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ABSTRACT 

In this paper, we have developed a deterministic inventory model for deteriorating items
demand rate and holding cost are quadratic and linear function of time. During deterioration period, 
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deteriorating items where time to deterioration has Exponential distribution and with time-dependent quadratic demand. In this 
model, shortages are not allowed and holding cost is time-dependent. Also, Gothi and Kirtan Parmar (2015) have extended above 
deterministic inventory model by taking two parameter Weibull distributions to represent the distribution of time to deterioration 
and shortages are allowed and partially backlogged. Kirtan Parmar and Gothi (2015) developed an economic production model for 
deteriorating items using three parameter Weibull distributions with constant production rate and time varying holding cost. The 
consideration of PT is important due to rapid social changes, and the fact that PT can reduce the deterioration rate significantly. By 
the efforts of investing in preservation technology, we can reduce the deterioration rate. So in this paper, we made the model of 
Mishra and Singh (2011) more realistic by considering the fact that use of preservation technology can reduce the deterioration 
rate significantly, which help the retailers to reduce their economic losses. We have analyzed an inventory system for deteriorating 
items under quadratic demand using preservation technology and time dependent IHC. The assumptions and notations of the 
model are introduced in the next section. The mathematical model and Analysis is derived and numerical illustration is presented. 
The article ends with some concluding remarks and scope of a future research. 
 
Assumptions and Notations 
 
The mathematical model is based on the following notations and assumptions. 
 
Notations 
 
�(�) : Quadratic demand rate.  
� : Ordering cost per order.  
�� : Inventory holding cost per unit per unit of time. 
�� : Deterioration cost per unit per unit time.  
�� : Shortage cost per unit per unit time.  
�(�) : Reduced deterioration rate due to use of preservation technology. 
� : Deterioration rate 
�� : Resultant deterioration rate, �� = (� − �(�)). 

� : Order quantity in one cycle. 
�� : Purchase cost per unit.  
�� : The time from which the deterioration start in the inventory. 
�� : The time at which the inventory level reaches zero (decision variable). 
� : Length of cycle time (decision variable). 
�  : Maximum inventory level during shortage period. 
�� : Total cost per unit time. 
�(�) : The instantaneous state of the positive inventory level at time t. 
 
Assumptions 
 
The model is derived under the following assumptions. 
 

1.  The inventory system deals with single item. 
2.  The annual demand rate is a function of time and it is �(�) = � + �� + ���	(�,�,� > 0). 
3.  Preservation technology is used for controlling the deterioration rate. 
4.  Holding cost is linear function of time and it is �� = ℎ + ��	(ℎ,� > 0). 
5.  The lead time is zero. 
6.  Time horizon is finite. 
7.  The deterioration rate is constant. 
8.  No repair or replacement of the deteriorated items takes place during a given cycle. 
9.  Total inventory cost is a real, continuous function which is convex to the origin. 
10. Shortages are allowed and backlogged. 

 
During stock out period, the backlogging rate is variable and is dependent on the length of the waiting time for the next 
replenishment.  
 
Mathematical Model and Analysis 
 
Here, the replenishment policy of a deteriorating item with backlogging is considered. The objective of the inventory problem is to 
determine the optimal order quantity and the length of ordering cycle so as to keep the total relevant cost as low as possible, where 
the preservation technology is used to control the deterioration rate. The behavior of inventory system at any time is shown in 
Figure 1. 
 
Replenishment is made at time t = 0 and the inventory level is at its maximum level Q. During the period (0, td) the inventory level 
is decreasing and at time t1 the inventory reaches zero level. 
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Figure 1. Graphical representation of the inventory system 
 

The pictorial representation is shown in the Figure 1. 
 

As described above, the inventory level decreases owing to demand rate as well as deterioration during (0, t1). Hence, the 
differential equation representing the inventory status is given by 
 
�� (�)

��
= −(� + �� + ���)(0 ≤ � ≤ ��)                                        (1) 

 
�� (�)

��
+ ���(�) = −(� + �� + ���)(�� ≤ � ≤ ��)                                                                                                                              (2) 

 
During the shortage interval (t1, T) the demand at time t is backlogged at the fraction. Thus, the differential equation governing the 
amount of demand backlogged is as below. 
 
�� (�)

��
= −(� + �� + ���)																																							(�� ≤ � ≤ �)	                                                                                                            (3) 

 
The boundary conditions are �(0) = �	and �(��) = 0                                                                                                                     (4) 
 
Using the boundary condition �(0) = �	the solution of the equation (1) is 
 

⟹ �(�) = � − ��� +
���

�
+

���

�
�(0 ≤ � ≤ ��)                                                                                                                                 (5) 

 
Similarly, the solution of equation (2) is given by  
 

����� (�)���(�) = −� (� + �� + ���)����� (�)���� 

 

⟹ ����� (�)���(�) = �� − ��� + (�� + �)
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(Neglecting higher powers of θ) (where	� = ��� + (�� + �)
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which is obtained using �(��) = 0 
 

�(�) = � − ��� − �(�)�� + ��� − �(�)�
��

�
+ ��� − �(�)�

��

�
+ ��� − �(�)�

��

��
+ ��� − �(�)�

��

�
− �� − �

��

�
− �

��
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�(�) ���2� − �(�)�
��

�
+ ��2� −�(�)�

��

�
+ ��2� −�(�)�

��

�
�(�� = � = ��)                                                                             (6) 

 

In equations (5) and (6) values of �(�) and �(�) should coincide at � = ��, which implies that 
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���
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2
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���
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�
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� = �� = �� − ��� − �(�)��� + ��� −�(�)�
��
�
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+ ��� −�(�)�

��
�

�
+ ��� − �(�)�
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�
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Solution of equation (3) is given by 
 

�(�) = −��� +
���

�
+

���

�
�+ 	��                                                                                                                                                        (8) 

 
With boundary condition �(��) = 0, we get 
 

�� = ���� +
���

�

�
+

���
�

�
�                                                                                                                                                                       (9) 

 
Therefore, from (8) and (9)  
 

⟹ 	�(�) = �(�� − �) +
�

�
(��

� − ��) +
�

�
(��

� − ��)(�� = � = �)                                                                                                      (10) 

 
The total cost comprises of following costs 
 

1)  The ordering cost ��	= 	�                                                                                                                                                   (11) 
 
2)  The deterioration cost during the period (td, t1) 
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3) The inventory holding cost during the period (0, t1) 
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4) The shortage cost per cycle 
 

�� = −�� � �(�)��
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The maximum backordered inventory is obtained at �	= 	� and it is denoted by S. Then from equation (10), 
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Thus, the order size during total interval (0, T) is given by  
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5) Purchase cost per cycle 
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Our objective is to determine optimum value of t1 and T so that TC (t1, T) is minimum. The values of t1 and T for which  
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= 0		and		
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The optimal solution of the equation (17) is obtained using Mathematica software. This has been illustrated by the following 
numerical example. 
 
Numerical Example 
 
We consider the following parametric values for A = 120,a = 10,b = 8,c = 5,h = 1, 
 
r = 	0.5, t� = 0.5, θ = 	0.87, m(ξ) = 0.05, C� = 5,				C� = 2,				P� = 15	. 
 
We obtain the optimal value of			�� = 0.65327 units, 		� = 1.92675			units, �	= 	45.1165			and optimal total cost (TC) = 334.782. 
 
Conclusion 
 
The products with high deterioration rate are always crucible to the retailer’s business. In real markets, the retailer can reduce the 
deterioration rate of a product by making effective capital investment in storehouse equipment. In this study, to reduce the 
deterioration rate during deterioration period of deteriorating items, we use the preservation technology. A solution procedure is 
given to find an optimal replenishment cycle, shortage period, order quantity and preservation technology that the total inventory 
cost per unit time is minimum. A numerical example has been presented to illustrate the model. This model can further be 
extended by taking more realistic assumptions such as finite replenishment rate, Probabilistic demand rate etc. 
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