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ARTICLE INFO                                         ABSTRACT
 

 
The paper investigates a Bayesian hierarchical model for the analysis of 
longitudinal data from a randomized controlled clinical tuberculosis trial. Data
for each subject are observed on thirteen time point of occasions of the trial. 
One of the features of the data set is that observations for some variables are 
missing for at least one time point. In the Bayesian approach, to estimate the 
model, we use th
the response and the explanatory variables to impute at each iteration of the 
algorithm, given some appropriate prior distributions. 

 
 
 
 
 
 
 

INTRODUCTION 
 

Bayesian methods are based on the assumption that 
probability is operationalized as a degree of belief, 
and not a frequency as is done in classical, or 
frequentist, statistics. Most researchers in 
marketing have been trained to think about 
statistics in terms of frequencies. Serious 
investigation of biological processes is challenging 
due to the complex nature of these processes and 
the lack of sufficient data and missing. Hence, 
compromised to turn to stochastic modeling as a 
means to capture the uncertainty in our inference 
about the process. In view of the fact that typically, 
such processes involve components at different 
stages and time points, it is natural to frame our 
modeling in the context of hierarchical models. 
Since such models introduce unknowns and it is 
needed to incorporate the uncertainty associated 
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with these unknowns in order to achieve a better 
overall assessment of the uncertainty in our 
modeling. This promotes us to convey the models 
under the Bayesian framework. The objective of 
this paper is to provide an introduction as we
an application to the tools to work with Bayesian 
hierarchical modeling with randomized controlled 
clinical trial data.
  
MCMC ALGORITHM

The most commonly used algorithm in MCMC
applications are two types and they are Metropolis 
Algorithms and Gibbs sampler. Geman and Geman 
(1984) presented the Gibbs sampler in context of 
spatial processes involving large number of 
variables like image reconstructions. They consider 
under which s
given neighborhood subsets of the variables, which 
they uniquely determines the joint distribution. 
Basic contribution as the framework of iterative 
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ABSTRACT 

The paper investigates a Bayesian hierarchical model for the analysis of 
longitudinal data from a randomized controlled clinical tuberculosis trial. Data 
for each subject are observed on thirteen time point of occasions of the trial. 
One of the features of the data set is that observations for some variables are 
missing for at least one time point. In the Bayesian approach, to estimate the 
model, we use the Gibbs sampler, which as well allows missing data for both 
the response and the explanatory variables to impute at each iteration of the 
algorithm, given some appropriate prior distributions.  

with these unknowns in order to achieve a better 
overall assessment of the uncertainty in our 
modeling. This promotes us to convey the models 
under the Bayesian framework. The objective of 
this paper is to provide an introduction as well as 
an application to the tools to work with Bayesian 
hierarchical modeling with randomized controlled 
clinical trial data. 
 

MCMC ALGORITHM 

The most commonly used algorithm in MCMC 
applications are two types and they are Metropolis 
Algorithms and Gibbs sampler. Geman and Geman 
(1984) presented the Gibbs sampler in context of 
spatial processes involving large number of 
variables like image reconstructions. They consider 
under which situations the conditional distributions 
given neighborhood subsets of the variables, which 
they uniquely determines the joint distribution. 
Basic contribution as the framework of iterative 
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Monte Carlo algorithms performed by Tanner and 
Wang (1987). Further developments in the fields 
listed here the data augmentation by Gelfand and 
Smith (1990), Gibbs sampler and the sampling 
important resampling (SIR) algorithm by Rubin 
(1987). The applications of the Gibbs sampler to 
mixture of important statistical problem were 
discussed by many researchers correspondingly  
Gelfand et al(1990), Gelfand and Smith (1991), 
Carlin and Polson (1991), Carlin et al. (1992), 
Gelfand et al (1992).  The Metropolis-Hastings 
algorithm was developed by Metropolis, et al., 
(1953) and consequently generalized by Hastings 
(1970). A broad theoretical description of 
Metropolis-Hastings was given by (Tierney, 1994; 
Chib and Greenberg, 1995) provide an outstanding 
discussion. 
 
Using Metropolis Algorithm to construct a Markov 
chain with equilibrium distribution  x  for 

discrete case, Let  ijqQ  be specified symmetric 

transition matrix and draw state js from ith  of row 

of Q .  With known probability ij  move from the 

state is  to the state js , otherwise, remain at step is

. The construction defines a Markov chain with 
transition matrix jiqp ijijij    and

 


ij ijij pp 1 . Metropolis et al (1953), we let 
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ijij

ij

ij
if

if
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Gibbs sampler and Metropolis-Hastings algorithm 

The Gibbs sampler technique is one of the best 
known MCMC sampling algorithms in the 
Bayesian computational methods. The Gibbs 
sampler established by Besag and Green (1993) 
and the ideas of Grenander (1983), the prescribed 
term is introduced by Geman and Geman (1984). 
Gibbs sampling is the landmark in problem of 
Bayesian inference (Gelfand and Smith, 1990). The 
Gibbs sampler tutorial is provided by Casella and 
George (1992).  

Let  'p,...,,  21  be a p-dimensional vector 

of parameters and let  D|  be its posterior 

distribution given the data D. Then, the 
fundamental format of the Gibbs sampler is given 
as  
Step 1. Select an arbitrary starting point      

  0002010  isetand,...,,
'

,p,,   

Step 2.  Generate  'i,pi,i,i ,...,, 112111     

Generate  ;D,,...,|~ i,pi,i,  2111 
  

Generate  ;D,,...,,|~ i,pi,i,i,  311212   

… … …  

Generate  ;D,,...,,|~ i,pi,i,pi,p 1112111    

Step 3. Set 1 ii , and go to step 2 

Each component of θ is in the natural order and a 
cycle in this scheme requires generation of p 
random variates. Gelfand and Smith (1990) show 
that under certain regularity conditions, the vector 

sequence 








 ,...,i,i 21 has a stationary distribution

 D| . Schervish and Carlin (1992) provide a 

sufficient condition that guarantees geometric 
convergence and all other properties of geometric 
convergence are discussed by Roberts and Polson 
(1994).  

Metropolis-Hastings 

Let   ,q  be a proposal density, which is also 

termed as a candidate generating density by Chib 
and Greenberg (1995),    1 d,q  also let  

U(0,1)  denote the uniform distribution over (0,1), 

Then, a general version of the Metropolis-Hastings 
algorithm for sampling from the posterior 
distribution  D|  can be described as 

Step 1. Select an arbitrary starting point 0  and set 

i=0 

Step 2. Generate a candidate point 
* from 

 .q ,i  and u fromU(0,1) . 
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Step 3. Set   ii
*

i
*

i and,auif    11
 

otherwise where the acceptance probability is 
given by  

     
   

.,
D,qD|

D,qD|
min,a









 1



  

Step 4. Set 21 steptogoand,ii   

The performance of a Metropolis-Hastings 
algorithm depends on the choice of a proposal 
density q. The Metropolis-Hastings algorithm can 
be used within the Gibbs sampler when direct 
sampling from the full conditional posterior is 
difficult. Also, if the conditional posterior is log-
concave, one can readily use the adaptive rejection 
algorithm (Gilks and Wild, 1992) within the Gibbs 
sampler to sample from the full conditional 
distributions.  Prior elicitation perhaps plays the 
most crucial role in Bayesian inference.  Survival 
analysis with covariates, the most popular choice 
of informative prior for  is the normal prior, and 
the most common choice of non informative prior 
for  is the uniform prior. The non informative and 
improper priors may be useful and easier to specify 
for certain problems, they cannot be used in all 
applications, such as model selection or model 
comparison, as it is well known that proper priors 
are required to compute Bayes factors and posterior 
model probabilities (Ibrahim, et al., 2004). Also 
non informative priors may cause instability in the 
posterior estimates and lead to convergence 
problems for the Gibbs sampler. Moreover, non 
informative prior do not make use of real prior 
information that one may for a specific application.    

Hierarchical Survival Model 

Hierarchical model allows complex relationship 
between multiple parameters to be separated into 
several levels. The hierarchical framework helps 
the analyst to understand the underlying process 
linking to data to the model, and to develop 
computational strategies to simulate the desired 
posterior distributions. An elaborate introduction to 
hierarchical modeling is given by Gelman et al., 
(1995). Hierarchical models are a natural way to 
think about modeling information from partially 
exchangeable units. Hierarchical structuring of the 

model is an essential tool for achieving partial 
pooling of estimates and compromising in a 
scientific way between alternative source of 
information. The overall strategy of Bayesian 
hierarchical model has been informally but 
concisely outlined in Berliner (1996) and Cressie 
and Mugglin (2000). The strategy provides a link 
called “process”, the process between the observed 
and unobserved parameters of interest, denoted by 

 
 

 
 





,process

|process|Data
         [2]

  
The top layer is observed data, which is modeled 
by appropriate likelihood function. It is assumed 
that an unknown process, for example an epidemic 
process, generates the data. The process depends 
upon the unobserved parameters as shown in the 
middle layer, that the art of statistical modeling 
takes place. On the bottom layer are the prior 
distributions that represent the prior beliefs about 
the parameters. Typically interest centers on the 
joint posterior distribution of the parameters given 
the observed data 
 

      ,ocessPr|Data|ocessPrprocess,Data/         [3] 

 
Gilks et al., (1996), Mugglin et al., (2000) and 
Cressie and Mugglin (2000) implement Bayesian 
hierarchical strategy for an epidemic model where 
the spatial dependency is modeled as s Markov 
random field. The count data is modeled as a 
Poisson random variable. 
 

   itz
iitiit eEPoisson~z,E|y             [4] 

 

where Ei is the expected number of occurrences in 
spatial unit I, and zit is the log relative risk, which 
accounts for the deviation from the expected 
number of cases.  Hierarchical Poisson models 
have been used to model domestic animal disease 
as well. An example is a hierarchical model for 
clinical mastitis in herds of diary cattle given in 
Robert and Casella (1999).  Let Xi be the number 
of cases of mastitis in hard i. The hierarchical 
specification is 

 
 
 b,aGamma~

,Gamma~

Poisson~X

i

ii

ii





            [5] 
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where i is the underlying infection rate in herd i 

and i  is the spatial explanatory variables a, b and 

 are hyper parameters.  The Bayesian hierarchical 
models are good tools for approximating the 
posterior distribution of a model. The Bayesian 
analysis under a normal hierarchical model 
provides a compromise that combines information 
from all the experiments without assuming all the 

j s to be equal. 
 

     Two general approaches may be used to 
generate the posterior distribution when unknown 
parameters occur in the prior density: empirical 
Bayesian analysis and hierarchical Bayesian 
analysis (Berger 1985). Empirical Bayesian 
analysis replaces the unknown parameters with 
estimates. The maximum likelihood estimates of 
the specification and extinction rates of the birth-
death prior were used Rannal and Yang (1996). 
Hierarchical Bayesian analysis assigns second-
level priors as densities for the unknown 
parameters of the prior. Integration is performed 
over the second-level priors to obtain a new prior 
that is completely specified. The posterior density 
is then generated in the usual manner. The potential 
advantages of hierarchical Bayesian analysis, 
especially with respect to the robustness of the 
posterior densities to the form of the prior, are 
discussed in Berger (1985) and Robert (1994). We 
use hierarchical Bayesian analysis to estimate the 
posterior distribution of phylogenetic trees. The 
specification and extinction rates are generally 
unknown and may be assigned the prior densities

     fandf . The marginal prior density of t 

is then 

           ddff,/tftf         [6] 

 
Application to Tuberculosis Data for Hierarchical 
Model  

In this study 211 cases belong to three treatment 
regimens from a randomized clinical trial 
considered for the application of hierarchical 
models to compare the weight under different 
treatment. All the patients had their weight 
measurement months from admission to end of one  

Table 1. Bayesian Hierarchical Model –WinBUGS at 5000th iterations 
 

Node  MC 
error 

2.5% Median 97.5% Start Sample 

T[1,1] 0.59 3.42 26.60 96.78 5001 5000 
T[1,2] 0.47 -35.17 1.05 38.11 5001 5000 
T[1,3] 0.55 -37.59 1.05 37.65 5001 5000 
T[2,1] 0.47 -35.17 1.05 38.11 5001 5000 
T[2,2] 0.64 3.04 24.63 93.27 5001 5000 
T[2,3] 0.55 -37.46 0.61 35.59 5001 5000 
T[3,1] 0.55 -37.59 1.05 37.65 5001 5000 
T[3,2] 0.55 -37.46 0.61 35.59 5001 5000 
T[3,3] 0.60 3.30 26.53 98.41 5001 5000 
alpha[1,1] 1.05 37.52 48.71 66.61 5001 5000 
alpha[1,2] 0.76 -65.36 -55.00 -44.33 5001 5000 
alpha[1,3] 0.94 -5.19 2.33 23.87 5001 5000 
alpha[2,1] 1.04 37.43 48.76 66.58 5001 5000 
alpha[2,2] 0.77 -65.56 -55.01 -44.45 5001 5000 
alpha[2,3] 0.95 -5.80 2.29 23.94 5001 5000 
alpha[3,1] 1.04 37.50 48.83 66.61 5001 5000 
alpha[3,2] 0.78 -65.46 -54.89 -44.36 5001 5000 
alpha[3,3] 0.95 -6.12 2.51 24.14 5001 5000 
beta[1] 1.02 -159.20 -2.72 155.00 5001 5000 
beta[2] 1.13 -153.20 2.31 159.70 5001 5000 
beta[3] 1.14 -161.70 -0.31 163.30 5001 5000 
beta[4] 0.00 -0.39 -0.09 0.20 5001 5000 
beta[5] 0.00 -0.22 0.06 0.35 5001 5000 
beta[6] 1.07 -156.70 -0.80 161.20 5001 5000 
beta[7] 1.30 -160.00 3.00 162.20 5001 5000 
beta[8] 1.27 -192.60 -1.06 198.60 5001 5000 
beta[9] 1.15 -155.50 -1.39 160.80 5001 5000 
beta[10] 1.15 -160.40 -0.02 163.20 5001 5000 
beta[11] 1.46 -195.20 -2.20 194.90 5001 5000 
beta[12] 1.17 -156.30 0.56 157.20 5001 5000 
beta[13] 1.17 -161.10 -1.80 153.20 5001 5000 
phi 0.00 -0.02 -0.01 0.00 5001 5000 
theta 0.06 -0.36 0.96 2.27 5001 5000 

 
Table 2. Bayesian Hierarchical Model –WinBUGS at 10000th iterations 

 
 

Node  MC 
error 

2.5% Median 97.5% Start Sample 

T[1,1] 0.45 3.71 26.55 97.55 5001 10000 
T[1,2] 0.31 -36.32 1.43 37.93 5001 10000 
T[1,3] 0.41 -37.68 0.88 37.60 5001 10000 
T[2,1] 0.31 -36.32 1.43 37.93 5001 10000 
T[2,2] 0.47 3.15 24.80 93.31 5001 10000 
T[2,3] 0.43 -37.36 0.95 36.30 5001 10000 
T[3,1] 0.41 -37.68 0.88 37.60 5001 10000 
T[3,2] 0.43 -37.36 0.95 36.30 5001 10000 
T[3,3] 0.47 3.47 26.40 98.41 5001 10000 
alpha[1,1] 1.25 18.89 41.23 65.99 5001 10000 
alpha[1,2] 0.94 -70.20 -54.37 -34.34 5001 10000 
alpha[1,3] 1.05 -4.07 14.15 29.66 5001 10000 
alpha[2,1] 1.25 18.83 41.07 65.98 5001 10000 
alpha[2,2] 0.94 -70.19 -54.57 -34.44 5001 10000 
alpha[2,3] 1.05 -4.41 14.02 29.67 5001 10000 
alpha[3,1] 1.24 18.89 41.13 65.93 5001 10000 
alpha[3,2] 0.94 -70.06 -54.53 -34.36 5001 10000 
alpha[3,3] 1.05 -4.68 13.96 29.76 5001 10000 
beta[1] 0.77 -160.90 -1.93 157.50 5001 10000 
beta[2] 0.81 -157.90 0.55 160.40 5001 10000 
beta[3] 0.79 -161.00 0.79 162.10 5001 10000 
beta[4] 0.00 -0.38 -0.09 0.20 5001 10000 
beta[5] 0.00 -0.22 0.06 0.35 5001 10000 
beta[6] 0.82 -157.30 -1.18 156.70 5001 10000 
beta[7] 0.85 -161.20 0.65 161.80 5001 10000 
beta[8] 0.96 -195.40 -0.70 198.50 5001 10000 
beta[9] 0.77 -156.90 -0.58 159.30 5001 10000 
beta[10] 0.78 -160.00 0.65 165.40 5001 10000 
beta[11] 0.95 -193.20 -2.25 192.90 5001 10000 
beta[12] 0.85 -155.40 1.04 157.20 5001 10000 
beta[13] 0.75 -163.20 -0.97 154.60 5001 10000 
phi 0.00 -0.02 -0.01 0.00 5001 10000 
theta 0.04 -0.22 1.05 2.30 5001 10000 
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year. To address the problem of weight gain under 
different strategies, the following basic model was 
fitted. The variance of weight of the control 
regimen (SHTW) is described by a random effect 

model in which the weights ijY  (i=1,2,…,13) of 

patient j (j=1,2,…,83) are normally distributed with 

distinct mean j  and common variance 2y . To 

reflect the response of SHOW patients (j=84, 
85,…, 211) are modeled as a two compartment 

mixture with probability  1  for SHOW 

patients and   for SH/SHOW patients with mean 

 j  and common variance 2y .  
 

     The comparison of the components of 

 21121  ,...,  addresses the magnitude of 

change in weight gain. We include a hierarchical 
parameter measuring the change.  Specifically 
variation among the individual in modeled by 

having j  follow a normal distribution with mean 

  for SHTW and    for SHOW with each 

having variance 2 , i.e. the mean of j  in the 

population distribution is jS   where jS is an 

indicator variable with 1 if the person takes once 
weekly and 0 otherwise.  We followed the 
Bayesian model with an improper uniform prior 
distribution of the hyper parameters 

   ,,,,,y 22  as given by Gelman and 

Rubin (1996). 
 

     The different stages of Hierarchical Bayesian 
model analysis using WinBUGS is illustrated in the 
following tables. This is initiated at 5000 burning 
followed every 10000 iterations up to maximum of 
fifty thousand. This hierarchical model is to study 
the weight gain at different time period in a year 
and the variance of weight between regimens. The 
fixed effects i (i=1,2,…,13), were assumed to 
follow vague independent normal distribution with 
zero mean and low precision = 0.0001. The 
posterior mean and standard error for each 
regression coefficients and the between treatment 
covariance are also shown in the above tables. The 
treatment-specific intercept measures the residual 
effect for a particular treatment after adjusting for 
patients and treatment covariates.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3. Bayesian Hierarchical Model –WinBUGS at 20000th 

iterations 
 

Node  MC 
error 

0.03 Median 0.98 Start Sample 

T[1,1] 0.39 3.13 25.97 96.55 5001 20000 
T[1,2] 0.30 -36.98 1.25 37.18 5001 20000 
T[1,3] 0.31 -37.14 0.65 37.16 5001 20000 
T[2,1] 0.30 -36.98 1.25 37.18 5001 20000 
T[2,2] 0.37 3.22 25.50 95.18 5001 20000 
T[2,3] 0.30 -37.02 0.82 35.61 5001 20000 
T[3,1] 0.31 -37.14 0.65 37.16 5001 20000 
T[3,2] 0.30 -37.02 0.82 35.61 5001 20000 
T[3,3] 0.36 3.17 26.06 96.66 5001 20000 
alpha[1,1] 1.36 -1.59 29.12 64.74 5001 20000 
alpha[1,2] 1.38 -88.76 -58.10 -13.53 5001 20000 
alpha[1,3] 1.96 -3.86 22.37 78.56 5001 20000 
alpha[2,1] 1.36 -1.45 29.26 64.55 5001 20000 
alpha[2,2] 1.38 -88.82 -58.31 -13.74 5001 20000 
alpha[2,3] 1.97 -4.11 22.39 78.54 5001 20000 
alpha[3,1] 1.36 -1.14 29.27 64.60 5001 20000 
alpha[3,2] 1.37 -88.78 -58.29 -13.69 5001 20000 
alpha[3,3] 1.97 -4.26 22.65 78.71 5001 20000 
beta[1] 0.50 -158.50 -1.05 159.80 5001 20000 
beta[2] 0.57 -159.00 0.51 160.30 5001 20000 
beta[3] 0.53 -160.00 -0.01 159.10 5001 20000 
beta[4] 0.00 -0.38 -0.09 0.20 5001 20000 
beta[5] 0.00 -0.22 0.06 0.34 5001 20000 
beta[6] 0.58 -158.70 0.41 157.30 5001 20000 
beta[7] 0.55 -161.40 -0.23 160.80 5001 20000 
beta[8] 0.66 -193.60 0.14 197.40 5001 20000 
beta[9] 0.51 -156.90 0.08 159.80 5001 20000 
beta[10] 0.56 -158.80 0.91 160.70 5001 20000 
beta[11] 0.79 -192.70 -1.46 195.40 5001 20000 
beta[12] 0.59 -159.50 -0.31 157.20 5001 20000 
beta[13] 0.56 -160.00 -0.51 158.30 5001 20000 
phi 0.00 -0.03 -0.01 0.00 5001 20000 
theta 0.03 -0.26 1.06 2.32 5001 20000 

 

Table 4. Bayesian Hierarchical Model –WinBUGS at 30000th 

iterations 
 

 

Node  MC 
error 

2.5% Median 97.5% Start Sample 

T[1,1] 0.30 3.29 26.00 95.18 5001 30000 
T[1,2] 0.24 -36.65 1.33 37.18 5001 30000 
T[1,3] 0.25 -37.02 0.96 37.15 5001 30000 
T[2,1] 0.24 -36.65 1.33 37.18 5001 30000 
T[2,2] 0.32 3.33 25.87 95.98 5001 30000 
T[2,3] 0.25 -36.49 1.08 36.32 5001 30000 
T[3,1] 0.25 -37.02 0.96 37.15 5001 30000 
T[3,2] 0.25 -36.49 1.08 36.32 5001 30000 
T[3,3] 0.30 3.25 26.12 96.61 5001 30000 
alpha[1,1] 1.20 -1.45 25.57 63.34 5001 30000 
alpha[1,2] 1.39 -87.70 -55.38 -12.96 5001 30000 
alpha[1,3] 1.52 -3.17 20.95 77.27 5001 30000 
alpha[2,1] 1.20 -1.44 25.64 63.02 5001 30000 
alpha[2,2] 1.38 -87.73 -55.45 -13.24 5001 30000 
alpha[2,3] 1.52 -3.19 20.95 77.19 5001 30000 
alpha[3,1] 1.20 -1.29 25.93 62.83 5001 30000 
alpha[3,2] 1.38 -87.69 -55.30 -13.31 5001 30000 
alpha[3,3] 1.52 -3.19 21.06 77.27 5001 30000 
beta[1] 0.45 -160.00 0.16 159.80 5001 30000 
beta[2] 0.44 -160.50 0.24 159.00 5001 30000 
beta[3] 0.47 -158.90 0.19 158.70 5001 30000 
beta[4] 0.00 -0.38 -0.09 0.20 5001 30000 
beta[5] 0.00 -0.22 0.06 0.34 5001 30000 
beta[6] 0.48 -159.00 0.07 159.40 5001 30000 
beta[7] 0.51 -160.60 -0.12 161.20 5001 30000 
beta[8] 0.51 -194.00 0.48 197.20 5001 30000 
beta[9] 0.45 -157.80 -0.34 158.60 5001 30000 
beta[10] 0.45 -159.20 0.41 160.00 5001 30000 
beta[11] 0.59 -193.60 -1.24 195.60 5001 30000 
beta[12] 0.51 -160.70 0.14 158.60 5001 30000 
beta[13] 0.46 -159.80 -0.15 158.40 5001 30000 
phi 0.00 -0.02 -0.01 0.00 5001 30000 
theta 0.03 -0.24 1.04 2.28 5001 30000 
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Fig. 1a. Quantiles at Different stages for Beta 
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DISCUSSION 
 
The different stages of Hierarchical Bayesian 
model analysis using WinBUGS the posterior 
mean and standard error for each regression 
coefficients and the between treatment covariance 
are also shown in the above tables. This is initiated 
at 5000 burning followed every 10000 iterations up 
to maximum of fifty thousand. The optimum we 
reached at the stage of 30,000th iteration. This 
hierarchical model is to study the weight gain at 
different time period in a year and the variance of 
weight between regimens. The fixed effects i 
(i=1,2,…,13), were assumed to follow vague 
independent normal distribution with zero mean 
and low precision = 0.0001. The posterior mean 
and standard error for each regression coefficients 
and the between treatment covariance are also 
shown in the above tables. The treatment-            
specific intercept measures the residual effect for a  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
particular treatment after adjusting for patients and 
treatment covariates. For each observation in the 
validation set, the predictive density is estimated 
by the model density averaged across parameter 
values in the posterior sample. The treatment-
specific intercept measures the residual effect for a 
particular treatment after adjusting for patients and 
treatment covariates. The interval estimates 
illustrate the large degree of uncertainty associated 
with `league tables'; There is no much diffrence 
between the tratments . We also note that the 
treatment mean is also closely  identical to the 
mean  of  intercepts.  
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