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ABSTRACT 

“In this paper the concept of contraction mapping for multi-valued maps in complete metric space is 
introduced. The point to set map is also called multi-valued  (multifunction) which guarantees the 
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Preliminaries and Notations 
 
In the first part of this article we combine the ideas of set
valued mapping using Lipchitz mapping 
Uttam  P. Dolhare, 2016) & proved some fixed point theorems 
in complete metric space. Also we use new multi
contractive conditions which are different from previous 
conditions. Using these conditions some random fixed point 
theorems for multi-valued self and non
prove. In second part we generalize the Banach contraction 
principle (Suhas S. Patil and Dolhare,
mappings, generalization of Nadler 
(2006) Gordji and Ramezani (2010
related to these conditions. Thought this paper S be a complete 

metric space with metric   in complete metric space, R be the 
set of all real numbers and N be the set of positive integers. Let 
CB(S) be the set of all nonempty bounded closed 
Cl(S) the class of all nonempty closed subset of S and k(S) be 
the set of all nonempty compact subsets of S respectively.
 

For any P, Q belongs to CB(S) 
 

( , ) sup{ ( , ) : }P Q d x Q x P  

( , ) max{sup ( , ),sup ( , )}
m q n q

H P Q m P n Q 
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Where ( , ) inf ( , )n pm P m n  . Then the function H is a 

metric on CB(S) and is called Hausdorff metric. 
 
The pair (CB(S), H) is called generalized Hausdrorff distance 
induced by d. 
 
Example 2.1 Let P = (1,2) and Q=(2,3), where S=R set of all 
real number then 
 

( , ) sup ( , ) 1
m Q

P Q d m P


  and 

( , ) sup ( , ) 1
n P

Q P n Q 


   

∴    ( , ) max{ ( , ), ( , )} 1H P Q P Q Q p    

Where the set distance δ is not symmetric. 
 
Definition 2.1 A mapping :f S R is said to be a fixed 

point semi-continuous if for any sequence {tn} in S and t ∈ M 

such that nt t  we have ( ) liminf ( )n nf t f t
 

 
Hence Nadler (1969) extended the Banach contraction 
principle (Kamran, 2009) to point to set map in various ways. 
The following generalization given by N. Mizoguchi & W. 
Takahashi (Mizoguchi and Takahashi, 1989) 
 
Theorem 2.1 (Mizoguchi and Takahashi, 1989) Let a mapping 

: ( )T S CB S  in a complete metric space (S, δ) and if there 

exist a function γ of (0,∞) into (0,1) such that 

limsup ( ) 1
r x

r
  for each [0, )x  and 

,( ) ( ( , )) ( , )m nH T T d m n d m n  for each ,m n S , then 

T has a fixed point in S. The proof of above theorem 2.1 given 
by many authors but Suzuki (2007) give some examples which 
disprove the claim and prove that Mizoguchi & Takahashi’s 
fixed point theorem is a real generalization of Nadler’s fixed 
point theorem. In this paper we also generalize Mizoguchi & 
Takahashi’s (1989) fixed point theorem as well as Klim and 
Wardowki (2007) fixed point theorem for multi-valued 
mappings. 
 
Definition 2.2 (Suhas  Patil and Uttam. Dolhare 2016) A 

function :f S R  is said to be lower semi-continuous, if 

for any {tn} subset of S and t belongs to S, nt t  implies

( ) lim ( )n nf t f t . 

 
Definition 2.3 (Feng and Liu, 2006) Let : ( )T S N S  be 

multi-valued mapping and is said to be upper semi-continuous, 
a neighborhood J ∋ T(t) for any t ∈ S there is a neighborhood 
M of t such that T(t1) subset of J for any t1 ∈ M. 
 
Proposition 2.1 let (S, δ) be a metric space and let D, E and F 
belongs to CB(S) then the following properties exists 
i) ( , ) 0D E D C     

ii) ( , ) ( , )E F D F D E     

iii) ( , ) max{ ( , ), ( , )}D E F D F E F     

iv) ( , ) ( , ) ( , )D E D F F E     

Proposition 2.2 Let (S, δ) be a metric space then H is a metric 
on CB(S). 

Remark 2.1 The completeness of (S,δ) implies the 
completeness of (CB(S), H) and (k(S), H). 
 
1.Fixed Point theorem for multi-valued contraction 
mappings 
 

Definition 3.1 (Nadler.Jr., 1969) Let 1: ( )f S CB S is said 

to be multi-valued Lipchitz mapping (m. v. l .m) of S into S1 in 
a metric space (S, δ1) and (S, δ2) if and only if 

1 1 1( ( ), ( ) ( , )H f t f t t t  for all t, t1 ∈ S, where β≥0. And 

the constant β is called Lipchitz constant for f. 
 
Definition 3.2 (Nadler.Jr., 1969) IF f has Lipchitz constant and 
β <1 then f is said to be Multi-valued contraction mapping (m. 
v. c. m). 
 
Remark 3.1 Multi-valued contraction mapping is continuous. 
Let : ( )T S N S  be Multi-valued mapping then a function

:f S R as ( ) ( , ( ))f t d t T t  for a positive constant v, 

define the set 
t
vI S  where v ∈ (0,1) 

1 1{ ( ) / ( , ) ( , ( ))}t
vI t T t v t t t T t     

 
Theorem 3.1 Let : ( )T S CB S  be a multi-valued 

mapping in a complete metric space      (S, δ) if there exist a 

constant c ∈ (0,1) such that for any t ∈ S there is t1 ∈
x
vI  

satisfying 1 1( , ( )) ( , )t T t t t  , then T has a fixed point in S 

provided c < v and f is lower semi-continuous. 
 
Theorem 3.2 (Feng and Liu, 2006)  Let : ( )T S CB S  on a 

complete metric space (S, δ) if there exist m, n ∈  (0, 1) such 
that n < m and for any  t ∈ S there is t1 ∈ Tt satisfying the 
following 
 

i) 1( , ) ( , )tm t t t T    

ii) 1 1( , ) ( , )tt Tt n t t   

 
Then T has a fixed point in S such that the function 

( ) ( , )tD t t T  is lower semi-continuous. Also D. klim and 

D. wardowski (Feng and Liu, 2006) extended the above 
theorem as follows. 
 
Theorem 3.3 (Bonsall, 1962) Let : ( )T S Cl S in a 

complete metric space (S, δ) assuming that for each    t ∈ S 
there exist t1 ∈ Tt  such that 

1( , ) ( , )tm t t t T   and 

1 1( , ) ( ( , )) ( , )t tt Tt d t t t t    where γ  is a map from (0,∞) to 

(0,m) such that lim sup ( )
r x

r m
  for all [0, )x   

then T 

has a fixed point in S provided ( ) ( , )tD t t T is lower semi-

continuous. 
 
Lemma 3.1 let (S, δ) be a metric space and P,Q ∈ CB(S) then 
for each p∈ P and ϵ > 0 there exist an q ∈ Q such that 

( , ) ( , )p q H P Q    

Theorem 3.4 Let (S, δ) be a metric space and ξ ≥0 and 

: ( )T S CB S be a generalized (γ, ξ) contraction, i.e. a 

mapping for which there exist a function : [0, ) [0,1)  
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satisfies limsup ( ) 1
r x

r
  for every x ∈ (0, ∞) such that 

1 1( , ) ( ( , )) ( , ) ( , )t t tH T Tt d t t d t t t Tt    for all 1,t t  

belongs to S, then T has at least one fixed point. 
 
Proposition 3.1 Let (S, δ) be a metric space and C be any 
nonempty subset then let the mapping : ( )T C F S  is an 

upper semi-continuous at t0 ∈ C. then the mapping 

:C R  defined by ( ) ( , )t t Tt  , 
 t ∈ C is lower 

semi-continuous at t0. 

 

2.Generalized result of  Nadler’s Fixed Point Theorem 
 
Now we introduce the class of multi-valued contraction 
mapping and obtain a fixed point theorem. Let T be a mapping 
from a metric space (S, δ) into CB(S) then T is said to be 
Lipchitz an if there exist a constant k>0 such that 

1 1( , ) ( , )H Tt Tt k t t for all 1,t t S . 

 
Definition 4.1 (Suhas S. Patil and Uttam  P. Dolhare, 2016) A 
Multi-valued Lipchitz an mapping T is said to be contractive 
(Non expansive) if k < 1 (k=1). 
 
Here F(T) denote the set of fixed points of T there fore 

( ) { : )F T t S t Tt    

 
Theorem 4.1 Let (S, δ) is a complete metric space and 

: ( )T S CB S  
be a multi-valued contraction mapping then  

T has a fixed point in S. 
 
Proof: Let k in (0, 1) be the Lipchitz constant of T, and t0 ∈ S 
and t1 ∈ Tt0. By result (1.1) there must exist t2 ∈ Tt1 such that,  

1 2 0, 1( , ) ( )t t H Tt Tt k    

Similarly there exist t3 ∈ Tt2, such that  
2

2 3 1, 2( , ) ( )t t H Tt Tt k    

Hence there exist a sequence {tn} in S such that tn+1 ∈ Ttn   and  

1 1,( , ) ( ) n
n n n nd t t H Tt Tt k    for all n ∈ N. 

Then for each n ∈ N,   tn+1 ∈ Ttn   and so we have, 

1 1,( , ) ( ) n
n n n nd t t H Tt Tt k    

    1,( ) n
n nk t t k    

    
1

2, 1[ ( ) ]n n
n nk k t t k k 
     

     
2

2, 1( ) 2 n
n nk t t k     

       ………………... 
       ………….......... 

     0, 1( )n nk t t nk   

Hence     
0

n

n

k




     and    
0

n

n

nk




  ,  

We have, 1 0, 1
0 0 0

( , ) ( ) n n
n n

n n n

t t t t k nk 
  


  

       

Hence {tn} is a Cauchy sequence. 
By completeness of X, there exists v ∈ S,   such that 

lim n
n

t v


  

Again by the continuity of T,  lim ( , ) 0n
n

H Tt Tv


  since  

1n nt Tt   

 ∴  1lim ( , ) 0n
n

t Tv 


  

Which implies that ( , ) 0v Tv  .  Since Tv is closed. 

∴ v ∈ Tv. 

 

Remark 4.1 (Ciric, 2008) The fixed point of multi-valued 
contraction mapping is not necessarily unique. 
 
The above remark proved in following examples 
 
Examples 4.1 Let S = (0,1) and : [0,1] [0,1]f   be a map 

such that  
 

1 1
2 2 2( ) { ,0tf t t        And  1

2 2( ) { 1, 1tf t t      

Let us define : 2tT S   by { ( )} {0}Tt f t  , t ∈ S. 

Then T is a multi-valued contraction mapping with 
2
3( ) {0, }F T   

 
Proposition 4.1 Let , : ( )A T S CB S be two contraction 

mappings in a complete metric space (S, δ) then each Lipchitz 
constant k < 1. 

1 1( , ) ( , )H At At k t t  And 
1 1( , ) ( , )H Tt Tt k t t   for all 

1,t t S
 

 
Then   1

1( ( ), ( )) (1 ) sup ( , )t SH F A F T k H At Tt
   

 

Theorem 4.2 Let , : ( )f g S Cl S be a mapping in a 

complete metric space (S, δ). If there exist a constant v ∈ (0, 1) 
be a non negative real numbers β & μ such that 

2 2 1v      and a function : [0, )S b   such that f, 

g satisfy the conditions, 
 

1 1 1 1 1 1( , ) ( ( , )) ( , ) { ( , ) ( , )} ( , )t gt t t d t t t ft d t gt t gt          

For all t1 ∈ 
t
vI   

 

1 1 1 1 1 1( , ) ( ( , )) ( , ) { ( , ) ( , )} ( , )t ft t t d t t t ft d t gt t ft        

 For all t ∈ gt1 

 

Where, 1 1{ : ( , ) ( , )}t
vI t ft v t t t ft    .  

 
Then f, g have a common fixed point provided 

( ) ( , )I t t ft is lower semi-continuous. 

 

Theorem 4.3 Let : ( )T S CB S  
in a complete metric space 

(S, δ) such that, 
 

1 1 1 1 1 1( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )H Tt Tt t t d t Tt d t Tt d t Tt d t Tt      

For all t, t1 ∈ S, where α, β & μ greater than or equal to zero 
and 2 2 1     , then T has a fixed point. 

Proof: Let t0 ∈ S, t1 ∈ Tt0   and define
1 ( )

r
  

 

 


 
, then if 

r=0 the proof is over. 
Now assume r > 0 then we get, 

1 2 0 1( , ) ( , )t t H Tt Tt r    , there exist t2 ∈ Tt1 
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2
2 3 1 2( , ) ( , )t t H Tt Tt r   , there exist t3 ∈ Tt2 

3
3 4 2 3( , ) ( , )t t H Tt Tt r   , there exist t4 ∈ Tt3 

…………………………………………………….. 

……………………………………………………… 

1 1( , ) ( , ) n
n n n nt t H Tt Tt r    , there exist tn+1 ∈ Ttn 

Hence we get,    

            1 1( , ) ( , ) n
n n n nt t H Tt Tt r     

1 1 1 1 1( , ) [ ( , ) ( , )] [ ( , ) ( , )] n
n n n n n n n n n nd t t d t Tt d t Tt d t Tt d t Tt r n N               

            

1 1 1 1 1( , ) [ ( , ) ( , )] [ ( , ) ( , )] n
n n n n n n n n n nt t t t t t t t t t r n N                 

. 
Then we get 

1 1( , ) ( , )
1 ( )

n

n n n n

r
t t r t t 

   
 

 

Then it can be conclude that 

1 0 1( , ) ( , )
1 ( )

n
n

n n

nr
t t r t t n N 

     
 

 

Since 1r    and   1
1

( , )n n
n

t t





   

It follows that {tn} is a Cauchy sequence in S,  

By completeness of S there exist t S such that    

lim n
n

t t



 

 

we have to show that t  is a fixed point of T. 

       ∴  

1 1 1( , ) ( , ) ( , ) ( , ) ( , )n n n nd t Tt t t d t Tt t t H Tt Tt   
        

 
              

1( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )]n n n n n nt t t t d t Tt d t Tt d t Tt d t Tt n N   
              

       ∴ 
1 1 1( , ) ( , ) ( , ) [ ( , ) ( , )] [ ( , ) ( , )]n n n n n nd t Tt d t t d t t d t t d t Tt d t Tt d t t    

              
 
For all n ∈ N, the limit  n    then we have,   

( , ) ( ) ( , )d t Tt d t Tt       

On the other hand  1     then ( , ) 0d t Tt  

t Tt    

Which show that  t  is a fixed point of T. 
 
Corollary 4.1 Let (S, δ) complete metric space and let T be a 
mapping from S into  
 
(CB(S),H) Satisfies, 
             

1 1 1 2 3 1 1 4 1 5 1 1( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ,H Tt Tt b t t b t Tt b t Tt b t Tt b t Tt t t S          

 

Where  0ib   for each {1, 2,3,......5}i   

and 
5

1

1i
i

b


  then T has a fixed point. 

 
Corollary 4.2 Let the two mapping , : ( )f g S Cl S in a 

complete metric space S with metric δ, If there exist a constant 

v ∈ (0,1) and : [0, )S v   and f,g satisfy the following 

conditions  1 1 1 1( , ) ( ( , )) ( , )t gt t t d t t    then for all  

1
t
vt I   where 

 1 1{ : ( , ) ( , )}t
vI t ft v t t t ft     and  

1 1( , ) ( , ) ( , )t ft t t t t    for all t gt
 

 
Then f, g have a common fixed point provided 

( ) ( , )d t t ft  is lower semi-continuous. 

 
Corollary 4.3 (Nadler.Jr. 1969) Let T be a mapping from (S, 
δ) into (CB(S),H) in a complete metric spaces satisfies 

1 1( , ) ( , )H Tt Tt t t  for all 1,t t S  where 0 1  , 

then T has a fixed point. 
 
Theorem 4.4 Let , : ( )f g S Cl S  be a mapping in a 

metric space (S, δ) and :[0, ) [0,1)    be a function such 

that  limsup ( ) 1
x r

x
   for all r ∈ (0, ∞) and f, g satisfy 

the following condition  

1 1( , ) ( ( , )) ( , )t gt t t t t     - (1)         for all t ft and  

1 1 1( , ) ( ( , )) ( , )t ft t t t t t gt      - (2)  

 Then f, g have a common fixed point provided 

( ) ( , )d t t ft is lower semi-continuous. 

 
Proof: Let us define :[0, ) [0,1)    such that 1 ( )

( )
2

x
x







  

 Then,     
 

lim sup ( ) 1
r x

r


   
( ) ( ) 1 [0, )x x x       

 Let 0t S  and 1 0t ft  we get from first condition, 

1 1 0 1 0 1( , ) ( ( , )) ( , )t gt t t t t      so there exist 2 1t gt  

such that  

1 2 0 1 0 1( , ) ( ( , )) ( , )t t t t t t     Since 2 1t gt  hence from 

second condition we have, 

2 2 0 1 0 1( , ) ( ( , )) ( , )t ft t t t t     Hence continuing this 

process we can choose an iterative sequence 1{ }n nt 
  such that 

2 2 1n nt gt   and 2 1 2n nt ft    and 

1 2 1 1( , ) ( ( , )) ( , )n n n n n nt t t t t t       . 

Let ( ) 1t   for all  [0, )x   so   1 0{ ( , )}n n nt t 
   is 

decreasing sequence in R and must converge to some non 

negative real number R  . 

Since  lim sup ( ) 1
x

x




   

choose r ∈ (0,1) and v ∈ N 

such that 1( ( , ))n nt t r     for every n v .  

Hence,        

1 1 1 0
1 1 1

( ( , )) ( ( , )) ( ( , ))
v

n
n n n n

n n n v

t t t t r t t  
 

 
   

       

∴ {tn} is a Cauchy sequence and S is complete, then it 

converges to some y ∈ S  and 2 1 2n nt ft  . 

∴  2 2( , ) liminf ( , )n n ny fy t ft   

      2 2 1 2 1 2liminf ( ( , ) ( , ))n n n n nt t t ft      
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      = 0 
Hence y ∈ fy and by putting t = t1 = y  in first condition we get, 

( , ) ( ( , )) ( , )y gy y y y y     

∴ y gy  

 This completes the proof. 
 
Conclusion 
 
In present paper we see some common random fixed point 
theorems for multi-valued contraction mapping in complete 
metric space. 
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