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INTRODUCTION 
 
The preliminaries of the ideal theory and Green's relations are very important in basic concepts relating to inverse semigrou
Much of the well known materials are used directly by characterizing fuzzy property.
 
Definition 1.1. Regular elements of a semigroup
 
An element 'a' in a semigroup S is called regular, if there exists an element
 
Definition 1.2 Regular semigroup 
 
A semigroup is called a regular semigroup if all its elements are regular
 
Definition 1.3. Inverse of an element in a semigroup
 
An element a' in S is an inverse of a in S if aa' a = a
V(a). 
 
Definition 1.4. Inverse semigroup 
 
A semigroup S is called an inverse semigroup if every element 
identity element. If S has no identity element we can adjoin an extra identity denoted by say 1 on the set 
1.x = x; 1.1 = 1. Such a semigroup obtained from 
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ABSTRACT 

Theories of fuzzy relations occupy a central position in the field of research and development of 
mathematics. Recently regular semigroup has become very important and offers valuable results by 
applying fuzzy properties of many of its concepts. This study is an extension of the work
Fuzzy Orthodox Semigroups". An important class of regular semigroups is an orthodox semigroup 
and some special classes of orthodox semigroups are a ‘Generalized inverse semigroups’.
endeavours to find out some important results on fuzzy generalized inverse semigroup. In the field of 
regular semigroups fuzziness becomes very important. So the researcher
finding out many results, connecting special classes of fuzzy regular semigroups, the set of its 
inverses, the set of its idempotents, their correspondence and to establish theorems.
composition of fuzzy relations we get quotient group of semigroup of Green’s fuzzy relations.
ideal theory a semigroup S is simple when the only ideal of S is itself.
fuzzy simple, fuzzy self-simple and fuzzy anti-simple are described using the new co
fuzzy equivalence classes. Using two proportions to get a quotient class of a generalized inverse 
semigroup from a Green’s fuzzy anti-simple fuzzy congruence, on a generalized inverse semigroup, 
the study concludes by establishing four theorems with three equivalent conditions on a regular 
semigroup. 
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The preliminaries of the ideal theory and Green's relations are very important in basic concepts relating to inverse semigrou
well known materials are used directly by characterizing fuzzy property. 

Regular elements of a semigroup 

is called regular, if there exists an element x in S such that a x a = a

A semigroup is called a regular semigroup if all its elements are regular (Clifford and Preston, 1961

Definition 1.3. Inverse of an element in a semigroup 

aa' a = a and a' aa' = a'. The set of inverse elements of

is called an inverse semigroup if every element a in S posses a unique inverse. A semigroup 
has no identity element we can adjoin an extra identity denoted by say 1 on the set 

; 1.1 = 1. Such a semigroup obtained from S by adjoining an identity if necessary is denoted by 
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The preliminaries of the ideal theory and Green's relations are very important in basic concepts relating to inverse semigroups.

a (Clifford and Preston, 1967). 

1961). 

. The set of inverse elements of an element a  S is denoted by 

A semigroup S has at most one 
has no identity element we can adjoin an extra identity denoted by say 1 on the set S. Then for all  x  S. 1 = 

by adjoining an identity if necessary is denoted by S'. 
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That is S'= Idempotent in a semigroup - An element 'e' in a semigroup is said to be an idempotent if e.e = e. 
 
Definition 1.5 Regular band 
 
A semigroup B is said to a band if all its elements are idempotents. If xyx = x x, y B, then B is called a regular band. This 

introduces fuzzy congruence (Kim and Bae, 1997; Kuroki, 1997) Green's L̂ and R̂  relations (Green, 1951; Hariprakash, 2016) 

to describe fuzzy L̂ -class containing 'a' denoted by L̂ a and fuzzy R̂ -class containing 'a' denoted by R̂ a. (Hariprakas, 2016).  

In particular L̂ a (x) = L̂ (a, x); R̂ a(x) = R̂ (a, x) for all x  S. 
 

L̂ a = {(a, x)  S  S : L̂ (a, x) >0} 

R̂ a = {(a, x)  S  S : R̂ (a, x) >0} 
 

Moreover in the cited paper (Hariprakas, 2016), defined fuzzy equivalence classes S/ L̂ , S/ R̂ , S/ D̂ , S/Ĥ  by characterizing 
(fuzzify) simple semigroup, using fuzzy property. 
 
Definition 1.6. L-fuzzy self simple and L - fuzzy simple semigroups 
 

Let L̂  is a fuzzy congruence L̂ - Green’s relation on a semigroup S. L̂ is said to be L̂ - fuzzy self simple if for any a  S, La(a) 

=1 and L-fuzzy simple if for any a  S. 

L̂ a(x) = 1.  x  S. If  La(x) =1  x = a. where L̂ a(x) = 1for some and not for all x  S, then S is L- fuzzy antisimple. 
 

Definition 1.7. R̂ -fuzzy self simple and R̂ -fuzzy simple semigroups. 
 

A semigroup S is R -fuzzy self simple if R̂ a(a) = 1  a  S and R̂ -fuzzy simple if R̂ a(x) = 1 aS, where R̂ is a fuzzy 

congruence R̂ -Green relation on S. 

If R̂ a(x) = 1  x = a where R̂ a(x) = 1 for some and not for all        x  S then S is fuzzy antisimple. 
 
2. Fuzzy Generalized Inverse Semigroups 
 
In the field of research, the study of regular semigroup becomes very important and offers valuable results by applying fuzzy 
property on these concepts. An important class of regular semigroups constitutes orthodox semigroups, and a special class of 
orthodox semigroups is called generalized inverse semigroups. [10]. In this section we find out fuzzy generalized inverse 
semigroups. 
 
Definition. 2.1 (Fuzzy generalized inverse semigroup) A generalized inverse semigroup in which a membership function is 
defined is called a generalized inverse semigroup. 

Proposition 2.2. If L̂  is a fuzzy congruence on a generalized inverse semigroup S and is L̂ -fuzzy antisimple, S/ L̂  is also a 
generalized inverse semigroup. 
Proof. Given S is a generalized inverse semigroup. That is, S is an orthodox semigroup and the set Es of its idempotents is normal. 

That is, for any e,f,g,h  Es, efgh = egfh. Since S is an orthodox semigroup and  L̂ -fuzzy antisimple S/ L̂  is an orthodox 

semigroup (Hariprakash, 2016). Let ES/ L̂  be the set of all idempotents in S/ L̂ . Any element in ES/ L̂ and hence in S/ L̂  is of the 

form L̂ a where aS. That is, 
 

ES/ L̂   = { L̂ a: is an idempotent in S/ L̂ } 

= { L̂ a: a is an idempotent in S} (Hariprakash, 2016). 
 

Let L̂ a, L̂ b, L̂ c, L̂ d  ES/ L̂ . Then a, b, c, d are idempotents in S. That is, abcd  S. Since S is a generalized inverse 
semigroup. 
 
abcd = acbd. 
We have 
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L̂ a* L̂ b* L̂ c* L̂ d = L̂ abcd 

= L̂ acbd 

= L̂ a* L̂ c* L̂ b * L̂ d. 
 

That is, ES/ L̂ is normal. Hence, S/ L̂  is a generalized inverse semigroup. 

Here S/ L̂  is called L̂ -fuzzy generalized inverse semigroup. 
 

Proposition 3.3. If  R̂  is a fuzzy congruence on a generalized inverse semigroup and S is R̂ -fuzzy antisimple, S/ R̂  a 
generalized inverse semigroup. 
 
Proof 

Result follows from proposition 2.2, using the property of R̂ . 

Here S/ R̂  is called R̂ -fuzzy generalized inverse semigroup. 
 
Theorem 2.4. If S is a regular semigroup, the following statements are equivalent. 
 

(a) S/ L̂  is a L̂ -fuzzy orthodox semigroup. 

(b) For any L̂ a, L̂ b, in S/ L̂  if L̂ a'  is an inverse of L̂ a and L̂ b' is an inverse of L̂ b, L̂ b' L̂ a' is an inverse of L̂ a L̂ b. 

(c) If L̂ e  ES/ L̂  its inverse also belongs to ES/ L̂ . 
 
Proof 

Assume (a). Let L̂ a, L̂ b  S/ L̂  and L̂ a'   an inverse of L̂ a and L̂ b’ an inverse of L̂ b. First we can show that L̂ a'a  and L̂ bb' 
are idempotent. 
 
We have 
 

L̂ a'a* L̂ a'a = L̂ a'a L̂ a'a= L̂ a'a 
 
and 
 

L̂ bb' * L̂ bb’ = L̂ bb'bb'  = L̂ bb'. 
 

Hence, L̂ a'a and L̂ bb'  are idempotents in S/ L̂ . 
 

Since S/ L̂  is an orthodox semigroup L̂ a'a* L̂ bb’ is an idempotent. 
 
That is, 
 

( L̂ a'a* L̂ bb')*( L̂ a'a* L̂ bb') = L̂ a'a* L̂ bb’ or ( L̂ a'a* L̂ bb')
2  = L̂ a'a* L̂ bb'. 

 
Similarly, 
 

( L̂ bb'* L̂ a'a )
2 = L̂ bb' * L̂ a'a . 

 
Again, 
 

( L̂ a * L̂ b ) * ( L̂ b' * L̂ a' ) * ( L̂ a * L̂ b ) = L̂ a * L̂ a'  * L̂ a  * L̂ b * L̂ b'  * L̂ a'  * L̂ a *  L̂ b  * L̂ b' * L̂ b 

= L̂ a * ( L̂ a'  * L̂ a  * L̂ b * L̂ b')
2

  * L̂ b 
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= L̂ a * L̂ a'  * L̂ a  * L̂ b * L̂ b'  * L̂ b 

= L̂ a * L̂ b. 
 
That is, 
 

( L̂ a * L̂ b ) * ( L̂ b' * L̂ a' ) * ( L̂ a  * L̂ b ) = L̂ a * L̂ b' (1) 

 
Also 
 

( L̂ b' * L̂ a' ) * ( L̂ a * L̂ b) * ( L̂ b'  * L̂ a' ) 

= L̂ b' * L̂ b * L̂ b' * L̂ a' * L̂ a * L̂ b * L̂ b'  * L̂ a'  * L̂ a * L̂ a' 

= L̂ b' * ( L̂ b * L̂ b' * L̂ a' * L̂ a )
2 L̂ a' 

= L̂ b' * L̂ b * L̂ b' * L̂ a' * L̂ a * L̂ a' 

= L̂ b' * L̂ a'. (2) 
 
From (1) and (2), (b) follows 
 

Assume (b). Given L̂ e ES/ L̂ . That is L̂ eis an idempotent in S/ L̂ . 
 

Let L̂ x n be the inverse of L̂ e. Then L̂ x * L̂ e * L̂ x = L̂ x and L̂ e * L̂ x * L̂ e = L̂ x . 
 
Now, 

( L̂ x  * L̂ e ) * ( L̂ x  * L̂ e) = ( L̂ x  * L̂ e * L̂ x) * L̂ e  = L̂ x * L̂ e. 
 
and 
 

( L̂ e  * L̂ x ) * ( L̂ e  * L̂ x) = ( L̂ e  * L̂ x * L̂ e) * L̂ x   = L̂ e * L̂ x. 
 

That is, L̂ x  * L̂ e and L̂ e  * L̂ x  are idempotents in S/ L̂ . So, ( L̂ x * L̂ e)
-1 = L̂ x * L̂ e. (Idempotents has its own inverse). 

 
Then 
 

[( L̂ x * L̂ e) * ( L̂ e * L̂ x)]
-1 = [ L̂ e  * L̂ x ]

-1
* [ L̂ x  * L̂ e )

-1 

= ( L̂ e * L̂ x) * L̂ x * L̂ e 

= L̂ e ( L̂ x)
2 L̂ e. 

 
That is, 
 

[ L̂ x *( L̂ e)
2 * L̂ x]

-1 = L̂ e  * ( L̂ x )
2 * L̂ e. 

 

But ( L̂ e)
2 = L̂ e. Then 

 

( L̂ x * L̂ e * L̂ x)
-1 = L̂ e  *( L̂ x)

2 
* L̂ e. 

 

That is ( L̂ x)
-1 = L̂ e *( L̂ x)

2  * L̂ e. That is, L̂ e * ( L̂ x)
2 * L̂ e is the inverse of L̂ x. 

 
That is, 
 

L̂ x = L̂ x [ L̂ e ( L̂ x)
2 L̂ e] L̂ x 
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= ( L̂ x * L̂ e * L̂ x ) * ( L̂ x  * L̂ e * L̂ x) 

= L̂ x * L̂ x = ( L̂ x )
2. 

 

Then L̂ x is an idempotent. Hence when L̂ e  is an idempotent in S/ L̂ , its inverse L̂ x is also an idempotent in S/ L̂ . That is, L̂ e  

 ES/ L̂ implies ( L̂ e)
-1

   ES/ L̂  . 
 

Assume (c). Let L̂ e, L̂ f are two idempotents in S/ L̂ . Then L̂ e* L̂ f  S/ L̂  (Since S/ L̂  is a semigroup). Let L̂ x be an inverse 

of L̂ e * L̂ f. 
 
Then 
 

( L̂ e * L̂ f) * L̂ x  * ( L̂ e  * L̂ f )
 = L̂ e  * L̂ f (3) 

L̂ x * ( L̂ e * L̂ f ) * L̂ x = L̂ x. (4) 
 
Now, we have 
 

( L̂ e * L̂ f ) * ( L̂ f  * L̂ x * L̂ e ) * ( L̂ e * L̂ f) = L̂ e *( L̂ f)
2 * ( L̂ x) * ( L̂ e)

2
 * L̂ f  = L̂ e *( L̂ f )

2 * L̂ x  * ( L̂ e)
2 * L̂ f 

= ( L̂ e * L̂ f ) * L̂ x  *( L̂ e * L̂ f) 

= L̂ e * L̂ f, by (3) 
 
Also, 
 

( L̂ f * L̂ x * L̂ e) * ( L̂ e * L̂ f) *( L̂ f  * L̂ x* L̂ e) = L̂ f * L̂ x * ( L̂ e)
2
 * L̂ f * L̂ x * L̂ e = ( L̂ f * L̂ x* L̂ e) * ( L̂ f  * L̂ x * L̂ e) 

= L̂ f * L̂ x * ( L̂ e * L̂ f )* L̂ x * L̂ e  = L̂ f * L̂ x* L̂ e, from (4) 
 

Hence L̂ f * L̂ x * L̂ e is inverse L̂ e  * L̂ f 
 
Moreover, 
 

( L̂ f * L̂ x * L̂ e) * ( L̂ f * L̂ x * L̂ e) =  L̂ f * L̂ x * ( L̂ e * L̂ f)  * L̂ x * L̂ e = L̂ f * L̂ x* L̂ e 
 

Hence L̂ f * L̂ x* L̂ e is an idempotent. That is, L̂ f * L̂ x* L̂ e  ES/ L̂ . 
 

Then by (c) its inverse L̂ e * L̂ f  ES/ L̂ . 
 

Hence, the product of two idempotent in S/ L̂  is an idempotents. 
 

That is S/ L̂ is an orthodox semigroup. 
 
Theorem 2.5. If S is a regular semigroup, the following statements are equivalent. 
 
(a) S/L is an L-fuzzy orthodox semigroup. 

(b) For any a,b  S if L̂ a' V ( L̂ a), L̂ b'  V ( L̂ b), L̂ b' * L̂ a' V ( L̂ a * L̂ b) (c) If e  ES and e' V (e), L̂ e'  ES/ L̂  where 

L̂ e'  V ( L̂ e). 
 
Proof 
 
Result follows from theorem 2.4. 
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Theorem 2.6. If S is a regular semigroup, the following statements are equivalent. 
 

(a) S/R̂  is a R̂ -fuzzy orthodox semigroup 

(b) For any R̂ a, R̂ b in S/ R̂ if R̂ a'  is an inverse of R̂ a and R̂ b'  is an inverse of R̂ b, R̂ b' * R̂ a'  is an inverse of R̂ a * 

R̂ b. 

(c) If R̂ e  ES/ R̂ , its inverse also belongs to ES/ R̂ . 
 
Proof 

Result follows from theorem 2.4 by applying the property of R̂ instead of L̂ . 
 
Theorem 2.7. If S is a regular semigroup, the following statements are equivalent. 
 

(a) S/R̂ is a R̂ -fuzzy orthodox semigroup. 

(b) For any a, b  S if R̂ a' V( R̂ a), R̂ b' V ( L̂ b), R̂ b' R̂ a' V ( R̂ a R̂ b) 

(c) If e ES and e' V(e), R̂ e' ES/ R̂  where R̂ e' V ( R̂ e). 
 
Proof 
 
Result follows from theorem 2.6. 
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