

A HIGH THROUGHPUT PATTERN MATCHING USING BYTE FILTERED

1Jennifer Christy, J.,
1M.E. VLSI Design, Sri Ramakrishna Engineering College, Coimbatore, India

2M.E VLSI Design, Karpagam University, Coimbatore, India

ARTICLE INFO ABSTRACT

The phenomenal growth of the Internet in the
has brought along, a flood of security attacks on the networking and computing infrastructure.
Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for
identifying, deterri
intrusion detection system is the ability to search through packets and identify content that matches
known attacks.
most effective ways of providing security
almost every modern intrusion detection system is a pattern
relies on deterministic finite automata (DF
the Aho-Corasick pattern
memory required and improve its performance
of memory reduction compared with the traditional Aho
gain further reduction in memory by integrating our approach to the bit
state-of-the

INTRODUCTION

Computer networks are vulnerable to enormous break
attacks, such as worms, spyware, and denial
attacks. These attacks intrude publicly accessible computer
systems to eavesdrop and destroy sensitive data, and even
hijack a large number of victim computers to launch new
attacks. Hence, there has been widespread research
combating such attacks at every level, from end hosts to
network taps to edge and core routers. Network Intrusion
Detection and Prevention Systems (NIDS/ NIPS) have
emerged as one of the most promising security components to
safeguard computer networks. The worldwide NIDS/NIPS
market is expected to grow from $932 million in 2007 to $2.1
billion in the next five years [3]. NIDS/NIPS, such as Snort
and Bro, perform real-time traffic monitoring to identify
suspicious activities. Deep Packet Inspection (DPI) is the core
of NIDS/NIPS, which scans both packet header and payload to
search for predefined attack signatures. To define suspicious
activities, DPI typically uses a set of rules which are applied to
matching packets. A rule consists at least of a type of packet, a
string of content called signature string to match.

As link rates and traffic volumes of Internet are constantly
growing, DPI will be faced with the high
challenges. In high-speed routers, DPI is required to achieve
packet processing in line speed with limited memory space.
First, string matching is computationally intensive.

*Corresponding author: jenni.jeys@gmail.com

ISSN: 0975-833X

 Available online at http://www.journalcra.com

International Journal of Current Research
Vol.

Article History:

Received 29th January, 2012
Received in revised form
24th February, 2012
Accepted 07th March, 2012
Published online 30th April, 2012

Key words:

Aho–Corasick (AC) algorithm;
Finite automata;
Pattern matching;
Intrusion detection System.

RESEARCH ARTICLE

A HIGH THROUGHPUT PATTERN MATCHING USING BYTE FILTERED BIT_SPLIT ALGORITHM

Jennifer Christy, J., 1Manikandababu, C.S. and 2Rathish, C.R

Ramakrishna Engineering College, Coimbatore, India
M.E VLSI Design, Karpagam University, Coimbatore, India

ABSTRACT

The phenomenal growth of the Internet in the last decade and society's increasing dependence on it
has brought along, a flood of security attacks on the networking and computing infrastructure.
Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for
identifying, deterring and deflecting malicious attacks over the network. Essential to almost every
intrusion detection system is the ability to search through packets and identify content that matches
known attacks. Network Intrusion Detection and Prevention Systems have
most effective ways of providing security to those connected to the network, and at the heart of
almost every modern intrusion detection system is a pattern matching algorithm.
relies on deterministic finite automata (DFA) to search for predefined patterns.

Corasick pattern-matching algorithm are proposed that drastically reduce the amount of
memory required and improve its performance. For Snort rule sets, the new algorithm achieves 30%

emory reduction compared with the traditional Aho–Corasick algorithm. In addition, we can
gain further reduction in memory by integrating our approach to the bit-

the-art memory-based approach.

Copy Right, IJCR, 2012, Academic Journals

Computer networks are vulnerable to enormous break-in
spyware, and denial-of-service

attacks. These attacks intrude publicly accessible computer
systems to eavesdrop and destroy sensitive data, and even
hijack a large number of victim computers to launch new
attacks. Hence, there has been widespread research interest in
combating such attacks at every level, from end hosts to

Network Intrusion
Detection and Prevention Systems (NIDS/ NIPS) have
emerged as one of the most promising security components to

networks. The worldwide NIDS/NIPS
market is expected to grow from $932 million in 2007 to $2.1
billion in the next five years [3]. NIDS/NIPS, such as Snort

time traffic monitoring to identify
ion (DPI) is the core

of NIDS/NIPS, which scans both packet header and payload to
search for predefined attack signatures. To define suspicious
activities, DPI typically uses a set of rules which are applied to

a type of packet, a
string of content called signature string to match.

As link rates and traffic volumes of Internet are constantly
growing, DPI will be faced with the high-performance

speed routers, DPI is required to achieve
processing in line speed with limited memory space.

First, string matching is computationally intensive.

DPI adopts string matching to compare every byte of every
incoming packet for a potential match again
thousands of rules. Thus, string matching becomes the
performance bottleneck of DPI. For example, the routines of
Aho–Corasick string matching algorithm account for about
70% of total execution time and 80% of instructions .Since
software-based string matching algorithms cannot keep up
with 10–40 Gbps 40 Gbps packet processing, hardware
string matching algorithms have been recently proposed to
improve the throughput of DPI. These hardware
algorithms exploit modern embedded devices,
Application Specific Integrated Circuit (ASIC), Field
Programmable Gate Array (FPGA), Network Processor (NP),
and Ternary Content Addressable Memory (TCAM), to
perform high-speed packet processing, using their powerful
parallelism and fast on-chip memory access.

ARCHITECTURE

Deep Packet Inspection (DPI) is essential for network security
to scan both packet header and payload to search for
predefined signatures. String matching using Deterministic
Finite Automaton (DFA) will be the performance bot
of DPI. The recently proposed bit
algorithm suffers from the unnecessary state transitions
problem. The root cause lies in the fact that the bit
algorithm makes pattern matching in a ‘‘not seeing the forest
for trees” approach, where each tiny DFA only processes a b

Available online at http://www.journalcra.com

ternational Journal of Current Research
Vol. 4, Issue, 04, pp.165-168, April, 2012

 INTERNATIONAL
 OF CURRENT RESEARCH

BIT_SPLIT ALGORITHM

Rathish, C.R

Ramakrishna Engineering College, Coimbatore, India

last decade and society's increasing dependence on it
has brought along, a flood of security attacks on the networking and computing infrastructure.
Intrusion Detection Systems (IDSs) have become widely recognized as powerful tools for

ng and deflecting malicious attacks over the network. Essential to almost every
intrusion detection system is the ability to search through packets and identify content that matches

Network Intrusion Detection and Prevention Systems have emerged as one of the
to those connected to the network, and at the heart of

matching algorithm. Pattern matching
A) to search for predefined patterns. Here modifications to

matching algorithm are proposed that drastically reduce the amount of
For Snort rule sets, the new algorithm achieves 30%

Corasick algorithm. In addition, we can
-split algorithm which is the

, Academic Journals. All rights reserved.

DPI adopts string matching to compare every byte of every
incoming packet for a potential match again hundreds of
thousands of rules. Thus, string matching becomes the
performance bottleneck of DPI. For example, the routines of

Corasick string matching algorithm account for about
70% of total execution time and 80% of instructions .Since

d string matching algorithms cannot keep up
40 Gbps 40 Gbps packet processing, hardware-based

string matching algorithms have been recently proposed to
improve the throughput of DPI. These hardware-based
algorithms exploit modern embedded devices, such as
Application Specific Integrated Circuit (ASIC), Field
Programmable Gate Array (FPGA), Network Processor (NP),
and Ternary Content Addressable Memory (TCAM), to

speed packet processing, using their powerful
memory access.

Deep Packet Inspection (DPI) is essential for network security
to scan both packet header and payload to search for
predefined signatures. String matching using Deterministic
Finite Automaton (DFA) will be the performance bottleneck
of DPI. The recently proposed bit-split string matching
algorithm suffers from the unnecessary state transitions
problem. The root cause lies in the fact that the bit-split
algorithm makes pattern matching in a ‘‘not seeing the forest

proach, where each tiny DFA only processes a b-

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

bit substring of each input character, but cannot check whether
the entire character belongs to the alphabet of original DFA.

A. String Matching Engine

At a high level, our algorithm works by breaking the set of
strings down into a set of small state machines. Each state
machine is in charge of recognizing a subset of the strings
from the rule set. Our architecture is built hierarchically
around the way that the sets of strings are broken down. At the
highest level is the full device. Each device holds the entire set
of strings that are to be searched, and each cycle the device
reads in a character from an incoming packet, and computes
the set of matches. Matches can be reported either after every
byte, or can be accumulated and reported on a per-packet
basis. When adding rules to modules, there are a several
issues that need to be handled. First, care needs to be taken not
to overflow a rule module (in terms of either number of rules
or number of states allowed The exact nature of the rule
update policy is left open to IDS system designer.

B. Aho-Corasick Algorithm

The objective of the Aho-Corasick algorithm is to find all
substrings of a given input string that matches against some
set of previously defined strings. These previously defined
strings are called patterns or keywords. The pattern matching
machine consists of a set of states that the machine moves
through as it reads one character symbol from the input string
in each cycle. The movement of the machine is controlled by
three types of state transitions: normal transitions (successful
character matches), error transitions (when the machine
attempts to realign to the next-longest potential match), and
acceptance (successful matching of a full string).

BIT-SPLIT STRING MATCHING OVERVIEW

In essence, the bit-split string matching algorithm is based on
Aho–Corasick algorithm [8] to construct a set of tiny
alphabets and tiny DFAs which process every input character
in parallel. For a given set of rules, Aho–Corasick algorithm
constructs an original alphabet and original DFA. To clarify
this paper and distinguish items, a state of the original DFA is
called an original state, whereas a state of the tiny DFA is
called a tiny state. Aho–Corasick algorithm [8] is a classic
exact string matching algorithm. The key of Aho–Corasick
algorithm is to construct an original DFA that encodes all
signature strings to be searched for. The original DFA is
represented with a tree, which starts with an empty root node
that is the initial state. The construction process of an original
DFA is as follows. First, each signature string adds states to
the tree, starting at the root and going to the end of the string.
The tree has a branching factor that is equal to the number of
unique characters in an original alphabet. Second, the tree is
traversed and failure edges are added to shortcut from a partial
suffix match of one string to a partial prefix match of another.
The string matching of the original DFA is easy: given a
current state and an input character, the DFA makes a normal
transition on the character to a next state, or makes a failure
transition. Fig. 1 depicts an example original DFA for a set of
strings {he, she, his, hers}. In the DFA, the initial state is 0,
and accepting states are 2, 5, 7 and 9. As seen in Fig. 1, a real
line denotes a normal transition, while a dashed line denotes
a failure transition to the initial state.

The bit-split algorithm has two stages to construct a set of
tiny alphabets and tiny DFAs. The first stage splits an
original alphabet of Aho–Corasick algorithm apart into a set
of tiny alphabets. A character consists of m bytes (m P 1).
For example, an English character has one byte, while a
Chinese character has two bytes. Each character is divided
into a number of equalized portions called substrings, each
with b bits. Thus, each substring of every unique character in
the original alphabet is extracted to construct a tiny alphabet.
The second stage splits an original DFA of Aho–Corasick
algorithm apart into a set of 8m/b tiny DFAs. For a given tiny
state and a tuple of tiny alphabet, we search for a subset of
possible next original states, labeled as a next tiny state, to
construct a tiny DFA. Note that a tiny state may contain a
subset of original states and an accepting tiny state is set
when it contains any accepting original state. Fig. 2 depicts
the original alphabet and two tiny alphabets for a set of
strings {he, she, his, hers}. In Fig. 2(a), the original alphabet
is R = {h, s, e, i, r}, and each unique character has one 8-bit
byte. In Fig. 2(b), the first and second bits are extracted to
construct the left tiny alphabet RB01, and the third and fourth
bits are extracted to construct the right tiny alphabet RB23. In
a tiny alphabet, each tuple (row) consists of a 2-bit substring
and a subset of unique characters. For instance, the second
tuple in RB01 contains a substring 01 and a subset {e, i}. The
matching process of bit-split algorithm is as follows. First, an
input character is divided into a set of b-bit substrings.
Second, each b-bit substring is extracted to feed to the
corresponding tinyDFA, and then all tiny DFAs make
transitions to next tiny states in parallel.

h

Figure1. Original DFA for a set {he, she, his, hers}

 (a) Original alphabet

166 International Journal of Current Research, Vol. 4, Issue, 04, pp.165-168, April, 2012

(b) Tiny alphabets

Fig. 2. Original alphabet and two tny alphabets for a set

{ he, she, his, hers}

BYTE-FILTERED STRING MATCHING

Here, we present a byte-filtered string matching algorithm to
overcome the unnecessary state transitions problem. The core
idea of the byte-filtered algorithm is that each character of
every incoming packet is filtered by checking whether the
character belongs to the original alphabet, before performing
string matching. If the character is in the original alphabet, the
character is divided into a set of substrings, and all tiny DFAs
make state transitions on the substrings in parallel for bit-split
string matching. If not, each tiny DFA either makes a failure
transition or stops any state transition. Furthermore, we
propose a novel optimization scheme to speedup the byte-
filtered algorithm. In the scheme, given that an input character
is not in the original alphabet, each tiny DFA checks to see
whether its current state is the initial state before making a
state transition. If not, the tiny DFA makes a transition to the
initial state. Otherwise, the tiny DFA stops any state transition.
The main purpose of the optimization scheme is to further
avoid the unnecessary state transitions in hardware to improve
the throughput of DPI. In the byte-filtered algorithm, we use
Bloom filters as the byte filter to pre-process every input
character.

A. Bloom Filters Overview

Bloom filters are a simple space-efficient data structure for
fast approximate set-membership queries. Bloom filters are
widely used in most network applications from Web caching
to P2P collaboration to packet processing .Bloom filters
represent a set S of n items by an array V of m bits, initially all
set to 0. Bloom filters use k independent hash functions h1,
h2, . . ., hk with the range [1, . . .,m]. For each item s 2 S, the
bits V[hi(s)] are set to 1, for i=1…. k. To query if an item u is
in S, we check whether all bits V[hi(u)] are set to 1. If not, u is
not in S. If all bits V[hi(u)] are set to 1, it is assumed that u is
in S.

B. Byte-Filtered String Matching Engine

We present a novel architecture of byte-filtered string
matching engine, suitable for hardware implementation such
as FPGA and ASIC. We also describe the optimization
schemes for hardware design and implementation of the
engine. Fig. 3 depicts a top-level diagram of byte-filtered
string matching engine architecture. First, the byte-filtered
engine reads as input a data stream with the window size w.
Second, each input character of multiple bytes is transferred to

the byte filter which checks to see whether the character is in
the original alphabet per clock cycle. If not, four tiny DFAs
including B01DFA, B23DFA, B45DFA, and B67DFA, either
make a transition to the initial tiny state or stop any state
transition. If the input character is in the original alphabet,
multiple bytes are of the character divided into four parts, each
of which is feed to the corresponding tiny DFA. Four tiny
DFAs output the partial match vectors including PMV0,
PMV1, PMV2, and PMV3, which are transferred to the logical
bitwise AND unit to take an intersection. Finally, the full
match vector is outputted and the matched signatures are
reported to system administrators.

 Figure 3. Byte filtered string matching Engine

EXPERIMENTAL EVALUATION

In this section, we present the software simulation experiments
to compare the byte-filtered algorithm with the bit_split
algorithm. In the experiments, we measure the performance
metrics including the string matching time and the area for
state transition. We designed and implemented both the bit-
split and byte-filtered algorithms with VHDL. We synthesize
or choose a set of signature strings, and generate a set of
testing strings to evaluate the performance of string matching.
The simulation process results is showm below. First, the
simulator converts the set of signature strings into one DFA,
and then the DFA is split into a set of tiny DFAs for both the
bit-split and byte-filtered algorithms.

Logic Utilization

Bit_Split
Algorithm

Byte Filtered String
Matching Algorithm

No of Slice Flipflops 20

18

No of 4 input LUTs 40

43

Total Equivalent Gate Count

431 418

Peak Memory Usage

147 MB

144 MB

CONCLUSION

Existing bit-split string matching algorithm suffers from the
unnecessary state transitions problem. The bit-split algorithm
makes pattern matching in a ‘‘not seeing the forest for trees”
approach, where each tiny DFA only processes a substring of

167 International Journal of Current Research, Vol. 4, Issue, 04, pp.165-168, April, 2012

each input character, but cannot check whether the entire
character belongs to the original alphabet. This paper proposes
a byte filtered string matching algorithm using Bloom filters.
The byte-filtered algorithm pre-processes each character of
every incoming packet by checking whether the character
belongs to the original alphabet, before performing bit-split
string matching. We further optimize the byte-filtered
algorithm for hardware implementation, and theoretically
analyze the performance gain in terms of the number of state
transitions. Experimental results on synthetic rule set show
that compared with the bit split algorithm, the byte-filtered
algorithm reduces the string matching time by up to 15.6 times
and the number of state transitions of tiny DFAs by about
30%; when the alphabet size increases, the string matching
time ratio of the byte-filtered algorithm decreases.

REFERENCES

[1] A. V. Aho and M. J. Corasick, “Efficient string matching:

An AID to bibliographic search,” CommunACM vol. 18,
no. 6, pp. 333– 340, 1975.

[2] M. Aldwairi, T. Conte, and P.Franzon, “Configurable
string matching hardware for speeding up intrusion
detection,” Proc. ACM SIGARCH Comput. Arch. News,
vol.33, no. 1, pp. 99–107, 2005.

 [3] M. Alicherry, M . Muthuprasanna, and V. Kumar, “High
speed pattern Matching for network IDS/IPS,” in Proc.
IEEE Int. Conf. Netw. Protocols (ICNP) , 2006, pp. 187–
196.

[4] B. Brodie, R. Cytron, and D. Taylor, “A scalable
architecture for high-throughput regular expression
pattern matching,” in Proc. 33rd Int. Symp. Comput. Arch.
(ISCA) , 2006, pp. 191–122.

[5] Z. K. Baker and V. K. Prasanna, “High-throughput
linked-pattern matching for intrusion detection systems,”
in Proc. Symp. Arch. For Netw. Commun. Syst. (ANCS) ,
Oct.2005, pp. 193–202

[6] Application layer packet classifier for Linux, 2008.
<http://l7-filter.sourceforge.net>.

[7] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-
network identification of P2P traffic using
application signatures, in: Proceedings of WWW
2004,Manhattan, 2004.

[8] A.V. Aho, M.J. Corasick, Efficient string matching: an
aid to bibliographic search, Communications of the ACM
18 (6) (1975) 333–340.

168 International Journal of Current Research, Vol. 4, Issue, 04, pp.165-168, April, 2012
