clearly S forms a minimal x_i - set of G. Suppose $C = \emptyset$. Then S itself D is a minimal Strong line dominat forms a minimal X_r –set of G. Let $D = \{u_1, u_2, ..., u_k\} \subseteq V(L(G))$ be the minimum set of vertices with $N[u_j] = V(L(G))$ for every $u_j \in D$, $1 \le j \le k$. If $\forall v_i \in V(L(G))$ has degree at most 2 and $v_i \in V[L(G)] - D$ then $\{D\} \cup \{v_i\}$ forms a strong line dominating set. Hence $|{D} \cup {v_i}| = \gamma_{s}$ (G) Since for any graph G there exists at least one edge *e* with $\left|\frac{\text{deg}(e)}{e}\right| = u(G)$. Thus which are *B* component, then attach the minimum number of vertices in $\int_{\mathbb{R}}^{\infty} B(s|x) - ds| \leq \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}^{\infty} \int_{\mathbb{R}}$ *v C w V G S y*₁² C (*x*) is a line store of vertices $P^{(1)}(x|z) = \cos(2\pi i)$. Clearly, $\pi_E(T) \leq \pi_g(T) - \Delta(T) + 1$
 X So the store of vertices with $N[P] = V(E(G))$ **Theorem 7:** A Shong line dominating set the metric of vertices with $N[P]$ *L*(0) Therefore Dollars (P_0 +1 μ , Q_1 is the coincident of \mathbf{R}_0 **l** \mathbf{R}_1 **u** \mathbf{R}_2 **l** \mathbf{R}_3 **u** \mathbf{R}_4 **l** \mathbf{R}_5 **u** \mathbf{R}_6 **l** \mathbf{R}_7 **l** \mathbf{R}_8 **l** \mathbf{R}_9 **l** \mathbf{R}_1 **l** F₁(*G*) + x₁(*G*) + x₁(*G*) + x₁(*G*) + x₁(*G*) + x₁(*G*) + x₁(*G*) + *x*_{(*G*)+ x₁(*G*) + *x*_{(*G*)+ x₁(*G*) + *x*_{(*B*)+ *x*^{(*n*})} + *i* (*G*) + *x*_{(*D*)+ *N*_{(*C*) + *n*^{(*n*})+ *i* (*G*)+ *n*(*N*(}}}} *A* = { $e_1,e_2,...,e_n$ } = $E(G)$ be the maximal set of $\begin{cases} \frac{1}{2}E(G) \\ 0.01 \text{ N} \end{cases}$ $\begin{cases} \frac{1}{2}E(G) \\ 0.01 \text{ N} \end{cases}$ consider the main and number of equipment of equipment of equipment of equipment $f(x) = (x_1 - y_1)$. From the meteors $x_1 - y_2 = (x_1 - y_1)$, $y_1 - y_2 = (x_1 - y_2)$, $y_2 - y_1 = (x_1 - y_1)$, $y_2 - y_2 = (x_1 - y_2)$, $y_1 - y_2 = (x_1 - y_1)$, *V* Surface in $S = C \cup C$ where $\overline{x} = V$ (*V*) $\overline{Y} = \frac{V}{V}$ (*C*) $\overline{Y} = \frac{V}{V}$ (*C*) $\overline{Y} = \frac{V}{$

There fore $x_{sL}(G) + x_r(G) \leq L_1(G) + S_1(G) + \omega(G)$. The following theorem relates the Strong line domination number and Roman domination number of 7.

Theorem 6: For any non trivial tree \overline{T} with $P \ge 3$, then $\gamma_{SL}(T) \leq \gamma_R(T) - \Delta(T) + 1$

Proof: Let $f: V(T) \to \{0,1,2\}$ and partition the vertex set $V(T)$ into (V_0, V_1, V_2) induced by \overline{f} with $|V_i| = n_i$ for $i = 0, 1, 2$.

Suppose the set V_2 dominates V_0 . Then $S = V_1 \cup V_2$ forms a minimal Roman dominating set of T . Further let $A = \{v_1, v_2, ..., v_i\} \subseteq V(L(T))$ be the set of vertices with $\deg(v_j) \geq 3$. Suppose there exists a vertex set $D \subseteq A$ with $N[D] = V(L(T))$ and if $|\deg(x) - \deg(y)| \leq 2$, $\forall x \in D$, $0, y \in V(L(T)) - D$. Then p forms a Strong line dominating set in $L(T)$. Otherwise there exists at least one vertex $\{w\} \subseteq A$ where $\{w\} \notin D$ such that $D \cup \{w\}$ forms a minimal x_{st} - set in $L(T)$. Since for any tree G there exists at $\int_{S_1}^{S_2}$. Clearly S_1 forms a minimal X_{c-} set of G. Let least one vertex $V \in V(T)$ of maximum degree $\Delta(T)$, then $|D \cup \{w\}| \leq |S| - |\text{deg}(v)| + 1$, Clearly, $\gamma_{SL}(T) \leq \gamma_R(T) - \Delta(T) + 1$ *A* $\subseteq V(G) - A$ be the minimal suppose the set V_2 dominates V_6 . Then $S = V_1 \cup V_2$ forms a vertices in G . Clearly S minimal Roman dominating set of T . Further let pose the subgraph $\langle S \rangle$ has $A = \{v_1, v_2, ..., v_i\} \$ *Current Research, Vol. 08, Issue, 10, pp.39782-39787, October, 2016

¹ Le the minimal Suppose the set* V_2 *dominates* V_1 *. Then* $S = V_1 \cup V_2$ *forms a
* G *. Clearly* S *minimal Roman dominating set of* T *. Further let
 p q*, *G* 2-39787, October, 2016
 *V*₂ dominates v_0 . Then $S = V_1 \cup V_2$ forms a
 L(*T*)) be the set of vertices with $\frac{\deg(v_j) \ge 3}{\deg(v_j) \ge 3}$.
 *S*ts a vertex set $D \subseteq A$ with $N[D] = V(L(T))$ and
 ≤ 2 , $\forall x \in D$, $0 \quad y \in V(L(T)) - D$. *A*, *Issue, 10, pp.39782-39787, October, 2016*

Suppose the set V_2 dominates V_6 . Then $S = V_1 \cup V_2$ forms a

minimal Roman dominating set of *T*. Further let
 $A = \{v_1, v_2, ..., v_i\} \subseteq V(L(T))$ be the set of vertices with $\$ 16
 V₀ . Then $S = V_1 \cup V_2$ forms a

set of *T*. Further let

of vertices with $\deg(v_j) \ge 3$.
 $D \subseteq A$ with $N[D] = V(L(T))$ and
 $\in V(L(T)) - D$. Then *p* forms
 T). Otherwise there exists at
 $\in D$ such that $D \cup \{w\}$ forms a
 Issue, 10, pp.39782-39787, October, 2016

ppose the set V_2 dominates v_6 . Then $S = V_1 \cup V_2$ forms a

inimal Roman dominating set of T. Further let
 $\{v_1, v_2, ..., v_i\} \subseteq V(L(T))$ be the set of vertices with $\deg(v_j) \ge 3$.

pp **2016**
 V₀ . Then $S = V_1 \cup V_2$ forms a

set of *T*. Further let

of vertices with $\deg(v_j) \ge 3$.
 $D \subseteq A$ with $N[D] = V(L(T))$ and
 $y \in V(L(T)) - D$. Then *D* forms
 $L(T)$. Otherwise there exists at
 $L(f) \notin D$ such that $D \cup \{w\}$ *w*₂ dominates v_0 . Then $S = V_1 \cup V_2$ forms a
 *w*₂ dominating set of *T*. Further let $(L(T))$ be the set of vertices with $\deg(v_j) \ge 3$.

ists a vertex set $D \subseteq A$ with $N[D] = V(L(T))$ and ≤ 2 , $\forall x \in D$, 0 $y \in V(L(T)) - D$. *SLAPA SPACE 1 S PLAPAPE 1 C C <i>CLAPE 1 C CLAP CLAP* 39787, October, 2016

⁷₂ dominates v_6 . Then $S = V_1 \cup V_2$ forms a

dominating set of *T*. Further let
 (T) be the set of vertices with $\deg(v_j) \ge 3$.

ts a vertex set $D \subseteq A$ with $N[D] = V(L(T))$ and
 $2, \forall x \in D, 0, y \in V(L(T)) -$ *B*, *Issue, 10, pp.39782-39787, October, 2016*

Suppose the set V_z dominates V_s . Then $S = V_1 \cup V_z$ forms a

inimial Roman dominating set of *T*. Further let
 $A = \{v_1, v_2, ..., v_r\} \subseteq V(L(T))$ be the set of vertices with $\frac{\deg$ *Z*₁ \cup *V*₂ forms a

Further let
 $\deg(v_j) \ge 3$
 $D] = V(L(T))$ and

Then *D* forms

there exists at
 $\lim_{y \to 0} \frac{\deg(v_j)}{\deg(v_j)}$ forms a

there exists at
 $\deg(u_j)$
 $\deg(v_j)$, then
 $\deg(v_j) = \deg(v_j)$
 $\deg(v_j)$, one of the
 $\deg(v_j) \ge$ *x* = $V_1 \cup V_2$ forms a
 x with deg(v_j) ≥ 3
 x with deg(v_j) ≥ 3
 x $[D] = v(L(T))$ and
 n $D \cup \{w\}$ forms wise there exists at
 x $D \cup \{w\}$ forms a
 x e $\frac{\Delta(T)}{T}$, then
 x = *D*, one of the
 x = *D*, o *ber, 2016*
 y Exerces V. Then $S = V_1 \cup V_2$ forms a

ing set of T. Further let
 \csc{g} and \sin{g} \sin{g} \sin{g} \sin{g} \sin{g}
 \csc{g} and \sin{g} \sin{g}
 \sin{g} \sin{g} \sin{g}
 \sin{g} \cos{g} \sin{h}
 $\sin{g$ *I0, pp.39782-39787, October, 2016*

2 *If* p , *P.39782-39787, October, 2016*

2 If Roman dominating set of *T*. Further let
 $w_1, w_2 \in V(L(T))$ be the set of vertices with $\frac{\deg(v_1) \geq 3}{\deg(v_1) \geq 3}$,
 v_1 there exists *B*, *Issue, 10, pp.39782-39787, October, 2016

Suppose the set* $\frac{V_2}{V_2}$ *dominates* $\frac{V_1}{V_2}$ *. Then* $S=V_1\cup V_2$ *forms a

ninimal Roman dominating set of* T *. Further let
* $A = \{r_1, v_2, ..., v_i\} \in V(L(T))$ *be the set of v* **DS,** Issue, 10, pp.39782-39787, October, 2016

Suppose the set V_z dominates V_x . Then $S = V_y \cup V$, forms a

minimal Roman dominating set of T . Further let
 $A = \{v_1, v_2, ..., v_n\} = V(L(T))$ be the set of vertices with $\frac{d\exp(V$

Theorem 7: A Strong line dominating set $D \subseteq V(L(G))$ is minimal if and only if for each vertex $x \in D$, one of the following condition holds.

- a) There exists a vertex $y \in V(L(G)) D$ such that $N(y) \cap D = \{x\}$
- b) \bar{x} is an isolated vertex in $\langle D \rangle$.
- c) $\langle (V(L(G))-D)\cup \{x\} \rangle$ is connected.

Proof: Suppose D is a minimal Strong line dominating set of G and there exists a vertex $x \in D$ such that χ does not hold any of the above conditions. Then for some vertex V the set $D_1 = D - \{v\}$ forms a Strong line dominating set of G by the conditions (a) and (b). Also by (c), $\langle V(L(G)) - D \rangle$ is disconnected. This implies that \overline{D} is a Strong line dominating set of G , a contradiction. Conversely, suppose for every vertex A and if $x \in D$ one of the above statements hold. Further if D is not minimal. Then there exists a vertex $x \in D$ such that $D-\{x\}$ is a Strong line dominating set of G and there exists a vertex $y \in D-\{x\}$ such that \mathcal{Y} dominates \mathcal{X} . That is $y \in N(x)$. Therefore \bar{x} does not satisfy (a) and (b). Hence it must satisfy (c). Then there exists a vertex $y \in V(L(G)) - D$ and $N(y) \cap D = \{x\}$. Since $D-\{x\}$ is a Strong line dominating set of G, then there exists a vertex $z \in D-\{x\}$ and $z \in N(y)$. Therefore $w \in N(y) \cap D$ where $w \neq x$, a contradiction to the fact that $N(y) \cap D = \{x\}$ and $\langle V[(L(G)) - D] \cup \{x\} \rangle$ is connected. Clearly D is a minimal Strong line dominating set of G . *i of Crement Research, Vol. 08, Issne, 10, pn,39782-39787, October, 2016*

^{-A} be the minimal Suppose the set V_x dominates V_x . Then $S = V_x \cup N_x$ forms a

in *G*, Clearly *S* minimal Roman dominating set of *T*. Furthe **Example 11:** the vertices in G. Clearly S minimal Roman dominating set of T.

of G. Suppose the subgraph ⁽⁸⁾ has $A = \{v_1, \ldots, v_n\} \in V(L(T))$ be the set of vertices with

the subgraph (8) has more than one than one than th Ex or C. Once
Point $\sum_{k=1}^{\infty} (kx)^{2} \times 2^{k} \times 2^{k$ *^G C v v v V G* 1 2 , ,..., *^k S* $C(v_i)$ forms exactly one component in last one vertex $\{v = 0$ where $\{v = 0\}$ where $\{v = 0\}$ and $\{v = 0\}$ a Least one vertices
 C^{C} component in lamimal $x_k = \pi^{\text{C}}$ in $\frac{|\psi(x_0)|}{\sqrt{2}}$ forms a state of G . Let C^{C} let \mathbb{R}^{C} component in minimal $x_k = \pi^{\text{C}}$ in \mathbb{R}^{C} . Therefore we be th **and** only controllar $M_0 = 5\pi^2$ in $L(1)$. Since for any tree feats at the set of vertices $|D^2 + |z| = |z| - |z| \cos(\gamma + \alpha)$ or maximum degree $\Delta(T)$, then the set of vertices $|D^2 + |z| \le |z| + |z| \cos(\gamma + \alpha)$. Clearly, $x_R(T) \le x_R(T)$ **EVALUATION THE SET AS THE CONSERVATION CONSERVATION (Fig. 1)** $\int \frac{1}{2} f(x) f(x) dx = 0$ $\int \frac{1}{2} f(x) f(x) dx = 0$ **(b)** $\int \frac{1}{2} f(x) f(x) dx = 0$ (b) $\int \frac{1}{2} f(x) f(x) dx = 0$ (c) $\int \frac{1}{2} f(x) f(x) dx = 0$ (c) $\int \frac{1}{2} f(x) f(x) dx = 0$ and $\int \frac{$ **Equipe to the exists a vertex** $\sqrt{v_1}(L(x)) - D(x)$ **and there exists a vertex** $\sqrt{v_2}$ **and** $\sqrt{v_1}$ **and** $\sqrt{v_2}$ **and hence** $\frac{1}{2}$ **and hence** $\frac{1}{2}$ **is a minimal Strong line dominating set of** $\sqrt{v_1}(L(x)) - D(x)$ **. By a min Example 10**

The maximal set of and there exists a vertex $x \in D$ such that X does not be
 $e_i, e_j \in A$, $1 \le i \le n$, $2 - |z|$ forms a Strong line dominating set of G by

forms a maximal set of Q_i and this implies that *V L G D ^G x* = $\langle v_i, v_i, \ldots, v_i \rangle \subseteq V(L(T))$ be the set of vertices with $\frac{\deg(v_i) \ge 3}{\chi(b_i) \le 1}$
suppose there exists a vertex set $D \subseteq 4$ with $N[D]-V(L(T))$ and
suppose there exists a vertex set $D \subseteq V \setminus V(L(T)) - D$. Then *n* forms
strong lin *x* and $N[D] = V(L(T))$ and $V(L(T)) - D$. Then *b* forms of $(L(T)) - D$. Then *b* forms a such that $D \cup \{w\}$ forms a any tree *G* there exists at such that $D \cup \{w\}$ forms a any tree *G* there exists at mum degree $\Delta(T)$, then suppose there exists a werts $D \in \mathcal{H}$ with $n^{y}P_{2} - x$ with $n^{y}P_{1} - x(x + y)$ and
 y $|p(x)| \to 2$, $\sqrt{x} \in D$, $0 \neq v(L(T)) - D$. Then ν forms

Strong line dominating set in $\frac{L(T)}{T}$ observations there exists at

east *y*(*v*). Otherwise there exists at $\partial^k e^D$ such that $D \cup \{w\}$ forms a
for any tree *G* there exists at
aximum degree $\Delta(T)$, then
aximum degree $\Delta(T)$, then
ominating set $D \subseteq V(L(G))$ is
h vertex $x \in D$, one of the
 L *D* $\sin \theta$ $\cos \theta$ *z*(*v*). Since for any tree **^{***z***}** there exists at $V(T)$ of maximum degree $\Delta(T)$, then Clearly, $y_{\Omega}(T) \leq y_{\Omega}(T) - \Delta(T) + 1$

Ong line dominating set $D \subseteq V(L(G))$ is if for each vertex $x \in D$, one of the ololds.

vertex y Least one vertex $e^{-x} \times e^{x} \$ *N* Fried 11 (*N* Fried 1 (*N* Fried 1 (*N* Fried 1 (*N* Friedment 7: A Strong line dominating set $D \subset V(L(G))$ is **Chooren** 7: A Strong line dominating set $D \subset V(L(G))$ ($\langle V(L(G)) - D \rangle \cup \langle V(L(G)) - D \rangle$ ($\langle V(L(G)) - D \rangle \cup \langle V(L(G)) - D \rangle$) (\langle rollowing condution holds.

a) There exists a vertex $x \in V(L(G)) - D$ such that $N(y) \cap D = \{x\}$

b) *X* is an isolated vertex in $\langle D \rangle$.

c) $\langle |V(L(G)) - D \rangle \cup \{x\} \rangle$ is connected.
 Proof: Suppose *D* is a minimal Strong line d *A* D is a minimal Strong line dominating set of exists a vertex $x \in D$ such that X does not hold bove conditions. Then for some vertex V the set rms a Strong line dominating set of G by the set rms a Strong line inimal Strong line dominating set of

ex $x \in D$ such that X does not hold

ns. Then for some vertex V the set
 J line dominating set of G by the
 Also by (c), $\langle V(L(G)) - D \rangle$ is
 S that D is a Strong line dominating
 J and ∞ does not not

some vertex V the set

ting set of G by the
 (C) , $\langle V(L(G)) - D \rangle$ is

Strong line dominating

uppose for every vertex
 d. Further if D is not
 D such that $D^{-\{x\}}$ is a
 D such that and the tect sake stellar the verte sake the minimal of violation

any of the above conditions. Then for some vertex *V* the set
 $D_n = D_n^{-1}v^1$ forms a Strong line dominating set of *G* by the

conditions (a) and (b). Als

Theorem 8: For any connected (p,q) graph G , $x_{st}(G) + x_c(G) \leq diam(G) + x(G)-1$. Equality holds with $P \geq 3$. *G*

Proof: Let $A \subseteq V(G)$ be the minimal set of vertices. Further, G there there exists an edge set $J \subseteq J$ where J' is the set of edges $(e) = u(G)$ Thus which are incident with the vertices of A constituting the longest path in G such that $|J| =$ alam(G). Let S $\bigcap_{i=1}^{n} V_1, V_2, \dots, V_k \bigsubseteq A$ be the minimal set of vertices which covers all the vertices in G . Clearly S forms a minimal dominating set of G. Suppose the subgraph $\lt s$ is connected. Then \overline{S} itself is a $X_c - set$. Otherwise there exists at least one vertex $x \in V(G) - S'$ and $S' = S \cup \{x\}$ forms a minimal connected dominating set of G . Now in $L(G)$, let $\mathcal{L} = \{u_1, u_2, ..., u_n\} \subseteq V(L(G))$ be the set of $\{u_j\} = \{e_j\} \in E(G)$, $1 \le j \le n$ where $\{e_j\}$ are incident with the vertices of S. iction. Conversely, suppose for every vertex
above statements hold. Further if D is not
exist a vertex $x \in D$ such that $D - \{x\}$ is a
ating set of G and there exists a vertex
hat Y dominates X . That is $y \in N(x)$,
 Expressed to the vertex is hold. Further if *D* is not $x \in D$ such that $D^{-{x}}$ is a id there exists a vertex nates *X*. That is $y \in N(x)$, and there exists a vertex nates *X*. That is $y \in N(x)$, and (b). Hence it must sati *x*∈*D* such that $L^{(n)}$ is a

and there exists a vertex

ates *X*. That is $y \in N(x)$.
 $d(b)$. Hence it must satisfy
 $(L(G)) - D$ and $N(y) \cap D = \{x\}$.

aating set of *G*, then there

tradiction to the fact that
 $\{x\} >$ is co iminal. Then there exists a vertex $x \in P$ such that $P^{-1/2}$ is a
throng line dominating set of G and there exists a vertex
 $y \in D-[x]$ such that Y dominates X . That is $y \in N(x)$.
Therefore X does not satisfy (a) and $y \in D^2(x)$ such that y dominates X. That is $y \in N(x)$.

Therefore X does not satisfy (a) and (b). Hence it must satisfy

Since $D - [x]$ is a Strong line dominating set of G , then there
 $e^{-\beta}$ is a Strong line dominating

Further let $D \subseteq F$ be the set of vertices with $N[D] =$ and $\forall u_k \in \langle V(L(G)) - D \rangle$ deg $(u_k) \leq$ deg (u_j) where $\forall u_j \in D$ Then \overline{D} forms a Strong line dominating set of G . Otherwise there exists at least one vertex $\{u\} \in V(L(G)) - D$ such that deg (u) > deg (u_j) , $\forall u_j \in D$. Clearly $D \cup \{u\}$ forms a minimal $X_{SL} - set$ of G. Thus $|D \cup \{u\}| \cup |S| \le |J| \cup |S| - 1$. Hence vertices. Suppose there exist . *Muddebihal and Nawazoddin U. Patel, Strong line domination*
 $D \subseteq F$ be the set of vertices with $N[D] = V(L(G))$ **Proof:** Suppose *A*
 $V(L(G)) - D$, deg $(u_k) \leq$ deg (u_j) where $\forall u_j \in D$ set of vertices whic

ms a Strong line dom

Theorem 9: For any non trivial tree \overline{T} with $P \ge 3$ vertices and C number of cut vertices, then $\gamma_{SL}(T) \leq C$.

Proof: Let $F = \{v_1, v_2, ..., v_k\} \subseteq V(T)$ be the set of all cut $\begin{array}{ccc} \text{Otherwise} & \text{if} & \text{if} & \text{if} \\ \text{if} & \text{if} & \text{if} & \text{if} \end{array}$ vertices in T with $|F| = C$. Further, let A be the set of edges which are incident with the vertices of \overline{F} . Now by the definition of line graph, suppose $\{u_1, u_2, ..., u_j\} \subseteq A'$ be the set of vertices which covers all the Otherwise there exists at vertices in $L(T)$, deg $(u_k) \ge \text{deg } (u_n)$ where $\forall u_k \in D$ and . Clearly D forms a minimal Strong line dominating set of $L(T)$, which gives $|D| \le |F|$. Hence form $X_{SL}(T) \leq C$ *Muddebihal and Nawazoddin U. Patel, Stro*
 \downarrow e set of vertices with $N[D] = V(L(G))$ **Proc**
 \downarrow deg $(u_k) \leq \deg(u_j)$ where $\nabla u_j \in D$ set c
 \downarrow line dominating set of G . Otherwise
 $\downarrow u_j \in D$. It includes the set of Further let $D \subset F$ be the set of vertices with $N[D] = V(L(G))$ **Proof:** Sund $\nabla u_k \in (V(L(G)) - D)$, deg $(u_k) \le \deg(u_i)$ where $\nabla u_i \in D$, est of vertical and $\log(u_k) \le \deg(u_i)$ where $\nabla u_k \in D$, est of vertical and $\log(u_k) \le \deg(u_k)$, where *V V*, G *S diam*(*G*) + *x*(*G*) -1
 Pen 9: For any non trivial tree *T* with $P \ge 3$ vertices V *Vi*, $\in B_1$, $V_j \in B$

number of cut vertices, then $\gamma_{2k}(T) \le C$
 \therefore Let $F = \{\gamma_1, \gamma_2, ..., \gamma_r\} \subseteq V(T)$ be the

Theorem 10: For any connected (p,q) graph G , $x_*(G) \leq \left[\frac{p}{2}\right]$.

Proof: Let $D = \{v_1, v_2, ..., v_m\} \subseteq V(L(G))$ be the minimal Strong $|V(L(G))| - 1$. line dominating set of G. Suppose $|V(L(G)) - D| = 0$. Then the result follows immediately. Further if $|V(L(G)) - D| \ge 2$ then $V(L(G)) - D$ contains at least two vertices such that $2n < p$ Hence $X_{SL}(G) = n < \lceil p/2 \rceil$

Theorem 11: For any non trivial tree T and $T \neq K_{1,n}$ $n \geq 2$, then $X_{SL}(T) \leq q - \Delta(T)$

Proof: Let $D = \{v_1, v_2, ..., v_n\} \subseteq V(L(T))$ be the set of all vertices. Suppose there exists a set of vertices line $S = {u_1, u_2, ..., u_m} \subseteq V(L(T)) - B$ such that $dist(u_j, v_k) \ge 2$, $v_k \in B$, $1 \le j \le m$, $1 \le k \le n$. Then $S = B$ forms a Strong line dominating set of T . Otherwise if $B \subset V(L(T))$, then select the set of vertices $S = B$ such that $N[S] = v(L(T))$ and the subgraph is disconnected. Clearly in any case S forms a minimal Strong line dominating set of T . Since for any tree T there exists at least one edge $\mathcal{L} \subset \mathcal{L}(T)$ with $\deg(e) = \Delta(T)$, We obtain $|S| \le |E(T)| - \Delta(T)$. Therefore $X_{SL}(T) \leq q - \Delta(T)$ is the set of edges which are incident with the vertices of F' .
 $V(A(G)Y - D)$, then definition of time graph suppose control is equivalently the measure of G' .
 $D = \{n_1, n_2, \ldots n_r\} \subseteq A$ for the graph suppose Cone an *Now* by the definition of line graph, suppose Charly *D* forms a Strong line denotes ω_2 **b** ω_2 *k* ω_3 *k* ω_4 *b* ω_5 *k* ω_6 *b* ω_7 *k* ω_8 **c** *k* ω_7 *k* ω_8 *k* ω_7 *c* ω_8 *c B* $B = \frac{W(L(V) - D)}{N}$ Chanky B from a minimal Strong line
 Control of $L(P)$, which gives $\left[P_1 e^{i\frac{1}{2} E_1} P_2$ **From a minimal** $X_{\infty} - \text{set } G$ **From (***B, A***)**
 Control of *D* **Example 2.1 (***B, which* **gives \left[P_2 \ Theorem 10:** For any connected $\binom{p,q}{p}$ **c** $\binom{p,q}{q}$ **Proof:** Let $D = \{v_1, v_2, \ldots, v_n\} \subset V(L(G))$ be the minimal Strong $\begin{aligned}\nV(L(G)) &= 1 \\
V(L(G)) &= 1\n\end{aligned}$
 SCLUMB THE CONSTRANGE (CONSTRANGE) The minimal Strong $\begin{aligned}\nV(L(G)) &= 1 \\
V(L(G)) &= 0\n\end{aligned}$ **Proof:** To prove this resul

Theorem 12: For any acyclic (p, q) graph G , $\gamma_{SL}(G) \leq i(G)$. Where $i(G)$ is an independent domination number G.

Proof: Suppose $A = \{v_1, v_2, v_3, ..., ..., v_n\} \subseteq V(G)$ be the set of vertices which covers all the vertices in $\mathcal G$. Further, if $\forall v_i \in A$, $deg v_i = 0$, then A itself is an independent dominating set of G. Otherwise $S = A' \cup I$, where $A \subseteq A$ and $I \subset V(G) - A$ forms a minimal independent dominating set of **6**. Now let $B = \{v_1, v_2, ..., v_m\} \subseteq V(L(G))$ be the set of all vertices. Suppose there exists a set of vertices $B_1 = {u_1, u_2, ..., u_n} \subseteq V(L(G)) - B$ and deg $(u_i) \ge$ deg (v_j) , $\forall u_i \in B_1$, $v_j \in B$, $1 \le i \le n$, $1 \le j \le m$. Then $D = B \cup B_1$ forms a Strong line dominating set of G . Otherwise if $B \subset V(L(G))$, then select the set of vertices such that $N[D] = V(L(G))$ and $\forall u_k \in$ $F = \frac{V(L(\circ)) - D}{L}$, then deg $(u_k) \le \deg(u_j)$ where $\nabla u_j \in D$. Clearly \overline{D} forms a Strong line dominating set of \overline{G} . Otherwise there exists at least one vertex $\{u\} \in V(L(G)) - D$ such that deg (u) > deg (u_j) $\forall u_j \in D$ Clearly $D \cup \{u\}$ forms a minimal x_{st} – set of G. Hence $|D \cup \{u\}| \leq |V(G)|$ and clearly $\gamma_{5L}(G) \leq i(G)$. *M Nawazoddin U. Patel, Strong line domination in graphs*
 $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the

where $\forall u_j \in D$ set of vertices which covers all the vertices in G. Further, if
 $\forall v_i \in A$, *Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs*
 $D \subseteq F$ be the set of vertices with $N[D] = V(L(G))$
 $V(L(G)) - D)$, deg $(u_k) \le \deg(u_l)$ where $\forall u_j \in D$

set of vertices which covers all the vertices in G. Fund
 unddebihal and Nawazoddin U. Patel, Strong line domination in graphs

vices with $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the
 $\leq \deg(u_j)$ where $\forall u_j \in D$ set of vertices which covers all the vertice *D* debihal and Nawazoddin U. Patel, Strong line domination in graphs
 $\mathcal{B} = \{v_1, v_2, v_3, \ldots, v_m\}$
 $\mathcal{B} = \{v_1, v_2, v_3, \ldots, v_m\}$
 $\mathcal{B} = \{v_1, v_2, v_3, \ldots, v_m\}$
 $\mathcal{B} = \{v_i\}$
 $\mathcal{B} = \{v_i\}$
 $\mathcal{B} = \{v_i\}$
 Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs

vertices with $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be the
 u_k) $\leq \deg(u_j)$ where $\nabla u_j \in D$ set of vertices which covers all th 39785

Hurther let $D \subseteq F$ be the set of vertices with $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be the

flurther let $D \subseteq F$ be the set of vertices with $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n$ **Muddebihal and Noveroddin U. Patd, Shrong line domination in graphs**
 $D \subset F$ be the set of vertices with $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, ..., w_n\} \subseteq V(G)$ be the
 $V(L(G)) - D$, deg $(u_k) \leq \deg(u_j)$ where $\forall u_j \in D$ set of *Muddebited and Nawazoddin U. Patel, Strong line domination in graphs*
 For extract some $N[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be
 For extract some $\forall v_i \in A$ *, deg* $\{v_i = 0\}$ *, then* A *itself is an hal and Nawazoddin U. Patel, Strong line domination in graphs*
 $\text{trh}(M[D] = V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\}$
 $\text{trh}(G)$ where $\nabla u_j \in D$ set of vertices which covers all the
 $\forall v_i \in A$ deg $v_i = 0$, then A **EXAMPLE 12** The set of vertices with $N[D] = V(L(G))$. **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(L(G))$

Then P forms a Strong line dominanting set of vertices with $N[D] = V(L(G))$. **Proof:** Suppose $A = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(L$ *nd Nawazoddin U. Patel, Strong line domination in graphs*
 N[*D*]= $V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \dots, \dots, v_n\}$
 N[*D*]= $V(L(G))$ **Proof:** Suppose $A = \{v_1, v_2, v_3, \dots, \dots, v_n\}$
 $V_{\text{up}} \in \mathcal{B}$. **C** *Otherwise p*) \leq deg (*u_i*) where $\forall u_i \in D$ we for vertices which covers all the vertices in G . Forming set of G , otherwise $\frac{1}{4}$ deg $u_i = 0$, then \hat{A} is lest f is sent in $\{u_i \in V(G) - D$ such that $\sum_{i=1}^{n} V(x_i(G))$ $V(L(G))$ Proof: Suppose $A = \{v_1, v_2, v_3, \dots, v_{n_B}\} \subseteq V(G)$ be the
 $tu_j \in D$ set of vertices which covers all the vertices in G. Further, if

therwise

denoting set of G. Otherwise $S = A' \cup I$, where $A'_{C} \subseteq A$ and

then that
 I **EVALUAT ALL CONTAGES** (*V*) is equilable that the video σ is a substrained of G . Otherwise $\sigma^2 = 0$, then σ^2 is a substrained at least one vertex $\langle v \rangle$ with $\epsilon^2 \rho^2$ and σ^2 (*D*). Then σ^2 is a subst line diminuiting set of \overline{G} . Cherwise $\overline{G} = \overline{A} \cup I$, where $\overline{A} \subset \overline{A}$ and
 $\overline{E} = \overline{C}$. Cluerty D^{-1} is once that $\overline{C} = \overline{A} \cup I$, where $\overline{A} \subset \overline{A}$ and
 $\overline{E} = \overline{C}$. Cluerty D^{-1} is on *V* Such that $I \subseteq V(b) - A$ forms a minimal integralant dominating set of
 V Let S C Low let $B = \{v_1, v_2, ..., v_m\} \subseteq V(L(G))$ be the set of all
 $v_2v_1|S = 1$. Hence critics. Suppose there exists a set of critics
 $B_i = \{u_1, u_2$ **From 9:** For a convertion that by the Example of the set of $V(E(G)) = B$ and do $\frac{1}{2}$ and do $\frac{1}{2}$ and do $\frac{1}{2}$ and do $\frac{1}{2}$ and $\frac{1}{2}$ and $\frac{1}{2}$ ($E(B_1, B_2, B_3) = 2$) ($E(B_1, B_3) = 2$ and $\frac{1}{2}$ and F number of cut vertices, then $y_{2n}(T) \leq C$
 S $D - B \cup B$, forms a Strong line dominating set
 S Ex $F = \{v_1, v_2, ..., v_n\} \leq V(T)$ be the set of all cut Otherwise if $B \subset V(L(G))$, then select the set of
 $S = B$,

set of edges w *F* = [v_1, v_2, v_3 in the set of all cut values in the N (I_1 (I_2) and I_2 (I_3) and V_4 (I_4) I_5 (I_6) I_7 (I_8) (I_9) (*B v v v V L G* 1 2 , ,..., *^m Brong line domination in graphs*
 Proof: Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the
 E of vertices which covers all the vertices in G. Further, if
 $\forall v_i \in A$, $\deg v_i = 0$, then A itself is an independent
 L $V(G) - A$ *Strong line domination in graphs*
 Proof: Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the

set of vertices which covers all the vertices in G . Further, if
 $\forall v_i \in A$, $\deg v_i = 0$, then A isself is an independent
 I_{\subseteq *Strong line domination in graphs*
 Proof: Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the

ret of vertices which covers all the vertices in G. Further, if
 $\forall v_i \in A$, $\deg v_i = 0$, then A itself is an independent

lominatin *Brandion in graphs*
 $B = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the which covers all the vertices in G. Further, if $v_i = 0$, then A itself is an independent of G. Otherwise $S = A' \cup I$, where $A' \subseteq A$ and forms a minimal independent Strong line domination in graphs
 Proof: Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the

te of vertices which covers all the vertices in G. Further, if
 $\forall v_i \in A$, $\deg v_i = 0$, then A itself is an independent

folominati *Strong line domination in graphs*
 Yroof: Suppose $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the
 Let of vertices which covers all the vertices in G . Further, if
 $\forall v_i \in A$, $deg \, v_i = 0$, then A itself is an independent

co *u*_n \in $V(G)$ be the

ces in *G*. Further, if

is an independent
 J1, where $A \subseteq A$ and

ent dominating set of
 G)) be the set of all

set of vertices
 $1 \deg (u_i) \ge \deg (v_i)$,
 $1 \le j \le m$. Then

nating set of *G*.

the s (G) be the
Further, if
dependent
 $A \subseteq A$ and
tting set of all
vertices
 $\ge \deg(v_i)$,
 m . Then
t of G.
of vertices
 $\forall u_k \in$
 $\forall u_i \in D$
 $\forall u_j \in D$.
it of G.
 $L(G)$) – D
 $D \cup \{u\}$
 $D \cup \{u\}$
 $|V(G)|$ and
 $X_{SL}(G) = 1$
of degree *Som* in graphs
 $A = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the

inch covers all the vertices in G . Further, if
 G otherwise $S = A' \cup I$, where $A \subseteq A$ and

ms a minimal independent dominating set of

set there exists a set of ve *p*, *a*, *a*, *b*, *p*, *f* = *v* (*b*) be the e vertices in *G*. Further, if itself is an independent $= A' \cup I$, where $A' \subseteq A$ and dependent dominating set of all ts a set of vertices B and deg $(u_i) \ge \deg(v_i)$, $\le n$, $1 \$ Example the same vertex $\{u\} \in V(L(G))$
 $\{u\} \in B$, ω ω and ω $\{u\} \in E$ $\{u\}$ $\{u\}$ $\{u\} \in E$ $\{u\}$ $\{u\}$ $\{u\} \in E$ $\{u\}$ $\{u\}$ $\{u\} \in E$ $\{u\}$ $\{v_1, v_2, \ldots, v_m\} \subseteq V(L(G))$ be the set of all

see t Iominating set of G. Otherwise $S = A' \cup I$, where $A \subseteq A$ and
 $I \subseteq V(G) - A$ forms a minimal independent dominating set of
 G . Now let $B = \{v_1, v_2, ..., v_n\} \subseteq V(L(G))$ be the set of all
 $\forall E, B_1 = \{u_1, u_2, ..., u_n\} \subseteq V(L(G)) - B$ and $\deg(u_i) \$ $V(L(G)) - B$ and deg $(u_i) \ge \deg(v_i)$,
 B , $1 \le i \le n$, $1 \le j \le m$. Then
 L Strong line dominating set of G .
 $L(G)$), then select the set of vertices
 $N[D] = V(L(G))$ and $\nabla u_k \in$
 deg $(u_k) \le \deg(u_j)$ where $\nabla u_j \in D$.
 L Strong $B_i = \{u_1, u_2, ..., u_n\} \subseteq V(L(G)) - B$ and deg $(u_i) \ge \deg(v_i)$,
 $\forall u_i \in B_1$, $v_j \in B$, $1 \le i \le n$, $1 \le j \le m$. Then
 $D = B \cup B_i$ forms a Strong line dominating set of G.

Otherwise if $B \subset V(L(G))$, then select the set of vertices
 $S = B_1$ s $j \le m$. Then
g set of G .
set of vertices
) and $\forall u_k \in$
there $\forall u_j \in D$.
g set of G .
 $\vdots V(L(G)) - D$
rly $D \cup \{u\}$
 $\{u\} \le |V(G)|$ and
 $G, X_{SL}(G) = 1$
tices of degree
following two
ne vertex V ,
 $D = \{v\}$ is a
in $V(L(G)) - D$
a 1 ≤ *i* ≤ *n*, 1 ≤ *j* ≤ *m*. Then
 i line dominating set of *G*.
 *W*_{*P*} l = *V*(*L*(*G*)) and $\forall u_k \in B$
 y where $\forall u_j \in D$
 g line dominating set of *G*.
 t one vertex {*u*} ∈ *V*(*L*(*G*)) – *D*
 *p*_j), $\$ et of *G*.

of vertices
 Vu_k ∈

e *Vu_j* ∈ *D*.

let of *G*.
 $L(G)) - D$
 $D \cup \{u\}$
 $\leq |V(G)|$ and
 $X_{SL}(G) = 1$

s of degree

lowing two

vertex *V*,
 $= \{v\}$ is a
 $V(L(G)) - D$

one vertex

ms a Strong $D = B \cup B$, forms a Strong line dominating set of G .

Otherwise if $B \subset V(L(G))$, then select the set of vertices
 $S = B_1$ such that $N[D] = V(L(G))$ and $\forall u_k \in$
 $\langle V(L(G)) - D \rangle$, then deg $(u_k) \le \deg (u_j)$ where $\forall u_j \in D$.

Clearly D *N* = *B*₁ such that $N[D] = V(L(G))$ and $\forall u_k \in$
 $V(L(G)) - D$, then deg $(u_k) \le \text{deg } (u_l)$ where $\forall u_l \in D$

Clearly *D* forms a Strong line dominating set of *G*.

Otherwise there exists at least one vertex $\{u\} \in V(L(G)) - D$

uch *D* D = $V(L(G))$ and $Vu_k \in$
 \leq deg (u_j) where $Vu_j \in D$.
 wertex $\{u\} \in V(L(G)) - D$
 wertex $\{u\} \in V(L(G)) - D$
 wertex $\{u\} \in V(L(G)) - D$
 wi $\in D$ Clearly $D \cup \{u\}$
 Wi $\in D$ Clearly $D \cup \{u\}$
 Wi $\in D$ *Wii Mi*

 $\left[\frac{a}{2}\right]$ **Theorem 13:** For any connected $\left[\frac{p}{q}\right]$ $G, \left[\frac{a}{q}\right]$ if and only if $L(G)$ has at least one vertices of degree .

> **Proof:** To prove this result we consider the following two cases.

Case 1: Suppose $L(G)$ has exactly one vertex V , . Then in this case $\mathcal{L} = \{y \}$ is a minimal $X_{SL} - \mathcal{S}et$ If $D^{\dagger} = \{u\} \in N(v)$ in $V(L(G)) - D$ $deg(u) \le v(L(G)) - 2$. Then there exists at least one vertex in $L(G)$ such that $D_1 = D' \cup \{w\}$ forms a Strong line dominating set in $L(G)$ a contradiction. deg $(u_k) \le \deg (u_j)$ where $\forall u_j \in D$.
 Strong line dominating set of *G*.
 L at least one vertex $\{u\} \in V(L(G)) - D$
 Let $\{u\} \in D$. Clearly $D \cup \{u\}$
 Let of *G*. Hence $|D \cup \{u\}| \le |V(G)|$ and
 Connected (P,q) graph xists at least one vertex $\{u\} \in V(L(G)) - D$

(i) $> \deg(u_i)$, $\forall u_i \in D$, Clearly $D \cup \{u\}$
 $x_x - set$ of G . Hence $|D \cup \{u\}| \le |V(G)|$ and
 $\{G\}$.
 $L(G)$ has at least one vertices of degree

this result we consider the followin

Case 2: Suppose $L(G)$ contains at least two vertices U and V *T*. Otherwise if with $deg(u) = |V(L(G))| - 1 = deg(v)$ and $v \notin N(u)$. Then $D = \{u\}$ dominates all the vertices in $L(G)$. Since $deg(u) = |V(L(G))|^{-1}$ and $L = V(L(G)) - \{u\}$. Hence $D_1 = \{v\} \cup V_1$, where *S* forms a minimal Strong line dominating set of T $V_1 \subseteq V(L(G)) - D$ forms a $X_{SL} - set$ again a contradiction. Conversely, suppose $deg(u) = |V(L(G))|-1 = deg(v)$ *u* and V are adjacent to all the vertices in $L(G)$. Then where $u \in D$, $v \in V(L(G)) - D$ and vice – versa. In any case we obtain $|D_1| = 1$. **EVALUATE:**

From 13: For any connected $V^{k,q}$ graph G , $\alpha_{k}(V)$

if and only if $L(G)$ has at least one vertices of deg

nal Strong $|V(L(G))|^{-1}$.

Then the $P(G) = \frac{1}{2}$
 $P(D) = \frac{1}{2}$
 $P(D) = \frac{1}{2}$
 $P(D) = \frac{1}{2}$
 rwise there exists at least one vertex $\{u\} \in V(L(G)) - D$

that deg $(u) > \deg(u_i)$, $\forall u_i \in D$. Clearly $D \cup \{u\}$

s a minimal $X_{2k} - set$ of G . Hence $|D \cup \{u\}| \leq |V(G)|$ and

ly $Y_{3k}(G) \leq i(G)$.
 orem 13: For any connected $(P,q$ *D* $\forall u_i \in D$ Clearly $D \cup \{u\}$
 G . Hence $|D \cup \{u\}| \le |V(G)|$ and

ted (P,q) graph *G*, $X_{SL}(G) = 1$

it least one vertices of degree

we consider the following two

has exactly one vertex V ,
 $P = \{v\}$ is a
 $D' = \{u\}$ Learly *Y*_{SL}(G) ≤ *t*(G)
 C Theorem 13: For any connected $(P \cdot q)$ graph G, $X_x(G) = 1$

f and only if $L(G)$ has at least one vertices of degree
 $V(L(G))|-1$
 Proof: To prove this result we consider the following two
 C Lettrix and *X*_{SL} - set of *G*. Hence $|D \cup \{u\}| \le |V(G)|$ and $L(G) \le i(G)$.
 13: For any connected (P,q) graph *G*, *X*_{SL} $(G) = 1$

bly if $L(G)$ has at least one vertices of degree
 $D = 1$.
 $D = \{V(G)\}$ has exactly one Learly *Y*_{3£} (*G*) ≤ *i*(*G*)
 Theorem 13: For any connected (P,q) graph *G*, $X_x(G) = 1$
 f and only if $L(G)$ has at least one vertices of degree
 $|V(L(G))| - 1$
 Proof: To prove this result we consider the following g connected (p,q) graph G , $X_x(G)=1$

i) has at least one vertices of degree

s result we consider the following two
 $L(G)$ has exactly one vertex V ,

1. Then in this case $D = \{v\}$ is a

. If $D' = \{u\} \in N(v)$ in $V(L(G)) - D$ **r** and only if \vee has at least one vertices of degree
 v $(L(G))[-1]$
 Proof: To prove this result we consider the following two

asses.
 Consection: Consectively $L(G)$ has exactly one vertex \vee ,
 $deg(v) = |v(L(G))|$ Tand only if V has at least one vertices of degree
 P(L(G))|-1.
 C and only if V has at least one vertices of degree
 C abses.
 C abses 1: Suppose $L(G)$ has exactly one vertex V ,
 $\deg(v) = |V(L(G)|) - 1$. Then in t *x* and least one vertices of degree
 ve consider the following two

has exactly one vertex V ,

lead in this case $D' = \{v\}$ is a
 $D' = \{u\} \in N(v)$ in $V(L(G)) - D$

in $V(L(G)) - D$

in a strong a contradiction.

a contradictio

Therefore $x_{\text{SL}}(G)=1$

Theorem 14: For any connected (p,q) graph $G, \gamma_{SL}(G) \leq \gamma_{ss}(G)$

Proof: let S' be a maximum independent set of vertices in G and $S \subset S$ be the of all isolated vertices in G . Then $(V - S') \cup S'$ is a Strong split dominating set of G. Since for each vertex $v \in (V - S') \cup S''$ either v is an isolated vertex in $\langle (V-S') U S'' \rangle$ or there exists a vertex $u \in S' - S'$ and v is adjacent to $u \cdot (V - S') \cup S'$ is minimal. Since S is maximum $(V - S') \cup S'$ is minimum. Thus $| (V-S') \cup S' | = \gamma_{ss}(G)$

Let $F = \{e_1, e_2, e_3, \dots, e_n\}$ be set of edges in \mathcal{C} and $F \subset E(G)$. Then in $L(G)$, $D = \{v_1, v_2, v_3, \dots, w_n\}$ which
which $\forall a \in F$ dex (a) , $\forall a \in F$ Theorem corresponds to $\forall e_i \in F$ Let $\deg(e_i)$ $\forall e_i \in F$ and Theorem 16: F
dec(c) \Rightarrow dec(c) \Rightarrow dec(c) \Rightarrow dec(c) \Rightarrow dec(c) $\deg(e_j)$ $\forall e_j \in E(G) - F$ such that $\deg(e_i) \geq \deg(e_j)$. Suppose $D = \{v_1, v_2, v_3, ..., ..., v_i\}$ D and , $\forall u_k \in D$, $1 \leq k \leq i$. Then D forms a edge It follows that $|D| \le |(V-S') \cup S''|$ Hence dist $\gamma_{SL}(G) \leq \gamma_{ss}(G)$ Therefore $X_x(G) = 1$.
 Controllent 14: For any connected (\mathcal{P}, q) graph with $d\mathbf{i} \mathbf{m}(a, b) \geq 3$,
 Proof: let S' be a maximum independent set of vertices in G $N(F) \cup N(I)$ and I
 Proof: let S' be the of a

Corollary: For a tree $T = K_{1,n}$ with $n \ge 2$ vertices $y_{51}(T) = (n + 1) - (y'(T) + 1)$

Theorem 15: For any connected (p,q) graph .

Proof: Let $S = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the set of vertices with $deg(v_i) \geq 2$. Suppose exists a set $S_i \subseteq S$ of vertices with $dist(u, v) \ge 3$, which covers all the vertices in G Then S_1 forms a dominating set of G. Otherwise if Suppose the set V_2 dominates V_0 . Then $S = V_1 \cup V_2$ $diam(u, v) < 3$, then there exists at least one vertex $x \notin S_1$ such that $S = S_1 \cup \{x\}$ forms a minimal X - set of G. Hence $S' = \gamma(G)$. Let $C_1 = \{v_1, v_2, ..., v_n\} \subseteq V(L(G))$ be the set of vertices with $dist(u, v) \ge 3$. Suppose there exists a set $D_1 \subseteq C_1$ which covers all the vertices in $L(G)$. Then D_1 itself is a line dominating set. If $dist(u, v) < 3$ and , then $D^{\dagger} = D_1 \cup \{w\}$, where $W \notin \mathcal{P}$ $v \in D_1$ forms a minimal dominating set of $L(G)$. Hence $\left|D_1 \cup \{w\}\right| = x_L(G)$. The edges which are incident with the vertices of S in G corresponds to the set of vertices $S =$ $\{v_1, v_2, ..., v_m\} \subseteq V(L(G))$. Let F be the set of vertices with $\deg(v)=1$, $\forall v \in F'$. *diam u v* , 3 ¹ *x S* $f(G) - F$ such that deg $(e_i) \ge \deg(e_i)$
 $D' = \{v_1, v_2, v_2, \dots, v_r\}$ $\ge \emptyset$ and **Proof:** Let *J*
 $f'(x) = 0$ and **Proof:** Let *J*
 Suppose $D^2 = \{v_1, v_2, v_3, ..., w_n\} \subseteq D$ and **Proof:** Let $J = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be
 $V = S^*$ **L** follows that $|D| \subset |(V-S) \cup S'|$ Hence distributive the longest particle is the set of
 $V = S^*$ **L** follows $V_{\mathcal{R}}(G) \leq V_{\mathcal$ *N* $V_{\rm R}(G) \leq Y_{\rm R}(G)$
 N $V_{\rm R}(G) \leq Y_{\rm R}(G)$
 N $W_{\rm R}(F) = 0$
 N $W_{\rm R}(F) =$ $u(G) \leq \gamma_H(G)$
 $u(G) = \gamma_H(G)$
 $u(G) = (u + 1) - (y'(T) + 1)$
 b $u(G) = (u + 1) - (y'(T) + 1)$
 correspondently: For a tree $T = K_{LR}$ with $n \geq 2$ vertices of I . Suppose $D_C = B$
 $v_R(T) = (n + 1) - (y'(T) + 1)$
 becoming the transform of \gamma ¹ () *D w G^L* **Theorem 15:** $\overline{Y}_1 \times \overline{Y}_2 \times \overline{Y}_3 \times \overline{Y}_4 \times \overline{Y}_5$
 Theorem 15: $\overline{Y}_0 \times \overline{Y}_4 \times \overline{Y}_5$
 Controllarity $\overline{Y}_0 \times \overline{Y}_4 \times \overline{Y}_5$
 Theorem 15: $\overline{Y}_{\text{ref}}(G) + \gamma_E(G) \leq q + 1 + \gamma(G)$
 Theorem 17: For any rem 15: For any connected (\mathfrak{p}, q) graph
 $(G) + \gamma_{\text{ct}}(L(G)) + \gamma_{\text{c}}(G) \leq q + 1 + \gamma(G)$
 \vdots $G = {\nu_1, \nu_2, ..., \nu_n} \subseteq V(G)$ be the set of

es with $\frac{deg(v_i)}{\geq 2}$, Suppose exists a set $S_i \subseteq S$ of

es with $\frac{dist(u, v) \geq 3}{i}$, w For any connected (p,q)
 For any connected (p,q)
 $\downarrow (L(G)) + \gamma_L(G) \le q + 1 + \gamma(G)$.
 For any connected (p,q)
 $\downarrow (L(G)) + \gamma_L(G) \le p + \Delta(G)$.
 $\downarrow (L$

 $X_{SL}(G)=1$
Suppose $I = \{v_1, v_2, ..., v_j\} \subseteq S^{\dagger}$ be the set of vertices with $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F'$ covers all the vertices in $L(G)$. Hence D forms a X_{ct} - set of $L(G)$. Otherwise there exists a vertex $z \in$ $(F') \cup N(I)$ and $D = F' \cup I \cup \{z\}$ forms a minimal cototal dominating set of $L(G)$. Hence $|D| = X_{\alpha}(L(G))$. We consider $A = \{e_1, e_2, ..., e_k\}$ be the set of all edges which are incident to the vertices of F' . Since $V(L(G)) = E(G)$, then $\mathbf{b} = \{u_1, u_2, ..., u_i\} \subseteq A$ be the set of vertices which covers all the vertices in $L(G)$. Clearly \overline{D} forms a minimal Strong line dominating set of $L(G)$. Therefore it implies that $|D| \cup |D| \cup |D_1 \cup \{w\}| \le |E(G)| \cup |S'| + 1$ Thus $\gamma_{SL}(G) + \gamma_{ct}(L(G)) + \gamma_L(G) \leq q + 1 + \gamma(G)$ *^k u D* ¹ *k i pp.39782-39787, October, 2016*
 I = { $v_1, v_2, ..., v_j$ } $\subseteq S$ be the set of vertices
 $n(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

the vertices in $L(G)$. Hence D forms a x_{ct} - set
 N(*I*) and $D = F \cup I \cup \{z\}$ forms a ctober, 2016

..., v_j \subseteq *S*^{*} be the set of vertices
 $e^{at} = e^{at}F$, $b \in I$. Then $D = F \cup I$
 $L(G)$. Hence D forms a X_{ct} - set

there exists a vertex $z \in F' \cup I \cup \{z\}$ forms a minimal cototal

Hence $|D| = X_{ct}(L(G))$ *e, 10, pp.39782-39787, October, 2016*
 $\sum_{k=0}^{\infty} I = \{v_1, v_2, \dots, v_j\} \subseteq S^*$ be the set of vertices
 $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

all the vertices in $L(G)$. Hence D forms a X_{ct} - set
 $L(G)$. Otherw *a F b I* , of vertices
 $D = F' \cup I$

a X_{ct} – set

ex $Z \in$

mal cototal

e consider

incident to *Letober, 2016*
 \ldots, v_j \subseteq *S*^{*v*} be the set of vertices
 ere *a* ∈ *F*, *b* ∈ *I*. Then *D* = *F'* ∪ *I*
 L(*G*). Hence *D* forms a ^{*x*} *a* - set

there exists a vertex $z \in$
 F' ∪ *I* ∪ {*z*} forms a mi *Le, 10, pp.39782-39787, October, 2016*
 $\sum_{\substack{0 \leq x \\ y \neq 0}}$ *L* $\left\{V_1, V_2, \ldots, V_j\right\} \subseteq S$ be the set of vertices
 $\text{diam}(a, b) \geq 3$, where $a \in F, b \in I$. Then $D = F \cup I$

s all the vertices in $L(G)$. Hence D forms a 8, *Issue, 10, pp.39782-39787, October, 2016*

Suppose $I = \{v_1, v_2, \dots, v_j\} \subseteq S^{\dagger}$ be the set of vertices

with $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

covers all the vertices in $L(G)$. Hence D forms a X_{a} - 787, October, 2016

²₂, ..., v_j \subseteq S ³ be the set of vertices

where $a \in F$, $b \in I$. Then $D = F \cup I$

is in $L(G)$. Hence D forms a X_{ct} - set

vise there exists a vertex $z \in$
 $D = F \cup I \cup \{z\}$ forms a minimal **Propagation** v_2 , $..., v_j$ \subseteq *S* be the set of vertices
 L(*G*) Hence *D* forms a X_{α} set

wise there exists a vertex $z \in$
 L(*G*) Hence *D* forms a X_{α} set
 $D = F \cup I \cup \{z\}$ forms a minimal cototal
 $\mu(\sigma)$ 16
 $\equiv S^{\dagger}$ be the set of vertices
 $F^{\dagger}, b \in I$ Then $D = F^{\dagger} \cup I$

Hence D forms a X_{ct} set

exists a vertex $z \in$
 $\{z\}$ forms a minimal cototal
 $D|\!=\!X_{\alpha}(L(G))$ We consider

edges which are incident to

ce V *As, Issue, 10, pp.39782-39787, October, 2016*

Suppose $I = \{v_1, v_2, ..., v_j\} \subseteq S$ be the set of vertices

with $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

covers all the vertices in $L(G)$. Hence D forms a X_{α} -set
 8, *Issue, 10, pp.39782-39787, October, 2016*

Suppose $I = \{v_1, v_2, ..., v_j\} \subseteq S$ be the set of vertices

sith $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

covers all the vertices in $L(G)$. Hence D forms a X_{α} -set

o 8, *Issue, 10, pp.39782.39787, October, 2016*

uppose $I = \{v_1, v_2, \ldots, v_j\} \subseteq S$ be the set of vertices

ith $diam(a,b) \ge 3$, where $a \in F, b \in I$. Then $D = F \cup I$

overs all the vertices in $L(G)$. Hence D forms a x_{α} - set
 1.39782-39787, October, 2016
 $\begin{aligned}\n &\text{(1, 1)} &\text{(2, 2)} &\text{(2, 2)} \\
 &\text{(3, 2)} &\text{(3, 2)} \\
 &\text{(4, 2)} &\text{(4, 2)} \\
 &\text{(4$ *v*₁, *v*₂, ..., *v*₁, $y \text{ }\subseteq S$ be the set of vertices
 ≥ 3 , where $a \in F, b \in I$. Then $D = F \cup I$

tices in $L(G)$. Hence D forms a x_{a} -set

herwise there exists a vertex $z \in$

and $D = F \cup I \cup \{z\}$ forms a mini

16: For any connected (p,q) _{graph} .
.
.

Proof: Let $J' = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the minimal set of edges which constitute the longest path between any two $D \le |(V - S) \cup S'|$ Hence distinct vertices $u, v \in V(G)$ with $u, v = u, u, v = u$ $H = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[L(G)]$ be the set of vertices such that ${u_i} = {e_i} \in E(G)$, $1 \le i \le n$, where ${e_i}$ are incident with the vertices of \vec{l} . Suppose $\vec{v} \in \vec{H}$ be the set of vertices with deg $(w) \ge 3$ for every $w \in D$ such that $N[D] = V(L(G))$ and $\forall v_i \in V[L(G)] - L$. Then $[D] \cup \{v_i\}$ forms a Strong line dominating set. It follows that $|D \cup \{v_i\}| \leq diam(G)$. Hence $\gamma_{SL}(G) \leq diam(G)$. $\epsilon(V - S) \cup S'$ since *V* is an isolated ventex in the set of will be the set of vertices of S' is minimum. Thus vertices of V is minimum in the set of vertices $\sqrt{V}(G) = E(G)$, then $\sqrt{V} - S$) $\cup S'$ is minimum. Thus domi *v* (*U* - 5) US is minimal. Since 5 is
 $(U - S')U$ is minimal. Since 5 is
 $[(U - S')U]$ is minimal. Since 5 in $U(S)$ collearly *D* forms a minimal Norong is
 $\frac{1}{2} \times F_{20}$ and $F_{10} = F(G)$ $\frac{1}{2} \times F_{21}$ (*D*) $|\sqrt{D}| \times |\sqrt$ ($V = S$) US is minimum. Thus commute of π ($V = S$) $V = \pi/2$ ($V = \pi/2$) domination and $V = \pi/2$) domination and $V = \pi/2$, $V = \pi/2$, *A* = { $e_1, e_2, ..., e_k$ } be the set of all edges which are incident to
 B = { $u_1, u_2, ..., u_k$ } $\subseteq A$ be the set of vertices which covers all the
 D = { $u_1, u_2, ..., u_k$ } $\subseteq A$ be the set of vertices which covers all the

vertic *f f* (*C*). Clearly D forms a minimal Strong line

(*C*). Clearly D forms a minimal Strong line

set of $L(G)$. Therefore it implies that
 $D_1 \cup \{w\} \le |E(G)| \cup |S'| + 1$. Thus

(*G*)) + $\gamma_L(G) \le q + 1 + \gamma(G)$
 16: For any *Vertices* in $L(\theta)$. Clearly $V(\theta)$ forms a minimal Strong line
 $V_{PL}(G) = V(\theta)$ $V_{PL}(V(\theta)) = V(\theta)$ $V_{PL}(G) = V(\theta)$ Thus
 $V_{PL}(G) + V_{ee}(L(G)) + V_{te}(G) \le q + 1 + \gamma(G)$
 Theorem 16: For any connected $\left(\frac{\theta}{\theta}\right)$ $\frac{\theta}{\theta}$ and
 Proof

Theorem 17: For any connected (φ, q) graph \mathbb{G} .

Proof: Let $f: V(L(G)) \to \{0,1,2\}$ and partition the vertex set $V(L(G))$ into (V_0, V_1, V_2) induced by f with $|V_i| = n_i$ for $i = 0, 1, 2$. Suppose the set V_2 dominates V_0 . Then $S = V_1 \cup V_2$ forms a minimal roman dominating set of $L(G)$. Further, let $F = \{v_1, v_2, ..., v_k\} \subseteq V(L(G))$ be the set of vertices with $\deg(v_i) \geq 2$. Suppose there exists a vertex set $D \subseteq F$ with $N[D] = V(L(G))$ and if $|\deg(x) - \deg(y)| \le 1 \quad \forall x \in D$ $y \in V(L(G)) - D$. Then *D* forms a Strong line dominating set in $L(G)$. Otherwise there exists at least one vertex $\{w\} \subseteq F$ where $\{w\} \notin D$ such that $D \cup \{w\}$ forms a minimal $X_{SL} - set$ in $L(G)$. Since for any graph G there exists at least one vertex $v \in V(G)$ of maximum degree $\Delta(G)$, it follows that $|D \cup \{w\}|\cup |S| \leq p \cup |\deg(v)|$ Clearly $X_{SL}(G) + X_{R}(L(G)) \leq p + \Delta(G)$ ¹ *S S x ^G* **C** v v i ψ i *D* $\leq k \leq i$, Then *D* forms a edges which constitute the longest path between any two
 $\ln |N| \leq |(V-S) \cup S'|$. Hence distinct vertices H_*/\mathbb{R}^2 $V(G)$ with $dS(\omega,*) = d \omega m$
 $\omega = \frac{1}{2} \int_{\omega}^{\omega} \log |P(\omega)| \leq 1$. Let $S(\omega,$ *^V* ² *^V*⁰ 1 2 *S V V* Thus

ected (p,q) _{graph}

e the minimal set of

h between any two
 u, v) = $diam(G)$. Let

of vertices such that

incident with the

set of vertices with

at $N[D] = V(L(G))$ and

rong line dominating

nce $\gamma_{SL}(G) \leq diam(G)$.
 $[$ (*F v v v V L G* 1 2 , ,..., *^k* **Cheorem 16:** For any connected (\mathbf{p}, \mathbf{q})
 C, $y_{\mathbf{SL}}(G) \leq \text{diam}(G)$
 Proof: Let $J = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the minimal set of deges which constitute the longest path between any two list

listinct vertices u **Cheorem 16:** For any connected $\left(\frac{p}{q}, \frac{q}{q}\right)$ graph
 Proof: Let $J' = \{e_1, e_2, \ldots, e_n\} \subseteq E(G)$ be the minimal set of

digises which constitute the longest path between any two

listinct vertices $u, v \in V(G)$ with *G*, $y_{2k}(G) \leq diam(G)$
 Proof: Let $J = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the minimal set of

ddges which constitute the longest path between any two

listinct vertices $H, V \in V(G)$ with $dist(u, v) = diam(G)$. Let
 $H = \{u_1, u_2, u_3, ..., u_n\} \subseteq V[L(G)]$ **Proof:** Let $J' = \{e_1, e_2, ..., e_n\} \subseteq E(G)$ be the minimal set of diges which constitute the longest pain between any two $H = \{u_1, u_2, u_3, ..., u_n\} \subseteq V[L(G)]$ with $H = \{u_1, u_2, u_3, ..., u_n\} \subseteq V[L(G)]$ be the set of vertices such that $\{u_i\$ edges which constitute the longest path between any two

distribute vertices $u, V \in V(G)$ with $dist(u,v) = diam(G)$. Let
 $H = (u_1, u_2, u_3, \dots, u_n) \in V(G)$ when ϵ is et of vertices such that
 $(u_i) = [\epsilon_i] \in E(G)$, $1 \le i \le n$, where $[\epsilon_i]$ ar Histinct vertices $u, v \in V(G)$ with $dist(u, v) = diam(G)$. Let $H = \{u_1, u_2, u_3, \ldots, u_n\} \subseteq V[L(G)]$ be the set of vertices such that $|u_i| = [e_i] \in E(G)$, $1 \le i \le n$, where $[e_i]$ are incident with the vertices of I . Suppose $D \subseteq H$ be the se *n* – v_4 , w_3 , w_4 , w_5 – v_6 and v_7 is the set of vertices such that $w_1 = v_4$, $w_2 = 0$, $v_6 = E(G)$, $1 \le t \le \pi$, where Φ and that $wD1 = \psi(G)$ and $deg(w) \ge 3$ for every $w \in D$ such that $wD1 = \psi(G)$ and w_7 *P* = *Q*_{*M*} *D_{<i>M*} *D*_{*M*} *DM D*

Theorem 18: For any connected (\mathbf{p}, \mathbf{q}) graph \mathbf{G}_1 $\gamma_{SL}(G) \leq \gamma(G) + \gamma_L(G)$.

Proof: Suppose $C = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be the set of vertices with $\deg(v_j) \geq 2$. Then there exists a minimal set $S_{\subseteq \mathcal{F}}$ and $N[S] = V(G)$. Clearly S forms a dominating set of G. Let $C_1 = \{v_1, v_2, ..., v_n\} \subseteq V(L(G))$ be the corresponding to the set of vertices C with $dist(u, v) \ge 3$. Suppose there exists a set $D_1 \subseteq C_1$. which covers all the vertices in $L(G)$. Then D_i itself is a line dominating set. Further if $dist(u, v) < 3$ and $N[D_1] \neq V(L(G))$ then $D = D_1 \cup \{w\}$, where $W \notin N[v]$, $v \in D_1$ forms a minimal dominating set of $L(G)$. Hence $|D| = x_L(G)$. Let $H = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[L(G)]$ be the set of vertices such that $\{u_i\} = \{e_i\} \in E(G)$, $1 \le i \le n$ where $\{e_i\}$ are incident with the vertices of C_1 . Suppose $D \subseteq H$ be the set of vertices with $deg(w) \ge 3$ for every $w \in D$ and $N[D] = V(L(G))$ and $\forall v_i \in V[L(G)]$ has degree at most 2, and $v_i \in V[L(G)] - D$. Then $\{D\} \cup \{v_i\}$ forms a Strong line dominating set. It follows that $|D \cup \{v_i\}| \le |S| \cup |D|$ and hence Havnes TW ST Hedetiniemi $\gamma_{SL}(G) \leq \gamma(G) + \gamma_L(G)$ *Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs*
 Proof: Suppose $C = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be the set of **Proof:** Let $S = \{v_1, v_2, v_3, \ldots, \ldots, v_n\} \subseteq V(G)$ be an invertices with $\deg(v_j) \ge 2$. Th *Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs*
 $\mathcal{L} = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be the set of **Proof:** Let $S = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be an independent
 $\mathcal{L}(v_j) \geq 2$. Then there exist *Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs*
 L..., v_n} $\subseteq V(G)$ be the set of **Proof:** Let $S = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$

re exists a minimal set $\Im \subseteq \mathbb{Z}$ set of \mathbb{G} . Since \mathbb{G} *Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs*
 Proof: Suppose $C = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be the set of **Proof:** Let $S = \{v_1, v_2, v_3, \ldots, v_n\} \subseteq V(G)$ be an independent

rertices with $\frac{deg(v_i)}$ 39787
 Muddebihal and Nawazoddin U. Patel, Strong line domination in graphs
 Proof: Suppose $C = \{v_1, v_2, v_3, \dots, w_n\} \subseteq V(G)$ be the set of **Proof:** Let $S = \{v_1, v_2, v_3, \dots, w_n\}$

vertices with $\frac{\partial w_1}{\partial S} = V(G)$. Clearl **19787**
 19787
 19787
 19787
 19760
 19760
 19760
 19760
 19760
 19760
 1987
 19870
 19870
 19870
 19870
 19970
 19970
 19971
 19971
 19971
 19971
 19971
 19971
 1998
 1998
 **Muddehibal and Numezuddin U. Patd, Strong line dimination in graphs
** $C = \{v_1, v_2, v_3, \ldots, \ldots, v_n\} \subseteq V(C)$ **be the set of Proof:** Let $S = \{v_1, v_2, v_3, \ldots, \ldots, v_n\} \subseteq V(C)$ be an independent
 $C = \{v_1, v_2, v_3, \ldots, \ldots, v_n\} \subseteq V(C$ pose $C = \{v_1, v_2, v_3, \ldots, w_n\} \in V(G)$ be the set of **Proof.** Let $S = \{v_1, v_2, v_3, \ldots, w_n\} \in V(G)$ be an independent $\frac{4\pi (y_1)}{8} \ge 2$. Then there exists a minimal set $\delta \subseteq e$ set of \bar{G} . Since \bar{G} be these restri there exists a minimal set $\delta \subseteq \mathbb{C}$ and solution of ϵ cheap of ϵ conceptoding to the set of ϵ (ϵ). Then D_i $\{F_1v_1, ..., V_n\} \subseteq V(L(G))$ be the corresponding to the set of dominating set of $\mathcal{L}_n v_1, ..., V_n$ is the expression of the vertice sins and $P_1 \subseteq C$; be the minimal dominating set change the vertices in $D_1 \neq V(L(G))$, then $D =$

Theorem 19: For any connected (p,q) graph G $\gamma_{SL}(G) \leq \gamma_t(G) + \gamma(G)$

Proof: Let $C' = \{v_1, v_2, ..., v_n\} \subseteq V(G)$ be the set of all non end vertices in G. Suppose $C \subseteq C$ and $\forall v_i \in V(G) - C$ are Dekker, Inc. adjacent to at least one vertex of C . Then C' forms a X - set of G. Further, let $F = \{e_1, e_2, ..., e_k\}$ be the set of edges which are incident to the vertices of c^o, and hence $|C^{\dagger}| = x(G)$. Let Mitchell S.L. and S.T. 1977. He $S \subseteq C$ be the X_{t-} set of G. By the minimality for every Muddebihal H. *et al.* 2015. Strong vertex $v \in S$, the induced subgraph $\langle S - v \rangle$ contains an isolated vertex. Let $S_1 = \{v : v \in S\}$ and A be the set of isolated vertices in $\langle S_1 \rangle$ $B = S_1 - A$. Further let C be the minimum set of vertices of $S - S_1$ and each vertex of A is adjacent to some vertex of C. Clearly $|C| \le |A|$. Suppose $S' = S - \{S_1 \cup S_2\}$ and every $u_i v_i \in (S')$, $1 \le i \le k$, clearly $|S| = x$, $(\langle S \rangle)$. Then panfarosh, U. A., M. H. Muddebihal and Ar $H = \{u_1, u_2, u_3, \dots, u_n\} \subseteq V[L(G)]$ be the set of vertices where ${u_i} = {e_i} \in E(G)$ $1 \le i \le n$ and ${e_i}$ are incident with the vertices of C . Further let $D \subseteq H$ be the set of vertices with $deg(w) \ge 3$ for every $w \in D$ such that $N[D] = V(L(G))$ and if $\forall v_i \in V[L(G)]$ has degree at most 2 and $v_i \in V[L(G)] - D$. Then $\{D\} \cup \{v_i\}$ forms a Strong line dominating set. Clearly it follows that $|D \cup \{v_i\}| \le |C| \cup |S|$ and hence $r_{st}(G) \le r_t(G) + r(G)$. Sampathk set. Further if $\mu(x) = \mu(x)$, where $W \notin N[v]$, then $\mu(x) = \mu(x)$, then $\mu(x) = \frac{1}{2}$ of $\mu(x) = \frac{1}{2}$ forms a minimal dominating set of $L(G)$. Hence $\pi_2(G) = \pi_2(G)$.

forms a minimal dominating set of $L(G)$ Hence $\pi_2(G) = \$ set. Function if and domination set of $\{P_0\}$, the set of all one and domination set of $\{P_0\}$, the set of $\{P_1\}$, the set of $\{P_2\}$, $\{P_1\}$, the set of $\{P_2\}$, $\{P_3\}$, $\{P_4\}$, $\{P_5\}$, $\{P_6\}$ $\mu(x) = \frac{1}{2}$ **C** $B = \frac{1}{2}$ **EV** $\mu(x) = \frac{1}{2}$ **C EV** $\mu(x) = \frac{1}{2}$ 1 *S S A* vertices of C . Suppose $D' \subseteq H$ be the set of growth, No, 127-136.
 CA $\deg(w) \ge 3$ for every $w \in D$ and L. KAMstay, 1992. Restrained domination in grap
 π **C** $D \cup \{v_1\} \le |v_1|/2$ and hence π **C** and π **C C EVALUE SET SET AND SURFAME TRANSITY (IT IS A SURFAME TO THE SET AND A SURFAME TO THE SET AND A SURFAME IN A SURFAME IN THE SURFAME** It the vertices of C_1 **Exapple the set of all the set of a matrix** in the set of C_1 **Exapple** C_2 **i** C_3 **C** C_4 **i** C_5 **C** C_6 **i C** C_7 **C i C** C_7 **C i C i C i C i c i c** 1) $\leq y_1(G) + \gamma(G)$

11. Let $C = \{v_1, v_2, ..., v_s\} \leq v(G)$ be the set of all non end Thomass. The consistent and PJ. States in G , Suppose $C \leq C$ and we will $\sim C = C$ Detail with R, R, B. Janakianu and R, R, Iver, 1999. The

Theorem 20: For any connected (p,q) graph G , $\gamma_{51}(G) \leq \gamma_{9}(G)$ Where $v_g(G)$ is a global domination number of G.

Proof: Let $S = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be an independent set of G. Since G has no isolated vertices, $v - s$ is dominating set of $\mathcal G$. Clearly for very vertex $v \in \mathcal S$, $(V - \mathcal S) \cup \{v\}$ is a global dominating set of \overline{G} .

Since $|V-S\rangle\cup\{v\}|= \gamma_g(G)$ Let $D=\{v_1,v_2,v_3,......,v_n\}\subseteq V(L(G))$ be the minimal dominating set of $L(G)$ and $deg(v_i) \geq 2 \forall v_i \in D$ with $\deg(v_k) \leq 2 \forall v_k \in V[L(G)] - D$ Then D is a Strong dominating set of $L(G)$. It follows that $|D| \leq |(V-S) \cup \{v\}|$ and hence $\gamma_{SL}(G) = \gamma_g(G)$ ists a set $D_i \subseteq C_i$ Since $F_i \cong \{x \in \mathcal{L}: y \in \mathcal{$ g line domination in graphs

Let $S = \{v_1, v_2, v_3, \dots, v_n\} \subseteq V(G)$ be an independent
 \overline{G} . Since \overline{G} has no isolated vertices, $v - S$ is dominating
 \overline{G} . Clearly for very vertex $v \in S$, $(V - S) \cup \{v\}$ is a globa

REFERENCES

- Brigham R.C.and R.D. Dutton, 1990. Factor domination in graphs, *Discrete.Math*., 86, 127-136.
- Domke, G.S., J.H.Hattingh, S.T.Hedetniemi, R.C.Laskar and L.R.Markus, 1999. Restrained domination in graphs, Discrete Mathematics, 203, 61-69.
- Harary, F. 1972. Graph Theory, Adison Wesley, Reading mass.
- Haynes T.W., S.T. Hedetiniemi and P.J.Slater, 1998. Fundamentals of domination in graphs, New York, Marcel- Dekker, Inc.
- Haynes T.W., S.T.Hedetiniemi and P.J.Slater, 1997. Fundamentals of domination in graphs. Marcel-Dekker, Inc.
- Haynes, T.W., S.T.Hedetiniemi and P.J. Slater, 1999. Domination in Advanced Topics, New York, Marcel- Dekker, Inc.
- X_{S} Kulli, V. R., B. Janakiram and R. R. Iyer, 1999. The cototal domination number of a graph, *J. Disc. Math. Sci. and Cry*., 2, 179 – 184.
	- Mitchell S.L. and S.T. 1977. Hedetniemi, Edge domination in tree. *Congr.Numer*., 19;489-509.
	- Muddebihal H. *et al*. 2015. Strong Split Block cut vertex Domination of a graph, *IJMCAR*, 5(5), Oct -73-80.
	- Muddebihal M.H. and Nawazoddin U. Patel, 2014. Strong Split Block Domination in graphs, *IJESR*, 2;102-112.
	- Muddebihal M.H. and Nawazoddin U. Patel, *et al*. 2015. Strong non split Block Domination in graphs, *IJRITCC*, 3;4977-4983.
	- Muddebihal, M. H., D. Basavarajappa, 2010. Roman Domination in Line Graphs, *Canadian Journal on Science and Engineering Mathematics*, Vol. 01 (04), pp. 69 – 79.
- S forms a minimal total dominating set of G. Let $\begin{array}{cc} 2014. \text{ Cototal Domination in line Graphs, *International notation of theorem 2014.} \end{array}*$ $\mathbb{P}(\langle S \rangle)$. Then panfarosh, U. A., M. H. Muddebihal and Anil R. Sedamkar, 2014. Cototal Domination in line Graphs, *International Journal of Mathematics and Computer Applications Research*, Vol. 04(01), pp. 001 – 008.
	- Robert B. 1978. ALLAN and Renu Laskar, On domination and independent domination number of a graph, Discrete Mathematics, 23; 73-76.
	- Sampathkumar E. and L. Pushpa Latha. 1996. Strong Weak domination and domination balance in a graph. *Discrete. Math*., 161:235-242.
	- Sampathkumar, E. 1989. The global domination number of a graph, *J. Math. Phy. Sci*., 23, 377 – 385.
