

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 12, pp.44174-44177, December, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ASSESSMENT OF SERUM NITRIC OXIDE LEVEL IN ESSENTIAL HYPERTENSION

^{1,*}Dr. Sasirekha, G. and ²Dr. Vani, K.

¹Assistant Professor, Department of Biochemistry, Thanjavur Medical College, Tanjore – 613 004 ²Assistant Professor, Department of Biochemistry, Sri Muthukumaran Medical College Hospital and Research Institute, Near Mangadu, Chennai – 600 069

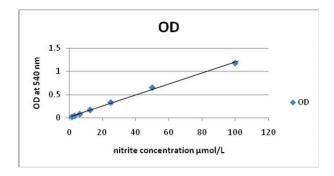
ARTICLE INFO	ABSTRACT				
<i>Article History:</i> Received 06 th September, 2016 Received in revised form 16 th October, 2016	Aim: Nitric oxide, the second messenger is found to be the main factor involved in endothelial dysfunction and its level is found to be altered in hypertensive states. The aim is to elucidate the association between serum NO levels and essential hypertension and to compare with normal individuals.				
Accepted 24 th November, 2016 Published online 30 th December, 2016	Materials and Methods: The study sample is comprised of 150 unrelated essential hypertensive patients and 130 apparently healthy normotensive controls. Plasma glucose, serum urea, serum creatinine, total cholesterol (TC), high density lipoprotein cholesterol (HDL-c) and triglyceride				
Key words:	concentration (TGL) were determined enzymatically and serum NO index (NOx) estimated by Griess method.				
Essential Hypertension, Nitric Oxide, Endothelial Dysfunction, Vasomotor Tone, Nitric Oxide Index, Free Radicals, Endothelial Nitric Oxide Synthase.	 Results: Statistically significant low NOx levels, with p value of 0.001 was observed in cases (14.69 + SD 4.45) when compared to controls (18.16 + SD 7.23). Serum NOx level was not influenced by biochemical parameters like plasma glucose and lipid profile. Conclusion: It was found that the low serum NO index is an independent risk indicator in essential hypertension, based on this study. 				

Copyright©2016, Dr. Sasirekha and Dr. Vani. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Dr. Sasirekha, G. and Dr. Vani, K. 2016. Assessment of serum nitric oxide level in essential hypertension", International Journal of Current Research, 8, (12), 44174-44177.

INTRODUCTION

Hypertension is an increase in the systemic arterial blood pressure without an apparent cause and is one of the world's great public health problems (Campanini, 2002) remaining as the leading cause of death, worldwide. More than 90% of hypertensive individuals suffer from essential hypertension. It shows an earlier onset in men, than in women. The factors linked to essential hypertension are age, obesity, smoking and stress. The endothelial lining of blood vessels is critical to vascular health and constitutes a major defense against hypertension. It helps in the regulation of vascular tone and blood flow, by the secretion and capture of paracrine vasoactive substances, which includes vasodilator substances (NO, prostacyclin & endothelium-derived hyperpolarizing factor) and vasoconstrictor substances (Endothelin-1, thrombaxane A2 & platelet-activating factor). Endothelial dysfunction appears to play a pathogenic role in the initial development of atherosclerosis (Ross, 1993; Choen, 1995; Schwartz et al., 1981) and of unstable coronary syndromes (Okumura et al., 1992), and their diverse risk factors viz hypercholesterolemia (Sorensen et al., 1994), smoking


*Corresponding author: Dr. Sasirekha, G.,

Assistant Professor, Department of Biochemistry, Thanjavur Medical College, Tanjore – 613 004.

(Celermajer et al., 1993), hypertension (Panza et al., 1990), diabetes mellitus (McVeigh et al., 1992), family history of premature coronary disease (Clarkson et al., 1997), hyperhomocysteinemia (Woo et al., 1997) and aging (Egashira et al., 1993). Recent clinical studies have demonstrated that, some drugs well known to reduce the incidence of cardiovascular events, improve endothelial function (Mancini et al., 1996; Anderson et al., 1995; Treasure et al., 1995; Husain et al., 1998). NO is the main mediator of vasomotor tone regulation in physiological situations, small amounts being continuously secreted by the eNOS (endothelial nitric oxide synthase) (Palmer et al., 1987; Vanhoutte et al., 1986) to maintain a reduced arterial tone in the systemic and pulmonary circulation (Stamler et al., 1994). The vasodilator activity of NO is due to its interaction with the iron atom of the heme prosthetic group of guanylyl cyclase, causing its activation and increasing the intracellular levels of cyclic guanosine monophosphate (cGMP) (Arnold et al., 1977). In smooth muscle cells, this decreases intracellular calcium concentration, causing vascular relaxation (Loscalzo et al., 1995). NO prevents binding of leucocytes to the endothelium and decreases inflammation, thereby preventing hypertension.NO is removed from circulation mostly by reaction with free radicals, such as superoxide. Various studies suggest that factors influencing level of NO may have important role in pathophysiology of essential hypertension. Nitrite and nitrates are the oxidative breakdown product of NO ²² and ³⁰⁴ it represents a major storage form of NO in blood and tissues (Bryan, 2006). The most commonly used nitriteassay is based on the Griess diazotization reaction, which isspecific for nitrite and does not detect nitrate. Therefore, nitrate in samples is first be reduced to nitrite; subsequent nitrite determination thus yields nitric oxide index (NOx) that is the total nitrite + nitrate concentration of the sample. Hence, it is proposed to study the level of serum Nitric oxide index in essential hypertension.

MATERIALS AND METHODS

It is a case control study, single centered, prospective and conducted in a tertiary health center over a period of 10 months. 150 unrelated essential hypertensive patients who were on treatment for 5-10 years were selected as cases, which included 131 males and 19 females, of mean age 50.59 ± 10.52 vears. Those with secondary hypertension, diabetes mellitus, renal failure, fever, acute infections, chronic inflammatory states, chronic smokers and those on drugs like oral contraceptive pills, steroids were excluded from study group. 130 apparently healthy normotensives from the out-patient department, during their visit for master health checkup were selected as controls. Confounding factors like age, sex, smoking, alcoholism were matched. Standard anthropometric data (height, weight) and resting blood pressure was recorded in each subject, after a thirty minutes rest on a couch. Blood samples were collected by venipuncture after an overnight fasting. Total cholesterol (TC), high density lipoprotein cholesterol (HDL-c) and triglyceride concentration (TGL) were determined enzymatically. Low density lipoprotein cholesterol (LDL-c) was calculated using Friedwald's formula³⁰⁴. Cadmium based reduction of nitrate to nitrite followed by estimation of total nitrite by Griess method is used in this study.

Graph 1. Standardisation graph for nitrite

STATISTICAL ANALYSIS

- Age, sex, smoking, alcoholism, BMI, plasma glucose, serum urea, serum creatinine, serum lipid levels were compared between control subjects and patients by students 't' test and chi-square test (χ^2).
- Serum NOx distribution between cases and controls were compared by student independent t test. p< 0.05 was considered significant. Independent variables included in the analysis were age (quantitative), sex (male/female), smoking (yes/no), alcoholism (yes/no), serum levels of glucose, urea, creatinine, cholesterol, triglycerides, HDL (quantitative).

The analysis was executed by SAS Statistical program Version 6.10 for Macintos.

• The influence of other biochemical parameters on serum NOx level was analysed through Pearson correlation.

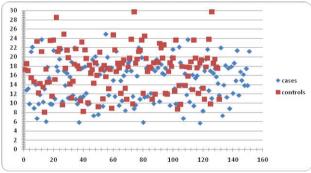

RESULTS

 Table 1 & 2: Shows age, sex, BMI and other conventional risk factors distribution in patients and control subjects

	Group		Student independent		
	Hypertensives				
	Mean	SD	Mean	SD	t-test
Age	50.59	10.52	51.83	11.60	t=0.94 P=0.36(NS)
Wt	66.23	9.78	64.42	10.39	t=1.51 P=0.13(NS)
Ht	163.78	6.88	162.15	7.75	t=1.86 P=0.06(NS)
BMI	25.13	3.90	24.47	3.41	t=1.47 P=0.14(NS)

		Group	0			Pearson
		Hyper	rtensives	Chisquare		
		Ν	%	test		
Sex	Male	132	87.4%	118	90.1%	χ2=0.49
	Female	19	12.6%	13	9.9%	P=0.48(NS)
Smoking	No	116	76.8%	96	73.3%	χ2=0.47
	Yes	35	23.2%	35	26.7%	P=0.49(NS)
Alcoholism	No	122	81.5%	104	80.2%	χ2=0.07
	Yes	28	18.5%	26	19.8%	P=0.88(NS)

*Insignificant p value

† Distribution of NO is at lower levels for cases compared to controls

Scatter diagrams 1 represents the distribution of serum NOx level in cases and controls

Table 3. Compares serum NOx levels of cases with controls

	Group			Student independent		
	Hypertensives		Control			
	Mean	SD	Mean	SD	t-test	
SERUM NOx	14.69	4.45	18.16	7.23	t=4.91 P=0.001***	

 \ddagger . Statistically significant low NOx levels, with p value of 0.001 was observed in cases (14.69 \pm SD 4.45) when compared to controls (18.16 \pm SD 7.23)

Table 4 shows the distribution of other biochemical parameters like plasma glucose, serum urea, serum creatinine, lipid profile between hypertensives and controls

	Group		Student				
	Hypertensives		Control		independent		
	Mean	SD	Mean	SD	t-test		
Blood sugar	96.15	6.81	94.69	7.16	t=1.75 P=0.08		
S.urea	27.7	5.161	28.1	5.083	t=0.192 p=.848		
S.creatinine	.849	.127	.854	0.128	t=.330 p=.742		
T.CHOL	162.88	31.13	164.12	42.73	t=0.28 P=0.77		
TGL	163.99	48.37	165.09	58.33	t=0.17 P=0.86		
HDL	38.04	7.70	44.42	12.00	t=5.38 P=0.001		
LDL	96.62	37.44	88.44	37.25	t=1.83 P=0.07		

§ HDL levels was found to be significantly lowered in cases

	В	Sig.	Exp(B)	95%CI	Lower Upper
AGE	002	.928	.998	.952	1.046
SEX	395	.657	.673	.117	3.865
SMOKING	-1.394	.117	.248	.043	1.420
ALCOHOLIC	1.414	.155	4.114	.587	28.846
BMI	.088	.116	1.092	.978	1.220
Bl.SUGAR	.025	.448	1.025	.961	1.093
T.CHOL	017	.446	.983	.941	1.027
TGL	.002	.728	1.002	.990	1.015
HDL	.025	.435	1.025	.963	1.090
LDL	.022	.251	1.023	.984	1.062
NOx	.765	.000	2.149	1.759	2.625
Constant	-13.962	.001	.000		

Table 5. Shows the multiple logistic regression analysis

|| It was found that serum NOx level is an independent risk factor for hypertension.

Table 6. Shows pearson correlation analysis

	Type of statistical analysis	Plasma glucose	T.chol	TGL	HDL	LDL	SERUM NOx
Serum NOx level	Pearson Correlation	.070	.028	.157	015	038	1
Of controls	Sig. (2-tailed)	.429	.751	.073	.865	.669	
	N	130	130	130	130	130	130
Serum NOx	Pearson Correlation	026	.094	013	.055	.100	1
Of cases	Sig. (2-tailed)	.749	.251	.872	.503	.223	
	N	150	150	150	150	150	150

** Correlation is significant at the 0.01 level (2-tailed). It was found that serum NOx level was not influenced by biochemical parameters like plasma glucose and lipid profile.

DISCUSSION

This study was indended to measure serum nitric oxide level (NOx) in essential hypertension and to compare with normal individuals. The hypertensives and controls were perfectly matched with respect to confounding variables like age, sex, BMI, smoking and alcoholism. Those with impaired glucose tolerance, renal failure, acute infections, chronic inflammation and chronic smokers were excluded from the study as these states may present with altered serum NOx level. On comparing serum NOx level of the hypertensives with the controls, it was found to be significantly lowered in hypertensives (14.69 vs 18.16, p= 0.001). It is quite obvious that the serum NO level is an independent risk indicator in essential hypertension, based on this study Previous studies (Afrasyap & Ozturk, 2004; Kumar & Das, 2000: Node, K., Kitakaze, M., Yoshikawa, H., Kosaka, H., & Hori, M. (1997)) also have shown similar supportive results. Node K et al (1997), in fact recorded a very similar decline in NO level in hypertensives when compared to controls. NO release from the endothelium, is found to be decreased in patients with established coronary atherosclerosis with hypertension (De Meyer et al., 1995).

A reduction in vascular availability of NO determines damage to the endothelium-dependent vasodilation, an increased tendency for platelet aggregation and adhesion of monocytes to the endothelium, thus influencing the proliferation of vascular smooth muscle cells, contributing to the onset and progression of hypertension. Various studies are being conducted to reveal role of various factors influencing nitric oxide level and its activity. Among them S-nitrosothiols, reactive free radicals and ADMA play significant role in modulating nitric oxide activity. S-nitrosothiols are thio-esters of nitrite, and are in steady state of equilibrium with nitrites. S-nitrosationhad been implicated in the control of a wide array ofprotein functions and cell activities like regulation of apoptosis, G-proteincoupled receptor based signaling, vascular tone and inflammatory responses (Hess et al., 2005).

S-nitrosoglutathione reductase (GSNOR), a member of alcohol dehydrogenase family, has been shown to be the primary pathway through which cells denitrosate intracellular proteins (Liu, 2001). GSNOR has become an important target for developing agents that modulate NO bioactivity inside the cells. The production of superoxide anion and other reactive oxygen species quench NO, thereby reduces its bioavailability (Gryglewski et al., 1986). The reduced generation of and restoration of endothelial-dependent superoxide vasodilation appears to be an important mechanism mediating the anti-hypertensive and cardioprotective effects of ACE inhibitors and angiotensin-receptor blockers (Laursen et al., 1997). Decreased eNOS expression due to an increase in endogenous inhibitors of nitric oxide synthesis, may be involved in the genesis of endothelial dysfunction (Gail et al., 2001). In normotensive animals and humans, administration of methylated arginines, which are competitive NOS inhibitors (Huang et al., 1995), caused marked and dose-dependent elevations in blood pressure level. It competes with L-arginine to prevent the synthesis of nitric oxide (Vallance et al., 1992) .Studies have shown reduced urinary excretion of NO metabolites and increased plasma levels of ADMA in men with essential hypertension (Vallance et al., 1992). Thus, accumulation of this endogenous NOS inhibitor has been hypothesized to contribute to hypertension in patients with chronic renal failure (Wever et al., 1999).

Conclusion

The low serum NOx level may be an independent risk factor for essential hypertension. Further studies need to be carried out relating effect of oxidative stress and life style modification in modulating serum NOx level, paving way for newer anti-hypertensive regimens on a long term basis. In future, along with molecular studies, role of epigenetic factors influencing eNOS gene expression can be explored.

REFERENCES

Anderson, T.J., Meredith, I.T., Yeung, A.C., Frei, B., Selwyn, A.P., Ganz, P. 1995. The effect of cholesterol-lowering and antioxidant therapy on endothelium-dependent coronary vasomotion. *N Engl J Med.*, 332: 488-93.

- Arnold, W.P., Mittal, C.K., Katsuki, S. 1977. Nitric oxide activates guanylate cyclase and increases guanosine 3': 5'cyclic monophosphate levels in various tissue preparations. Proc Natl Acad Sci USA 74: 3203-7.
- Bryan, N. S.2006. Nitrite in nitric oxide biology: Cause or consequence? A systems-based review. Free Radic Biol Med 41:691-701.
- Campanini, B. 2002. *The World Health Report: Reducing Risks, Promoting Healthy Life*, Geneva, World Health Organization.
- Celermajer, D.S., Sorensen, K.E. *et al.* 1993. Cigarette smoking is associated with impairment of endothelium-dependent dilatation in healthy young adults. Circulation 88: 2149-55.
- Choen, R. 1995. The role of nitric oxide and other endothelium-derived vasoactive substances in vascular disease. Prog Cardiovasc Dis 38: 105-28.
- Clarkson, P., Celermajer, D.S., Powe, A.J. 1997. Endotheliumdependent dilatation is impaired in young healthy subjects with a family history of premature coronary disease. *Circulation*, 96: 3378-83.
- De Meyer, G.R.Y., Bult, H., Üstünes, L. *et al.* 1995. Effect of nitric oxide donors on neointima formation and vascular reactivity in the collered carotid artery rabbits. *J Cardiovasc Pharmacol*, 26: 272-9.
- Egashira, K., Inou, T., Hirooka, Y. *et al.* 1993. Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation 88: 77-81.
- Gail, D. Thomas, PhD; Weiguo Zhang, MD, PhD; Ronald G. Victor, MD . Nitric Oxide Deficiency as a Cause of Clinical HypertensionPromising New Drug Targets for Refractory Hypertension. JAMA. 2001;285:2055-2057
- Gryglewski, R.J., Palmer, R.M., Moncada, S. 1986. Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature; 320: 454-6.
- Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., Stamler, J. S. 2005. Protein S-nitrosylation: purview and parameters. Nature reviews 6:150-166.
- Huang, P.L., Huang, Z.H., Mashimo, H. 1995. *et al.* Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature.377:239-242.
- Husain, S., Andrews, N.P., Mulcahy, D., Panza, J.A., Quyyumi, A.A. 1998. Aspirin improves endothelial dysfunction in atherosclerosis. Circulation, 97: 716-20.
- Laursen, J.B., Rajagopalan, S., Galis, Z., Tarpey, M., Freeman B.A., Harrison, D.G. 1997. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation.95:588-593.
- Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., Stamler, J. S. 2001. A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature 410:490-494.
- Loscalzo, J., Welch, G. 1995. Nitric oxide and its role in the cardiovascular system. Prog Cardiovasc Dis 38: 87-104.

- Mancini, G.B., Henry, G.C., Macaya, C. *et al.* 1996. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing Endothelial Dysfunction) Study. Circulation 94: 258-65.
- McVeigh, G.E., Brennan, G.M., Johnston, G.D. *et al.* 1992. Impaired endothelium-dependent and independent vasodilation in patients with type 2 DM. Diabetologia, 35: 771-6.
- Okumura, K., Yasue, H., Matsuyama, K. *et al.* 1992. Effect of acetylcholine on the highly stenotic coronary artery J Am Coll Cardiol 19: 752-8.
- Palmer, R.M., Ferrige, A.G., Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endotheliumderived relaxing factor. Nature, 327: 524-6.
- Panza, J.A., Quyyumi, A.A., Brush, J.E. Jr, Epstein, S.E. 1990. Abnormal endothelium dependent vascular relaxation in patients with essential hypertension. N Engl J Med., 323: 22-7
- Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med 35:790-796; 2003.
- Ross, R. 1993. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 362: 801-9.
- Schwartz, S.M., Gajdusek, E.M., Selden, S.C. 1981. Vascular wall growth control: the role of endothelium. Arteriosclerosis 1: 107-61.
- Sorensen, K.E., Celermajer, D.S., Georgakopoulos, D.1994. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein (a) level. *J Clin Invest.*, 93: 50-5.
- Stamler, J.S., Loh, E., Roddy, M.A. 1994. Nitric oxide regulates basal systemic and pulmonary vascular resistance in healthy humans. Circulation 89: 2035-40
- Treasure, C.B., Klein, J.L., Weintraub, W.S. *et al.* 1995. Beneficial effects of cholesterol-lowering therapy on the coronary endothelium in patients with coronary artery disease. *N Engl J Med.*, 332: 481-7.
- Vallance, P., Leone, A., Calver, A., Collier, J., Moncada, S. 1992. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet. 339:572-575.
- Vallance, P., Leone, A., Calver, A., Collier, J., Moncada, S.1992. Accumulation of an endogenous inhibitor of nitric oxide synthesis in chronic renal failure. Lancet 339: 572-5.
- Vanhoutte, P.M., Rubanyi, G.M., Miller, M., Houstin, D.S. 1986. Modulation of vascular smooth muscle cell contraction by the endothelium. *Ann Rev Physiol*, 48: 349-80.
- Wever, R., Boer, P., Hijmering, M. *et al.* 1999. Nitric oxide production is reduced in patients with chronic renal failure. Arterioscler Thromb Vasc Biol.19:1168-1172.
- Woo, K.S., Chook, P., Lollin, Y.I. *et al.* 1997. Hyperhomocyst(e)inemia is a risk factor for anterial endothelial dysfunction in humans. Circulation, 96: 2542-4.
