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1. INTRODUCTION 
 
Shannon’s      (1948)       entropy       measure  
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was first generalized by Belis  and  Giuasu (1968)
‘useful’ information as: 
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by attaching utility  0iu  to the event with  probability

Followig the same idea Emptoz (1976) and Sharma et al. 
(1978) generalized  the Havrda - Charvat (1967) entropy     
measure 
 
*Corresponding author: Dr. Ahmad, R. 
Department of Statistics and Operations Research, Aligarh Muslim University, 
Aligarh-202 002, India. 

ISSN: 0975-833X 

 

Article History: 
 

Received 26th August, 2016 
Received in revised form  
22nd September, 2016 
Accepted 28th October, 2016 
Published online 30th November, 2016 
 
Key words:  
 

Useful Information, Pearson’s 
2 - 

Statistic, Functional Equation, Utility 
Schemes, Kullback’s Information, 
Divergence Measure. 

Citation: Ahmed, R. 2016. “On characterization of a generalized 

41639-41642. 

 

                                                  

 

 
RESEARCH ARTICLE 

 

ON CHARACTERIZATION OF A GENERALIZED   ,  ‘USEFUL’ INFORMATION MEASURE
 

*Dr. Ahmad, R. 
 

Statistics and Operations Research, Aligarh Muslim University, Aligarh
 
    

ABSTRACT 

In this communication a generalized measure of ‘useful’ information is defined which has a utility 
scheme and two probability distributions respectively. The recent development in information theory 
is described to the study of characterization results based on the purely functional equation approach. 
In this paper, a characterization theorem is proved here with help of a functional equation. A 

generalized ),(  information measure of Ahmad and Khan (

information of jain and Tuteja (1986), the directed divergence of Rathie and Kannappan (1972), 

relative information of Kullback’s (1959)  and Pearson’s 
2 - statistic is a measure of discrepancy 

between the two distributions P  and Q  are special cases of the measure defined here.
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Shannon’s      (1948)       entropy       measure   

                                            (1.1) 
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to which function they also gave the name of ‘useful’ 
information. 
                                                                       

2. Generalized   ,  ‘Useful’ Information Measure

 
Consider the following two utility information schemes given 
by 
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probability distribution  of the same  set A of an events after 
an experiment. In both the schemes (2.1) and (2.2) the utility 
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because it is assumed that the utility iu of an outcome A  is 

independent of its probability of occurrence ip or predicted 

probability iq  [refer to Longo (1972)], then we obtain the 
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which we may call (2.3) a generalized ‘useful’ information  
measure in analogy with  Belis and Guiasu (1968).   
 
Particular Cases of the New Measure 
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which is   ,  information measure studied by Ahmad and 

Khan (1997). 
 
(ii)  If we take   = 1 in (2.3), we get the   measure 
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which is  type relative ‘useful’ information obtained by 

Jain and Tuteja (1986). 
 

(iii)  If we take 1iu  for each  i  and 1   in (2.3), we 

obtain a measure of  directed divergence of Rathie and   
Kannappan (1972) which is given by:  
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(iv)   If  we  take  1iu  for  each    i and  1 and 2
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which is Pearson’s 2 statistic  and  is a measure of 

discrepancy between the two discrete populations P  and Q . 

 

(v)   Further  if 1,1  iu  and  1  in   (2.3) 

 

   ii

n

i
i qppQPI

2
1

log; 


                                         (2.8) 

 
which is  Kullback’s  (1959)  measure  of relative     
information   that   the    distribution  npppP .....,,, 21  

provides about the distribution  nqqqQ ,.....,, 21 . We may, 

therefore, take this measure as a generalized measure of the 

relative information that the distribution P provides about the 

distribution Q .  If P is the distribution determined on the basis 

of an experiment, then this measure may be considered as a 

measure of the information on Q furnished by the experiment. 

So far various authors have described two different approaches 
to characterization results, with reference to Shannon’s 
entropy.  In the first, which we may call the purely axiomatic 
approach, one does not specify ab initio any particular form for 
the entropy function but obtains it directly from the listed 
properties. In the second approach one assumes a particular 
functional form for the entropy function and also lists some 
other properties on the basis of which a functional equation is 
derived whose solution is utilized to obtain the entropy 
function. In addition to these two approaches we also come 
across a third approach, particularly in relation to more general 
information measure, which we may call the purely functional 
approach. In this method one specifies the general form of the 
information measure involving one or more undetermined 
functions. The particular information measure is then shown to 
result from the solution of a functional equation involving the 
undetermined functions. The functional equation used does not 
necessarily arise from any basic properties of the information 
measure but is formulated without any reference to such 
properties. The recent development in information theory is 
described to the study of characterization results based on the 
purely functional equation approach. We shall characterize the 
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questionnaire (refer Picard 1972) and in the analysis of 
business and Accounting data (refer Sharma et al. (1976, 
1978). Thus there arose a need of further studying statistical 
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for which we have the following lemmas. 
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where  K  is  some constant. Substitution of  (3.4) is indeed a 
solution (3.1), which proves the lemma. 
 
Since, we propose to use functional equation (3.1) to 
characterize the ‘useful’ information measure (2.3) it is 
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It can be verified that these limiting values of   sxuF ,,  are 
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We summarize the above results as follows: 
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Iemma 3:  If   ,1 , the general continuous solution 

of (3.1) in the domain      1,01,0,0   is given by (3.4). 

We are now in a position to obtain a characterization theorem 

for  QPUI n ,;,
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which concludes the proof of the  theorem. 
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