
 

 
 

 

        
 

 
                                                 
 

 

A HIGH THROUGHPUT PATTERN MATCHING USING BYTE FILTERED

1Jennifer Christy, J., 
1M.E. VLSI Design, Sri Ramakrishna Engineering College, Coimbatore, India

2M.E VLSI Design, Karpagam University, Coimbatore, India

 

ARTICLE INFO                                         ABSTRACT
 
 

 

The phenomenal growth of the Internet in the 
has brought along, a flood of security attacks on the networking and computing infrastructure.
Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for 
identifying, deterri
intrusion detection system is the ability to search through packets and identify content that matches 
known attacks.
most effective ways of providing security
almost every modern intrusion detection system is a pattern
relies on deterministic finite automata (DF
the Aho-Corasick pattern
memory required and improve its performance
of memory reduction compared with the traditional Aho
gain further reduction in memory by integrating our approach to the bit
state-of-the

 

 
 

 

 
 

INTRODUCTION 
 

Computer networks are vulnerable to enormous break
attacks, such as worms, spyware, and denial
attacks. These attacks intrude publicly accessible computer 
systems to eavesdrop and destroy sensitive data, and even 
hijack a large number of victim computers to launch new 
attacks. Hence, there has been widespread research 
combating such attacks at every level, from end hosts to 
network taps to edge and core routers. Network Intrusion 
Detection and Prevention Systems (NIDS/ NIPS) have 
emerged as one of the most promising security components to 
safeguard computer networks. The worldwide NIDS/NIPS 
market is expected to grow from $932 million in 2007 to $2.1 
billion in the next five years [3]. NIDS/NIPS, such as Snort 
and Bro, perform real-time traffic monitoring to identify 
suspicious activities. Deep Packet Inspection (DPI) is the core 
of NIDS/NIPS, which scans both packet header and payload to 
search for predefined attack signatures. To define suspicious 
activities, DPI typically uses a set of rules which are applied to 
matching packets. A rule consists at least of a type of packet, a 
string of content called signature string to match.
 
As link rates and traffic volumes of Internet are constantly 
growing, DPI will be faced with the high
challenges. In high-speed routers, DPI is required to achieve 
packet processing in line speed with limited memory space. 
First, string matching is computationally intensive. 
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ABSTRACT 

The phenomenal growth of the Internet in the last decade and society's increasing dependence on it 
has brought along, a flood of security attacks on the networking and computing infrastructure.
Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for 
identifying, deterring and deflecting malicious attacks over the network. Essential to almost every 
intrusion detection system is the ability to search through packets and identify content that matches 
known attacks. Network Intrusion Detection and Prevention Systems have
most effective ways of providing security to those connected to the network, and at the heart of
almost every modern intrusion detection system is a pattern matching algorithm.
relies on deterministic finite automata (DFA) to search for predefined patterns.

Corasick pattern-matching algorithm are proposed that drastically reduce the amount of 
memory required and improve its performance. For Snort rule sets, the new algorithm achieves 30% 

emory reduction compared with the traditional Aho–Corasick algorithm. In addition, we can 
gain further reduction in memory by integrating our approach to the bit-

the-art memory-based approach. 
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Computer networks are vulnerable to enormous break-in 
spyware, and denial-of-service 

attacks. These attacks intrude publicly accessible computer 
systems to eavesdrop and destroy sensitive data, and even 
hijack a large number of victim computers to launch new 
attacks. Hence, there has been widespread research interest in 
combating such attacks at every level, from end hosts to 

Network Intrusion 
Detection and Prevention Systems (NIDS/ NIPS) have 
emerged as one of the most promising security components to 

networks. The worldwide NIDS/NIPS 
market is expected to grow from $932 million in 2007 to $2.1 
billion in the next five years [3]. NIDS/NIPS, such as Snort 

time traffic monitoring to identify 
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of NIDS/NIPS, which scans both packet header and payload to 
search for predefined attack signatures. To define suspicious 
activities, DPI typically uses a set of rules which are applied to 

a type of packet, a 
string of content called signature string to match. 

As link rates and traffic volumes of Internet are constantly 
growing, DPI will be faced with the high-performance 

speed routers, DPI is required to achieve 
processing in line speed with limited memory space. 

First, string matching is computationally intensive.  

 
DPI adopts string matching to compare every byte of every 
incoming packet for a potential match again 
thousands of rules. Thus, string matching becomes the 
performance bottleneck of DPI. For example, the routines of 
Aho–Corasick string matching algorithm  account for about 
70% of total execution time and 80% of instructions .Since 
software-based string matching algorithms cannot keep up 
with 10–40 Gbps 40 Gbps packet processing, hardware
string matching algorithms  have been recently proposed to 
improve the throughput of DPI. These hardware
algorithms exploit modern embedded devices,
Application Specific Integrated Circuit (ASIC), Field 
Programmable Gate Array (FPGA), Network Processor (NP), 
and Ternary Content Addressable Memory (TCAM), to 
perform high-speed packet processing, using their powerful 
parallelism and fast on-chip memory access.
 
ARCHITECTURE 
 
Deep Packet Inspection (DPI) is essential for network security 
to scan both packet header and payload to search for 
predefined signatures. String matching using Deterministic 
Finite Automaton (DFA) will be the performance bot
of DPI. The recently proposed bit
algorithm suffers from the unnecessary state transitions 
problem. The root cause lies in the fact that the bit
algorithm makes pattern matching in a ‘‘not seeing the forest 
for trees” approach, where each tiny DFA only processes a b
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DPI adopts string matching to compare every byte of every 
incoming packet for a potential match again hundreds of 
thousands of rules. Thus, string matching becomes the 
performance bottleneck of DPI. For example, the routines of 

Corasick string matching algorithm  account for about 
70% of total execution time and 80% of instructions .Since 
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improve the throughput of DPI. These hardware-based 
algorithms exploit modern embedded devices, such as 
Application Specific Integrated Circuit (ASIC), Field 
Programmable Gate Array (FPGA), Network Processor (NP), 
and Ternary Content Addressable Memory (TCAM), to 

speed packet processing, using their powerful 
memory access. 

Deep Packet Inspection (DPI) is essential for network security 
to scan both packet header and payload to search for 
predefined signatures. String matching using Deterministic 
Finite Automaton (DFA) will be the performance bottleneck 
of DPI. The recently proposed bit-split string matching 
algorithm suffers from the unnecessary state transitions 
problem. The root cause lies in the fact that the bit-split 
algorithm makes pattern matching in a ‘‘not seeing the forest 

proach, where each tiny DFA only processes a b-
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bit substring of each input character, but cannot check whether 
the entire character belongs to the alphabet of original DFA. 
 
A. String Matching Engine 
 

At a high level, our algorithm works by breaking the set of 
strings down into a set of small state machines. Each state 
machine is in charge of recognizing a subset of the strings 
from the rule set. Our architecture is built hierarchically 
around the way that the sets of strings are broken down. At the 
highest level is the full device. Each device holds the entire set 
of strings that are to be searched, and each cycle the device 
reads in a character from an incoming packet, and computes 
the set of matches. Matches can be reported either after every 
byte, or can be accumulated and reported on a per-packet 
basis.  When adding rules to modules, there are a several 
issues that need to be handled. First, care needs to be taken not 
to overflow a rule module (in terms of either number of rules 
or number of states allowed The exact nature of the rule 
update policy is left open to IDS system designer. 

 
B. Aho-Corasick Algorithm 
 
The objective of the Aho-Corasick algorithm is to find all 
substrings of a given input string that matches against some 
set of previously defined strings. These previously defined 
strings are called patterns or keywords. The pattern matching 
machine consists of a set of states that the machine moves 
through as it reads one character symbol from the input string 
in each cycle. The movement of the machine is controlled by 
three types of state transitions: normal transitions (successful 
character matches), error transitions (when the machine 
attempts to realign to the next-longest potential match), and 
acceptance (successful matching of a full string). 
 
BIT-SPLIT STRING MATCHING OVERVIEW 
 
In essence, the bit-split string matching algorithm is based on 
Aho–Corasick algorithm [8] to construct a set of tiny 
alphabets and tiny DFAs which process every input character 
in parallel. For a given set of rules, Aho–Corasick algorithm 
constructs an original alphabet and original DFA. To clarify 
this paper and distinguish items, a state of the original DFA is 
called an original state, whereas a state of the tiny DFA is 
called a tiny state. Aho–Corasick algorithm [8] is a classic 
exact string matching algorithm. The key of Aho–Corasick 
algorithm is to construct an original DFA that encodes all 
signature strings to be searched for. The original DFA is 
represented with a tree, which starts with an empty root node 
that is the initial state. The construction process of an original 
DFA is as follows. First, each signature string adds states to 
the tree, starting at the root and going to the end of the string. 
The tree has a branching factor that is equal to the number of 
unique characters in an original alphabet. Second, the tree is 
traversed and failure edges are added to shortcut from a partial 
suffix match of one string to a partial prefix match of another. 
The string matching of the original DFA is easy: given a 
current state and an input character, the DFA makes a normal 
transition on the character to a next state, or makes a failure 
transition. Fig. 1 depicts an example original DFA for a set of 
strings {he, she, his, hers}. In the DFA, the initial state is 0, 
and accepting states are 2, 5, 7 and 9. As seen in Fig. 1, a real 
line denotes a normal transition, while a dashed line denotes 
a failure transition to the initial state. 

 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

The bit-split algorithm has two stages to construct a set of 
tiny alphabets and tiny DFAs. The first stage splits an 
original alphabet of Aho–Corasick algorithm apart into a set 
of tiny alphabets. A character consists of m bytes (m P 1). 
For example, an English character has one byte, while a 
Chinese character has two bytes. Each character is divided 
into a number of equalized portions called substrings, each 
with b bits. Thus, each substring of every unique character in 
the original alphabet is extracted to construct a tiny alphabet. 
The second stage splits an original DFA of Aho–Corasick 
algorithm apart into a set of 8m/b tiny DFAs. For a given tiny 
state and a tuple of tiny alphabet, we search for a subset of 
possible next original states, labeled as a next tiny state, to 
construct a tiny DFA. Note that a tiny state may contain a 
subset of original states and an accepting tiny state is set 
when it contains any accepting original state. Fig. 2 depicts 
the original alphabet and two tiny alphabets for a set of 
strings {he, she, his, hers}. In Fig. 2(a), the original alphabet 
is R = {h, s, e, i, r}, and each unique character has one 8-bit 
byte. In Fig. 2(b), the first and second bits are extracted to 
construct the left tiny alphabet RB01, and the third and fourth 
bits are extracted to construct the right tiny alphabet RB23. In 
a tiny alphabet, each tuple (row) consists of a 2-bit substring 
and a subset of unique characters. For instance, the second 
tuple in RB01 contains a substring 01 and a subset {e, i}. The 
matching process of bit-split algorithm is as follows. First, an 
input character is divided into a set of b-bit substrings. 
Second, each b-bit substring is extracted to feed to the 
corresponding tinyDFA, and then all tiny DFAs make 
transitions to next tiny states in parallel. 
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Figure1. Original DFA for a set {he, she, his, hers} 

 
 
 (a) Original alphabet 
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(b) Tiny alphabets 

Fig. 2. Original alphabet and two tny alphabets for a set  

{ he, she, his, hers} 

 
BYTE-FILTERED STRING MATCHING 
 
Here, we present a byte-filtered string matching algorithm to 
overcome the unnecessary state transitions problem. The core 
idea of the byte-filtered algorithm is that each character of 
every incoming packet is filtered by checking whether the 
character belongs to the original alphabet, before performing 
string matching. If the character is in the original alphabet, the 
character is divided into a set of substrings, and all tiny DFAs 
make state transitions on the substrings in parallel for bit-split 
string matching. If not, each tiny DFA either makes a failure 
transition or stops any state transition.  Furthermore, we 
propose a novel optimization scheme to speedup the byte-
filtered algorithm. In the scheme, given that an input character 
is not in the original alphabet, each tiny DFA checks to see 
whether its current state is the initial state before making a 
state transition. If not, the tiny DFA makes a transition to the 
initial state. Otherwise, the tiny DFA stops any state transition. 
The main purpose of the optimization scheme is to further 
avoid the unnecessary state transitions in hardware to improve 
the throughput of DPI. In the byte-filtered algorithm, we use 
Bloom filters as the byte filter to pre-process every input 
character.  
 
A. Bloom Filters Overview 
 
Bloom filters are a simple space-efficient data structure for 
fast approximate set-membership queries. Bloom filters are 
widely used in most network applications from Web caching 
to P2P collaboration to packet processing .Bloom filters 
represent a set S of n items by an array V of m bits, initially all 
set to 0. Bloom filters use k independent hash functions h1, 
h2, . . ., hk with the range [1, . . .,m]. For each item s 2 S, the 
bits V[hi(s)] are set to 1, for i=1….  k. To query if an item u is 
in S, we check whether all bits V[hi(u)] are set to 1. If not, u is 
not in S. If all bits V[hi(u)] are set to 1, it is assumed that u is 
in S. 
 
B. Byte-Filtered String Matching Engine 
 
We present a novel architecture of byte-filtered string 
matching engine, suitable for hardware implementation such 
as FPGA and ASIC. We also describe the optimization 
schemes for hardware design and implementation of the 
engine. Fig. 3 depicts a top-level diagram of byte-filtered 
string matching engine architecture. First, the byte-filtered 
engine reads as input a data stream with the window size w. 
Second, each input character of multiple bytes is transferred to 

the byte filter which checks to see whether the character is in 
the original alphabet per clock cycle. If not, four tiny DFAs 
including B01DFA, B23DFA, B45DFA, and B67DFA, either 
make a transition to the initial tiny state or stop any state 
transition. If the input character is in the original alphabet, 
multiple bytes are of the character divided into four parts, each 
of which is feed to the corresponding tiny DFA. Four tiny 
DFAs output the partial match vectors including PMV0, 
PMV1, PMV2, and PMV3, which are transferred to the logical 
bitwise AND unit to take an intersection. Finally, the full 
match vector is outputted and the matched signatures are 
reported to system administrators. 

 

 
                Figure 3. Byte filtered string matching Engine 
 
EXPERIMENTAL EVALUATION 
 
In this section, we present the software simulation experiments 
to compare the byte-filtered algorithm with the bit_split 
algorithm. In the experiments, we measure the performance 
metrics including the string matching time and the area for 
state transition. We designed and implemented both the bit-
split and byte-filtered algorithms with VHDL. We synthesize 
or choose a set of signature strings, and generate a set of 
testing strings to evaluate the performance of string matching. 
The simulation process results is showm below. First, the 
simulator converts the set of signature strings into one DFA, 
and then the DFA is split into a set of tiny DFAs for both the 
bit-split and byte-filtered algorithms. 

 
Logic Utilization 
 

Bit_Split 
Algorithm 

Byte Filtered String 
Matching Algorithm 

No of Slice Flipflops 20 
 

18 
 

No of 4 input LUTs 40 
 

43 
 

Total Equivalent Gate Count 
 

431 418 

Peak Memory Usage 
 

147 MB 
 

144 MB 
 

 
CONCLUSION 
 
Existing bit-split string matching algorithm suffers from the 
unnecessary state transitions problem. The bit-split algorithm 
makes pattern matching in a ‘‘not seeing the forest for trees” 
approach, where each tiny DFA only processes a substring of 
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each input character, but cannot check whether the entire 
character belongs to the original alphabet. This paper proposes 
a byte filtered string matching algorithm using Bloom filters. 
The byte-filtered algorithm pre-processes each character of 
every incoming packet by checking whether the character 
belongs to the original alphabet, before performing bit-split 
string matching. We further optimize the byte-filtered 
algorithm for hardware implementation, and theoretically 
analyze the performance gain in terms of the number of state 
transitions. Experimental results on synthetic rule set show 
that compared with the bit split algorithm, the byte-filtered 
algorithm reduces the string matching time by up to 15.6 times 
and the number of state transitions of tiny DFAs by about 
30%; when the alphabet size increases, the string matching 
time ratio of the byte-filtered algorithm decreases. 
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