

Available online at http://www.journalcra.com

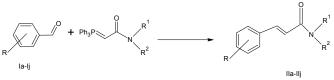
International Journal of Current Research Vol. 4, Issue, 05, pp.200-201, May, 2012 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SYNTHETIC AND BIOLOGICAL STUDY OF SOME N, N DISUBSTITUTED CINNAMAMIDES

*R.U. Pathan and S.V. Agarkar

Research Laboratory of Chemistry, Department of Chemistry, Anuradha Engineering College, Chikhli, Dist-Buldana, 443201, M.S., India; Email: rupk786@rediffmail.com


ARTICLE INFO	ABSTRACT				
<i>Article History:</i> Received 28 th February, 2012 Received in revised form 27 th March, 2012 Accepted 19 th April, 2012 Published online 30 th May, 2012	Cinnamamides has a great era of its applications in medicinal as well as pharmaceutical fields. Several cinnamamides were isolated from plants and many of them are prepared in laboratory by different routes. In the present study different cinnamamides were synthesized by convenient witting reaction pathway. And resulting products were screened for possible antimicrobial activities.				
Key words:					
Cinnamamides, Biological Activity.	Copy Right, IJCR, 2012, Academic Journals. All rights reserved.				

INTRODUCTION

Several cinnamamides were reported to shows variety of applications in different fields, some of them are used as a precursor in different organic synthesis and many derivatives are used in the formulations of variety medicines and pharmaceuticals. This literature survey encourages the author to undertake the present research work.

General procedure for synthesis of cinnamamides:

Aldehyde (Ia–Ij, 25 mmol) and witting reagent (2.86 g, 25mmol) were taken in a 100 ml beaker containing benzene (10 ml). Reaction mixture was stirred for few minutes now poured the contents to the R.B. flask and attached to the condenser and reflux the reaction mixture till the completion of reaction. Progress of reaction was monitored by thin layer chromatography. After completion of reaction, the products (IIa-IIj) were separated by column chromatography.

R= H, -NO₂,-Cl,-OH, -OMe, -N(Me)₂,-NH₂,-F,-(OMe)₂ etc. R¹ & R²= CH₃

List of Compounds Prepared:

- 1. (2*E*)-*N*,*N*-dimethyl-3-phenylprop-2-enamide,(**IIa**):
- 2. (2*E*)-*N*,*N*-dimethyl-3-(4-nitrophenyl)prop-2enamide,(**IIb**):
- 3. (2*E*)-3-(4-chlorophenyl)-*N*,*N*-dimethylprop-2enamide,(**IIc**):

- 4. (2*E*)-*N*,*N*-dimethyl-3-(4-hydroxyphenyl)prop-2enamide,(**IId**):
- 5. (2*E*)-*N*,*N*-dimethyl-3-(4-methoxyphenyl)prop-2enamide,(**IIe**):
- 6. (2*E*)-3-[4-(dimethylamino)phenyl]-*N*,*N*-dimethylprop-2-enamide,(**IIf**):
- 7. (2*E*)-3-(4-aminophenyl)-*N*,*N*-dimethylprop-2enamide,(**IIg**):
- 8. (2*E*)-*N*,*N*-dimethyl-3-(4-fluorophenyl)prop-2enamide,(**IIh**):
- 9. (2*E*)-3-(3,4-dimethoxyphenyl)-*N*,*N*-dimethylprop-2enamide,(**IIi**):
- 10. (2*E*)-3-(1,3-benzodioxol-5-yl)-*N*,*N*-dimethylprop-2-enamide,(**IIj**):

Spectral study of some compounds:

(2*E***)-***N***,***N***-dimethyl-3-phenylprop-2-enamide,(IIa): IR (cm⁻¹): 1656, 1595, ¹H NMR (CDCl₃400MHz) (δppm): 3.18(S), (6H),NMe₂,6.44(d)(1H)(CH=CHCO)J=15.95Hz,7.2&7.5(m)(5 H)(C6H5),7.6(d)(1H)(CH=CHC6H5), J=15.95 Hz**

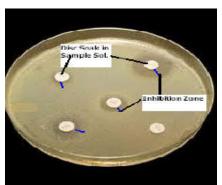
(2E)-N,N-dimethyl-3-(4-methoxyphenyl)prop-2-enamide,

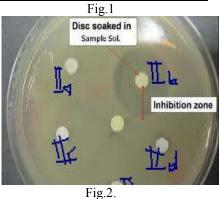
(IIe): IR (cm⁻¹) :1685, 1600 ¹H NMR (CDCl₃ 400MHz)(δ ppm): 3.26 (s)(6H)NMe₂,3.9(s) (3H)OMe,7.69(d) (1H) (CH=CHC6H5), J=15.59 Hz,7.47(d)(2H) (CH=CH-Ar),J=8.80 Hz,6.84(d)(2H)(CH=CH- Ar),J=8.80 Hz,6.42 (d), (1H), (CH=CHCO), J=15.59 Hz

(2E)-3-(1,3-benzodioxol-5-yl)-N,N-dimethylprop-2-

enamide,(IIj): IR (cm⁻¹):1678, 1646 ¹H NMR (CDCl₃ 400MHz)(δppm):3.15 (s) (6H)NMe₂, 6.03 (s)(2H)(-OCH2O-),6.75-7.15 (m)(3H)(Ar-H),6.98(d)(1H)(Arch=CH), J=15.6Hz, 7.7(d)(1H)(CH=CHCO),J=15.6Hz

Biological activity


Synthesized compounds were screened in vitro for their antimicrobial activity. Samples were prepare in a 1 mg/mL⁻¹ solution of DMF (Dimethyl formamide) and tested against four strains of bacteria E-coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (ATCC 25923) and Staphylococcus albus. The bacteria were maintained on nutrient agar, DMF showed no inhibition zone. The agar media was inoculated with different microorganism's culture and tested after 24 hours of incubation at 30^oc, finally the zone of inhibition was measured in mm.


Antimicrobial Activity: (Gentamycin was used as reference)

	Zone of Inhibition (mm)							
Sample	Escherichia	Pseudomonas	Staphylococcus	Staphylococcus				
	coli	aeruginosa	aureus	albus				
IIa	02	08	No Zone	No Zone				
IIb	24	16	12	18				
IIc	02	No Zone	08	No Zone				
IId	04	05	14	06				
IIe	08	10	07	10				
IIf	16	04	10	08				
IIg	10	12	05	14				
IIĥ	18	06	12	13				
IIi	No Zone	08	No Zone	04				
IIj	No Zone	04	07	No Zone				

Antifungal Activity: (Amphotericin B was used as reference)

Sample	IIa	IIb	IIc	IId	IIe	IIf	IIg	IIh	IIi	IIj
Candida	18	04	12	14	No	26	10	18	No	No
Albicans	Zone					Zone	Zone			

RESULT AND DISCUSSION

All compounds except IIa, IIc, IIi and IIj were found to shows excellent biological activities against selected bacteria. Therefore the synthesized compounds are biologically active molecules and may be used for important applications in medicinal and pharmaceuticals.

Acknowledgement

The authors are thankful to Anuradha Engineering College, Chikhli, Dist-Buldana for providing all necessary facilities. *Author is grateful to University Grants Commission for the award of MANF-JRF. Authors are also thankful to University of Pune for providing instrumentation facilities for characterization of compounds.

REFERENCES

- 1. Paul D, A Fujimoto, P Marshall, Raychaudhuri, *J Med Chem, 42*, 1999, 164-172.
- 2. F Hutchinson, A Leukotriene, *B4 in Inflammation rev immunol*, *10*, 1990, 1-12.
- 3. Ritter K, Synthetic transformations of aryl triflates, *Synthesis*, 1993, 735-753.
- 4. Satoshi, Kojima et al, *J Org Chem*, 7, 2002, 4093-4099.
- Hong, J Ren and Y G Wang, Syn Communication, 31, (8), 2001, 1201-1204.
- 6. Mark Lautens, J Mancuso, Harpreet, Grover, *Synthesis*, 12, 2004, 2006-2014.
- 7. Lautens, M.Roy, A. Fukuoka, K. fagnou, K. Martin, J. Am. Chem.Soc. 123, 2358, 2001
- 8. Friedl, Zdenek; Collection of Czechoslovak Chemical Communications 1987, V52(2), P409-24
- 9. Narasimhan, Balasubramanian; European Journal of Medicinal Chemistry 2004, V39(10), P827-834
- 10. Zou, Gang; New Journal of Chemistry 2006, V30(5), P803-809
- 11. Mueller, Edgar; Tetrahedron 1985, V41(24), P5901-12
- 12. N.Leadbeater, Chemistry World, 2004, 1, 38-41.
- 13. D.Adam, Nature, 2003, 421, 571-572.
- 14. H.M. Kingston, S.J. Haswell, Microwave Enhanced Chemistry. Am.Chem. Soc. Washington DC, 1997.
- 15. R. Gedye, F. Smith, K. Westaway, H.Ali, Tetrahedron Lett. 1986, 27, 279-282.
- 16. R.J. Giguere, T.L. Bray, S.M. Duncan, Tetrahedron Lett. 1986, 27, 4945-4958.
- 17. C.O. Kappe, Angew.Chem.Int.Ed.2004, 43, 6250-6284.
- 18. L.Perreux, A.Loupy, Tetrahedron Lett.2001, 57, 9199-9223