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1. INTRODUCTION 
 
The notion of fuzzy subgroup was made by Rosenfeld 
In Liu, (1982), introduced the notion of fuzzy ideal of a ring. 
The notions of fuzzy sub near-ring, fuzzy ideal and fuzzy N
subgroup of a near-ring was introduced by Salah Abou
(1991) and it has been studied by several authors 
Kim and Young Bae Jun, 2003; Kuyng Ho Kim and Young 
Bae Jun, 2001; AL. Narayanan, 2001; Narayanan,
Narayanan and Manikantan, 2005; Saikia and  Barthakur, 2003
Salah Abou-Zaid, 1991; Seung Dong Kim and Hee Sik Kim, 
1996). The concept of intuitionistic fuzzy set was introduced by 
Atanassov (1986) as a generalisation of the notion of fuzzy set. 
In this paper, we introduce the notion of a intuitionistic fuzzy 
strong bi-ideal of a near-ring and obtain the characterization of 
a strong bi-ideal in terms of a intuitionistic fuzzy strong bi
ideal of a near-ring. We establish that every intuitionistic fuzzy 
left N-subgroup or intuitionistic fuzzy left ideal of a near
is a intuitionistic fuzzy strong bi-ideal of a near
we establish that every intuitionistic left permutable fuzzy right 
N-subgroup or intuitionistic left permutable fuzzy right ideal of 
a near-ring is a intuitionistic fuzzy strong bi
ring. 
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ABSTRACT 

this paper we introduce the notation of intuitionistic fuzzy strong bi
a characterization of a strong bi-ideals in terms of an intuitionistic fuzzy strong bi
ring. Further, we discuss the properties of intuitionistic fuzzy strong bi
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The notion of fuzzy subgroup was made by Rosenfeld (1971). 
, introduced the notion of fuzzy ideal of a ring. 
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2. Preliminaries  
 
Definition: 2.1 
 
An intuitionistic fuzzy subset 
object having the form m = {(x, A
the functions Am : X(0,1) 
degree of membership and the degree of non membership of 
each element xÎX to the set m
Bm(x) ≤ 1 for all xÎX. For the sake of simplicity, we shall use 
the symbol m = (Am , Bm) for the intuitionistic fuzzy subset 
{(x,Am(x), Bm(x)) / xÎX}. 
 
Definition: 2.2 
 
An intuitionistic fuzzy subset m
said to be a intuitionistic fuzzy subgroup of G if for all x,y
 

(i)  Am(x + y) ≥ min{Am(x) , A
(ii) Am(-x) = Am(x), Or equivalently

Am(y)} 
(iii) Bm(x + y) ≤ max{Bm(x) , B
(iv) Bm(-x) = Bm(x), Or equivalently B

Bm(y)} 
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intuitionistic fuzzy strong bi-ideals of a near-ring and obtain 
in terms of an intuitionistic fuzzy strong bi-ideals of a near-

ring. Further, we discuss the properties of intuitionistic fuzzy strong bi-ideals of a near-ring. 

ribution License, which permits unrestricted use, 

 

An intuitionistic fuzzy subset m in a non empty set X is an 
= {(x, Am(x), Bm(x)) / xÎX}, where 

 and Bm : X(0,1) denote the 
degree of membership and the degree of non membership of 

m, respectively, and 0 ≤ Am(x) + 
For the sake of simplicity, we shall use 

) for the intuitionistic fuzzy subset m = 

m = (Am , Bm) of a group (G,+) is 
said to be a intuitionistic fuzzy subgroup of G if for all x,yÎN,  

(x) , Am(y)} 
Or equivalently Am(x – y) ≥ min{Am(x), 

(x) , Bm(y)} 
Or equivalently Bm(x – y) ≤ max{Bm(x), 
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Definition: 2.3 
 
An intuitionistic fuzzy subset m = (Am , Bm) of N is called an 
intuitionistic fuzzy subnear-ring of N if for all x,yÎN, 
 

(i)  Am( x − y )  min{Am(x) , Am(y)} 

(ii)  Am(xy)  min{Am(x) , Am(y)} 

(iii) Bm( x − y ) ≤  max{Bm(x) , Bm(y)} 

(iv)  Bm(xy)  max{Bm(x) , Bm(y)} 
 
Definition: 2.4 
 

An intuitionistic fuzzy subset m = (Am, Bm) of N is said to be an 
intuitionistic fuzzy two-sided N-subgroup of N if 
 

(i)  m is an intuitionistic fuzzy subgroup of (N,+), 

(ii)  Am(xy)  Am(x), for all x,yÎN, 

(iii) Am(xy)  Am(y), for all x,yÎN. 

(iv) Bm(xy) ≤ Bm(x), for all x,yÎN. 

(v) Bm(xy) ≤ Bm(y), for all x,yÎN. 
 

If m satisfies (i), (ii) and (iv), then m is called an intuitionistic 

fuzzy right N-subgroup of N. If m satisfies (i), (iii) and (v), 

then m is called an intuitionistic fuzzy left N-subgroup of N.  
 
Definition: 2.5 
 
An intuitionistic fuzzy subset m = (Am , Bm) of N is said to be 
an intuitionistic fuzzy ideal of N if 
 

(i) m is an intuitionistic fuzzy subnear-ring of N, 

(ii) Am(y+x-y) = Am(x), for all x, yÎN, 

(iii)Am(xy)  Am(x), for all x, yÎN, 

(iv) Am( a(b+i) – ab)  Am(i), for all a, b, i,ÎN. 
(v)  Bm(y+x-y) = Bm(x), for all x, yÎN, 

(vi) Bm(xy) ≤ Bm(x), for all x, yÎN,     . 
(vii) Bm( a(b+i) – ab) ≤ Bm(i), for all a, b, i,ÎN. 

 

If m satisfies (i),(ii),(iii),(v) and (vi) is called an intuitionistic 

fuzzy right ideal of N. If m satisfies (i), (ii), (iv) and (vii) is 

called an intuitionistic fuzzy left ideal of N. Let Am and Bm be 
two intuitionistic fuzzy subsets of N. we define an intuitionistic 
fuzzy subset  
 
 

(Am * Bm) (x) = min���(���)���
���

{ Am(a), Am(b), Bm(i)};  

                                            If 	x = a(b + i) − ab, a,b,iÎN. 
 
                                         
                              0;      otherwise. 
 
Definition: 2.6 
 

An intuitionistic fuzzy subset m = (Am , Bm) of N is said to be 

an intuitionistic fuzzy bi- ideal of N if for all x, yÎN, 
 

(i) Am( x − y )  min{Am(x) , Am(y)} 
(ii) (AmᵒNᵒAm)∩ (AmᵒN)Am Í  Am  

(iii)Bm( x − y ) ≤  max{Bm(x) , Bm(y)} 
(iv) (BmᵒNᵒBm)È(BmᵒN)Bm Ê  B m 

 

3. Intuitionistic Fuzzy Strong Bi-ideals of Near-Rings   
 
Definition: 3.1 
 
An intuitionistic fuzzy bi-ideal m = (Am , Bm) of N is called an 
intuitionistic fuzzy strong bi-ideal of N, if (i) NAmAm Í Am   
(ii) NBm Bm ÊBm 

 

+ 0 a b  c   • 0 a b    c 

 0 0 a b c   0 0 0 0 0 

 a a 0 c b    a 0 0 a 0 

b b c 0 a   b 0 0 b 0 

c c b a 0   c 0 0 c 0 

 
Example: 3.2 
 
Let N={0,a,b,c} be a near-ring with two binary operations ‘’ 
and ‘•’ is defined as follows. 
 
Define a fuzzy subset m = (Am , Bm) where Am:N(0,1) by 

Am(0) = 0.8, Am(a) = 0.6, Am(b) = 0.3 = Am(c). Then 
(AmᵒNᵒAm)(0) = 0.3, (AmᵒNᵒAm)(a) = 0.3, (AmᵒNᵒAm)(b) 

= 0.3, (AmᵒNᵒAm)(c) = 0.3,(N Am Am) (0) = 0.3, (N Am 

Am) (a) = 0.3, (N Am Am) (b) = 0.3, (N Am Am) (c) = 0.3 and 
so Am  is a  intuitionistic fuzzy strong bi-ideal of  N and 

Bm:N(0,1) by Bm(0) = 0.2, Bm(a) = 0.7,Bm(b) = 0.9 = Bm(c) . 
Then (BmᵒNᵒBm)(0)=0.9, (BmᵒNᵒBm)(a)=0.9, (BmᵒNᵒBm) 

(b) = 0.9, (BmᵒNᵒBm)(c) = 0.9, (N Bm Bm) (0) = 0.9, (N 

Bm Bm) (a) = 0.9, (N Bm Bm) (b) = 0.9, (N Bm Bm) (c) = 0.9 
and so Bm  is an  intuitionistic fuzzy strong bi-ideal of  N. Thus 

m = (Am , Bm) is an  intuitionistic fuzzy strong bi-ideal of  N. 
 
Theorem: 3.3 
 
Let {mi} = {(Am

�
, Bm

�
)  iÎI} be any family of intuitionistic 

fuzzy strong bi-ideals in a near-ring N. Then  	m
��∈�

∩ 	is an 

intuitionistic fuzzy strong bi-ideal of N, wher 	m
��∈�

∩ 	 =

{( Am
��∈�

∩	 		, Bm
��Î�

È 	)}. 

 
Proof: 
 
Let {	m

�
: iÎI} be any family of intuitionistic fuzzy strong bi-

ideals of N.  
Now for all x,yÎN, 
														 Am

��∈�
∩ (x − y) = min	{Am

�
(x − y) / iÎI} 

                         min{min{Am
�
	(x), Am

�
	(y) /iÎI} 

        (since   Am
�
is an intuitionistic fuzzy subgroup of N) 

                        = min{ Am
��∈�

∩ (�), Am
��∈�

∩  (y) /iÎI} 

Bm
�			�Î�

È (x − y) = max	{Bm
�
(x − y) / iÎI} 

≤ max{max{Bm
�
(x),Bm

�
(y) /iÎI} 

(since Bm
�
is an intuitionistic fuzzy subgroup of N) 

= max{ Bm
�			�Î�

È (x), Bm
�			�Î�

È (y) /iÎI} 

Therefore 	m
��∈�

∩ 	is an intuitionistic fuzzy subgroup of N. 

To Prove: 	m
��∈�

∩ 	is an intuitionistic fuzzy bi-ideal of N. 

Now for all xÎN, since Am = Am
��∈�

∩ Í	Am
�

 , for every iÎI, we 

have 
((AmᵒNᵒAm)∩(AmᵒN)Am))(x)≤((Am

�
ᵒNᵒAm

�
)∩(Am

�
ᵒN) 

Am
�
))(x) 

(since Am
�
 is an intuitionistic fuzzy bi-ideal of N) 
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                                           ≤ Am
�
(�)for every iÎI. 

It follows that  
((AmᵒNᵒAm)∩ (AmᵒN )Am))(x) ≤ inf{ Am

�
(x):iÎI} 

                                  =  ( Am
�
)�∈�

∩ (x) 

                                                  = Am(x) 
 
Thus (AmᵒNᵒAm)∩ (AmᵒN )Am) Í Am 

So Am is an intuitionistic fuzzy bi-ideal of N. 

Now for all xÎN,since Bm = Bm
��∈�

È Ê	Bm
�
 for some iÎI, 

we have 
 
((BmᵒNᵒBm)È(BmᵒN)Bm))(x) 

  ((Bm
�
ᵒNᵒBm

�
)È(Bm

�
ᵒN)Bm

�
))(x) 

            (since Bm
�
is an intuitionistic fuzzy bi-ideal of N) 

     Bm
�
(x) for some iÎI 

It follows that   

((BmᵒNᵒBm)È(BmᵒN )Bm))(x)  sup{ Bm
�
(x):iÎI} 

                             = ( Bm
�
(x)	�∈�

È )  

                                             = Bm(x) 
 
Thus (BmᵒNᵒBm)È (BmᵒN )Bm) Ê Bm 

So Bm is an intuitionistic fuzzy bi-ideal of N. 
Thus  	m

��∈�
∩ 	is an intuitionistic fuzzy bi-ideal of N 

Next we prove: 	m
��∈�

∩ 	is	an	intuitionistic fuzzy strong bi-ideal 

of N. 

Now for all xÎN, since Am = Am
��∈�

∩ Í	Am
�

 , for every iÎI, we 

have 
(NAmAm) (x)   ≤ (N Am

�
 Am

�
) (x) 

≤ Am
�
(x) for every iÎI  

                     (since Am
�
 is an intuitionistic fuzzy strong bi-

ideal of N) 
It follows that, (NAmAm) (x) ≤  inf { Am

�
(x) : iÎI} 

            = ( Am
�
(x)	�∈�

∩ )       

= Am(x) 
Thus NAmAm Í Am. So Am is an intuitionistic fuzzy strong bi-
ideal of N. 

Now for all xÎN, since Bm = Bm
��∈�

È Ê	Bm
�  , for some iÎI, we 

have 

(N Bm Bm) (x)   (N Bm
�
 Bm

�
) (x) 

 Bm
�
(x) for every iÎI  

                    (since Bm
�
 is an intuitionistic fuzzy strong bi-ideal 

of N) 

It follows that, (N Bm Bm) (x)       sup{Bm
�
(x) : iÎI}  

    = ( Bm
�
(x)	�∈�

È ) 

    = Bm(x) 
Thus N Bm BmÊ Bm. So Bm is an intuitionistic fuzzy strong bi-
ideal of N. 
Thus  	m

��∈�
∩ 	is an intuitionistic fuzzy strong bi-ideal of N 

 
Theorem: 3.4 
 
Every left permutable intuitionistic fuzzy right N-subgroup of 
N is an intuitionistic fuzzy  strong bi-ideal of N. 
Proof:  
Let m =  (Am, Bm) be a left permutable intuitionistic fuzzy right 
N-subgroup of N. 
To prove: m  is an intuitionistic fuzzy strong bi-ideal of N. 
First we prove: m   is an intuitionistic fuzzy bi-ideal of N. 

Choose a,b,c,x,y,i,b1,b2,x1,x2,y1, y2 in N such that a = bc = 
x(y+i) – xy, b = b1 b2,x = x1 x2 and y = y1 y2. Then 
(Am  N  Am)((Am  N) *Am))(a) = min{( Am   N  Am)(a),(( Am   
N) * Am )(a)} 

= min{ min(Am	�	���
���

 N)(b), Am(c)},(( Am  N ) * Am)( x(y+i)-

xy)} 

= min{ min� 	min	{Am(	b�), � (	b�)	�	�	����

���
��	���

���
, Am (c)},(( Am  

 N ) * Am)( x(y+i)-xy)} 
(since N(z) = 1, for all zÎN) 

= min{ min� 		{Am(	b�), Am	(c)�	�	����

���
��	���

���
,(( Am  N ) * Am)( 

x(y+i)-xy)} 
(Since Am is an intuitionistic fuzzy right N-subgroup of N, 
Am(bc) = Am(b1b2c) = Am(b1(b2c)) ≥ Am (b1)) 

≤ min{ min�Am(bc), � (c)��	���
���

,N( x(y+i)-xy)} 

= min{ min{Am	(bc)�	���
���

,N( x(y+i)-xy)} = Am(bc) = Am(a) 

Thus (Am  N  Am)((Am  N) *Am))ÍAm.  
Hence Am is an intuitionistic fuzzy bi-ideal of N. 
Choose a, b, c, x, y, i, b1, b2, x1, x2, y1, y2 in N such that a = bc 
= x(y+i)-xy, b = 	b�,b�, x = x1 x2 and y = y1y2. Then 
(Bm  N  Bm)È(( Bm  N) * Bm))(a) = max{( Bm  N  Bm)(a),(( Bm  
N) * Bm))(a)} 

= max{ 	max	(Bm	�	���
���

 N)(b), Bm (c)},(( Bm  N ) * Bm)( x(y+i)-

xy)} 

= max{ max� 	max	{Bm(	b�), � (	b�)	�	�	����

��� ��	���
��� , Bm (c)},(( Bm 

 N ) * Bm)( x(y+i)-xy)} 
(since N(z) = 0, for all zÎN) 

= max{ max� 		{Bm(	b�), Bm(c)�	�	����

��� ��	���
��� ,(( Bm  N ) * Bm)( 

x(y+i)-xy)} 
(Since Bm is a intuitionistic fuzzy right N-subgroup of N, 
Bm(bc) = Bm(b1b2c) = Bm (b1(b2c)) ≤ Bm (b1) ) 

 max{ max�Bm(bc), � (c)��	���
��� ,N( x(y+i)-xy)} 

= max{ max{Bm(bc)�	���
��� ,N( x(y+i)-xy)} = Bm (bc) = Bm(a) 

Thus (Bm  N  Bm)È(( Bm  N) * Bm))(a) Ê Bm.  
Hence Bm is an intuitionistic fuzzy bi-ideal of N. 
Thus m =  ( Am , Bm) is an intuitionistic fuzzy bi-ideal of N. 
Next we prove: m  is an intuitionistic fuzzy strong bi-ideal of 
N. 
Choose a, b,c,	b�, b�ÎN such that a = bc and b = 	b�,	b�. Then 

N AmAm (a) = 	min�� ∘ Am(b), Am(c)��	���
���

 

=  min� 	min�� (b�), Am		(b�)�, Am(c)
�	�	����

���
��	�	��

���
 

=  min� 	{Am(b�), Am(c)�	�	����

���
��	�	��

���
 

(Since Am is a left permutable intuitionistic fuzzy right N-
subgroup of N, Am(bc) = Am((b1b2)c) = Am((b2b1) c)  Am(b2)) 
and N(c)  Am(c) 

 	 	min�Am(bc), � (c)��	���
���

 

= 	min�Am(bc), 1��	���
���

 

=  Am(bc)�	�	��
���

 

= Am(a) 
Therefore N Am  Am Í Am  .  
Hence Am   is an intuitionistic fuzzy strong bi-ideal of N. 
Choose a, b, c,	b�, b�ÎN such that a = bc and b = 	b�b�. Then 

(N  Bm  Bm)(a) = max����
��� (N  Bm)(b), Bm (c)} 

=  max� 	max�� (b�), Bm(b�)�, Bm(c)�	�	����

��� ��	�	��
���  

=  max� 	{Bm(b�), Bm(c)�	�	����

��� ��	�	��
���  

(Since Bm is a left permutable intuitionistic fuzzy right N-
subgroup of N, Bm(bc) = Bm ((b1b2)c) = Bm((b2b1) c) ≤ Bm(b2)) 

 	 	max�Bm(bc), � (c)��	���
���  
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≤ Am
�
(�)for every iÎI. 

 
It follows that  
((AmᵒNᵒAm)∩ (AmᵒN )Am))(x) ≤ inf{ Am

�
(x):iÎI} 

                                  =  ( Am
�
)�∈�

∩ (x) 

                                                  = Am(x) 
 
Thus (AmᵒNᵒAm)∩ (AmᵒN )Am) Í Am 

So Am is an intuitionistic fuzzy bi-ideal of N. 

Now for all xÎN,since Bm = Bm
��∈�

È Ê	Bm
�
 for some iÎI, 

we have 
 
((BmᵒNᵒBm)È(BmᵒN)Bm))(x) 

  ((Bm
�
ᵒNᵒBm

�
)È(Bm

�
ᵒN)Bm

�
))(x) 

            (since Bm
�
is an intuitionistic fuzzy bi-ideal of N) 

     Bm
�
(x) for some iÎI 

It follows that   

((BmᵒNᵒBm)È(BmᵒN )Bm))(x)  sup{ Bm
�
(x):iÎI} 

                             = ( Bm
�
(x)	�∈�

È )  

                                             = Bm(x) 
 
Thus (BmᵒNᵒBm)È (BmᵒN )Bm) Ê Bm 

So Bm is an intuitionistic fuzzy bi-ideal of N. 
Thus  	m

��∈�
∩ 	is an intuitionistic fuzzy bi-ideal of N 

Next we prove: 	m
��∈�

∩ 	is	an	intuitionistic fuzzy strong bi-ideal 

of N. 

Now for all xÎN, since Am = Am
��∈�

∩ Í	Am
�

 , for every iÎI, we 

have 

(NAmAm) (x)   ≤ (N Am
�
 Am

�
) (x) 

≤ Am
�
(x) for every iÎI  

                     (since Am
�
 is an intuitionistic fuzzy strong bi-

ideal of N) 

It follows that, (NAmAm) (x) ≤  inf { Am
�
(x) : iÎI} 

            = ( Am
�
(x)	�∈�

∩ )       

= Am(x) 
Thus NAmAm Í Am. So Am is an intuitionistic fuzzy strong bi-
ideal of N. 
Now for all xÎN, since Bm = Bm

��∈�
È Ê	Bm

�  , for some iÎI, we 

have 

(N Bm Bm) (x)   (N Bm
�
 Bm

�
) (x) 

 Bm
�
(x) for every iÎI  

                    (since Bm
�
 is an intuitionistic fuzzy strong bi-ideal 

of N) 

It follows that, (N Bm Bm) (x)       sup{Bm
�
(x) : iÎI}  

    = ( Bm
�
(x)	�∈�

È ) 

    = Bm(x) 
Thus N Bm BmÊ Bm. So Bm is an intuitionistic fuzzy strong bi-
ideal of N. 
Thus  	m

��∈�
∩ 	is an intuitionistic fuzzy strong bi-ideal of N 

 
Theorem: 3.4 
 
Every left permutable intuitionistic fuzzy right N-subgroup of 
N is an intuitionistic fuzzy  strong bi-ideal of N. 
Proof:  
Let m =  (Am, Bm) be a left permutable intuitionistic fuzzy right 
N-subgroup of N. 
To prove: m  is an intuitionistic fuzzy strong bi-ideal of N. 
First we prove: m   is an intuitionistic fuzzy bi-ideal of N. 
 

Choose a,b,c,x,y,i,b1,b2,x1,x2,y1, y2 in N such that a = bc = 
x(y+i) – xy, b = b1 b2,x = x1 x2 and y = y1 y2. Then 
(Am  N  Am)((Am  N) *Am))(a) = min{( Am   N  Am)(a),(( Am   
N) * Am )(a)} 

= min{ min(Am	�	���
���

 N)(b), Am(c)},(( Am  N ) * Am)( x(y+i)-

xy)} 

= min{ min� 	min	{Am(	b�), � (	b�)	�	�	����

���
��	���

���
, Am (c)},(( Am  

 N ) * Am)( x(y+i)-xy)} 
(since N(z) = 1, for all zÎN) 

= min{ min� 		{Am(	b�), Am	(c)�	�	����

���
��	���

���
,(( Am  N ) * Am)( 

x(y+i)-xy)} 
(Since Am is an intuitionistic fuzzy right N-subgroup of N, 
Am(bc) = Am(b1b2c) = Am(b1(b2c)) ≥ Am (b1)) 

≤ min{ min�Am(bc), � (c)��	���
���

,N( x(y+i)-xy)} 

= min{ min{Am	(bc)�	���
���

,N( x(y+i)-xy)} = Am(bc) = Am(a) 

Thus (Am  N  Am)((Am  N) *Am))ÍAm.  
Hence Am is an intuitionistic fuzzy bi-ideal of N. 
Choose a, b, c, x, y, i, b1, b2, x1, x2, y1, y2 in N such that a = bc 
= x(y+i)-xy, b = 	b�,b�, x = x1 x2 and y = y1y2. Then 
(Bm  N  Bm)È(( Bm  N) * Bm))(a) = max{( Bm  N  Bm)(a),(( Bm  
N) * Bm))(a)} 

= max{ 	max	(Bm	�	���
���

 N)(b), Bm (c)},(( Bm  N ) * Bm)( x(y+i)-

xy)} 

= max{ max� 	max	{Bm(	b�), � (	b�)	�	�	����

��� ��	���
��� , Bm (c)},(( Bm 

 N ) * Bm)( x(y+i)-xy)} 
(since N(z) = 0, for all zÎN) 

= max{ max� 		{Bm(	b�), Bm(c)�	�	����

��� ��	���
��� ,(( Bm  N ) * Bm)( 

x(y+i)-xy)} 
(Since Bm is a intuitionistic fuzzy right N-subgroup of N, 
Bm(bc) = Bm(b1b2c) = Bm (b1(b2c)) ≤ Bm (b1) ) 

 max{ max�Bm(bc), � (c)��	���
��� ,N( x(y+i)-xy)} 

= max{ max{Bm(bc)�	���
��� ,N( x(y+i)-xy)} = Bm (bc) = Bm(a) 

Thus (Bm  N  Bm)È(( Bm  N) * Bm))(a) Ê Bm.  
Hence Bm is an intuitionistic fuzzy bi-ideal of N. 
Thus m =  ( Am , Bm) is an intuitionistic fuzzy bi-ideal of N. 
Next we prove: m  is an intuitionistic fuzzy strong bi-ideal of 
N. 
Choose a, b,c,	b�, b�ÎN such that a = bc and b = 	b�,	b�. Then 

N AmAm (a) = 	min�� ∘ Am(b), Am(c)��	���
���

 

=  min� 	min�� (b�), Am		(b�)�, Am(c)
�	�	����

���
��	�	��

���
 

=  min� 	{Am(b�), Am(c)�	�	����

���
��	�	��

���
 

(Since Am is a left permutable intuitionistic fuzzy right N-
subgroup of N, Am(bc) = Am((b1b2)c) = Am((b2b1) c)  Am(b2)) 
and N(c)  Am(c) 

 	 	min�Am(bc), � (c)��	���
���

 

= 	min�Am(bc), 1��	���
���

 

=  Am(bc)�	�	��
���

 

= Am(a) 
Therefore N Am  Am Í Am  .  
Hence Am   is an intuitionistic fuzzy strong bi-ideal of N. 
Choose a, b, c,	b�, b�ÎN such that a = bc and b = 	b�b�. Then 

(N  Bm  Bm)(a) = max����
��� (N  Bm)(b), Bm (c)} 

=  max� 	max�� (b�), Bm(b�)�, Bm(c)�	�	����

��� ��	�	��
���  

=  max� 	{Bm(b�), Bm(c)�	�	����

��� ��	�	��
���  

(Since Bm is a left permutable intuitionistic fuzzy right N-
subgroup of N, Bm(bc) = Bm ((b1b2)c) = Bm((b2b1) c) ≤ Bm(b2)) 

 	 	max�Bm(bc), � (c)��	���
���  
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= 	max�Bm(bc), 0��	���
���  

=  Bm(bc)�	�	��
���  = Bm(a) 

Therefore (N  Bm  Bm) Ê Bm.  
Hence Bm is an intuitionistic fuzzy  strong bi-ideal of N. 
Thus m =  (Am , Bm) is an intuitionistic fuzzy  strong bi-ideal of 
N. 
 
Theorem: 3.5 
 
Every intuitionistic fuzzy left N-subgroup of N is an 
intuitionistic fuzzy  strong bi-ideal of N. 
 
Proof:  
 
Let m =  (Am , Bm) be an  intuitionistic fuzzy left N-subgroup of 
N. 
To prove: m  is an intuitionistic fuzzy strong bi-ideal of N. 
First we prove: m is an intuitionistic fuzzy bi-ideal of N. 
Choose a,b,c,x,y,i,c1,c2,x1,x2,y1, y2 in N such that a = bc = 
x(y+i) – xy, c = c1 c2,x = x1 x2 and y = y1 y2. Then 
(Am  N  Am)((Am  N) *Am))(a) = min{( Am  (N  Am))(a),(( Am  

 N) * Am)(a)} 

= min{ min	{(Am(b), (� 	�	���
���

 Am)(c)},(( Am  N ) * Am)( x(y+i)-

xy)} 

= min{ min�Am(b), 	min	{� (	c�),�	�	����

���
Am(c�)��	���

���
, (( Am N) 

* Am)( x(y+i)-xy)} 

=min{ min�Am(b), 		 Am(c�)}�	�	����

���
��	���

���
,((AmN)*Am)              

(x(y+i)-xy)} 
(Since Am  is an intuitionistic fuzzy left N-subgroup of N, 
Am(bc) = Am(bc1c2) = Am((bc1)c2) ≥ Am (c2)) 

≤ min{ min�� (b), Am	(bc)��	���
���

,N( x(y+i)-xy)} 

= Am(bc) = Am(a) 
Thus (Am  N  Am)((Am  N) *Am))ÍAm.  
Hence Am is an intuitionistic fuzzy bi-ideal of N. 
Choose a, b, c, x, y, i, c1, c2, x1, x2, y1, y2 in N such that a = bc 
= x(y+i)-xy, c = c�,c�, x = x1 x2 and y = y1y2. Then 
(Bm  N  Bm)È((Bm  N) * Bm))(a) = max{(Bm  N  Bm)(a),(( Bm 

N) * Bm))(a)} 

= max{ 	max	{(Bm(b),�	���
��� ( NBm)(c)},((	Bm  N ) * Bm)( x(y+i)-

xy)} 

= max{ max�Bm(b), 	max	{� (	c�), Bm(	c�)	�	�	����
��� ��	���

��� },((Bm  

N ) * Bm)( x(y+i)-xy)} 

= max{ max�Bm(b), 	Bm(	c�)�	�	����
��� ��	���

��� ,((	Bm  N ) * Bm)( 

x(y+i)-xy)} 
(Since Bm is an intuitionistic fuzzy left N-subgroup of N, 

Bm(bc) = Bm(b(c1c2)) = Bm(bc1)c2) ≤ Bm(c2) ) 

 max{ max�� (b), Bm(bc)��	���
��� ,N( x(y+i)-xy)} = Bm(bc) = 

Bm(a) 

Thus (Bm  N  Bm)È((	Bm  N) * Bm)Ê	Bm.  

Hence Bm is an intuitionistic fuzzy bi-ideal of N. 

Thus m =  ( Am , Bm) is an intuitionistic fuzzy bi-ideal of N. 
Next we prove: m  is an intuitionistic fuzzy strong bi-ideal of 
N. 
Choose a, b,c,	c�, c�ÎN such that a = bc and c = c�,	c�. Then 

               NAm Am (a) =  	min�� (b), (Am ∘ Am)(c)��	���
���

 

=  min�� (b), 	min	{Am(c�), Am(c�)	�	�	����

���
��	���

���
 

=  	min�1, min	{Am(c�), Am(c�)	�	�	����

���
��	�	��

���
 

(Since Am is an intuitionistic fuzzy left N-subgroup of N, 

Am(bc) =	Am(bc1c2) =Am ((bc1)c2) 	Am(c2)) 

  min{� (c�), Am(bc)}�	�	��
���

 

=   min�1, Am(bc)��	�	��
���

 

= Am(bc) 

= Am(a)      

Therefore NAmAm Í Am.  

Hence Am is an intuitionistic fuzzy strong bi-ideal of N. 

Choose a, b,c,	c�, c�ÎN such that a = bc and c = c�,	c�. Then 

(N  Bm Bm)(a) =  	max	{(� (b),�	���
���

 (Bm Bm)(c)} 

                        =  max�0, 	max	{Bm(c�), Bm(c�)	�	�	����
��� ��	���

���  

                        =  	max�Bm(c�), Bm(c�)��	�	��
���  

(Since Bm is an intuitionistic fuzzy left N-subgroup of N, 

Bm(bc) = Bm(bc1c2) = Bm((bc1)c2) ≤ Bm(c2)) 

  max{� (c�), Bm(bc)}�	�	��
���  

=  max�0, Bm(bc)��	�	��
���  

= Bm(bc) = Bm(a)      

Therefore N  Bm BmÊ Bm.  

Hence Bm is an intuitionistic fuzzy strong bi-ideal of N. 

Thus m =  ( Am , Bm) is an intuitionistic fuzzy  strong bi-ideal of 
N. 
 
Theorem: 3.6 
 
Every left permutable intuitionistic fuzzy two-sided N-
subgroup of N is an intuitionistic fuzzy strong bi-ideal of N. 
 
Proof: 
 
The proof is straight forward from the above Theorem 3.4 and 
Theorem 3.5. 
 
Theorem: 3.7 
 
Every left permutable intuitionistic fuzzy right ideal of N is an 
intuitionistic fuzzy strong bi-ideal of N. 
 
Proof: 
 
The proof is similar to that of Theorem 3.4. 
 
Theorem: 3.8 
 
Every intuitionistic fuzzy left ideal of N is an  intuitionistic 
fuzzy strong bi-ideal of N. 
 
Proof: 
 
Let m = (Am , Bm) be an intuitionistic fuzzy left ideal of N. 
To prove: m  is an intuitionistic fuzzy strong bi-ideal of N. 
First we prove: m  is an intuitionistic fuzzy bi-ideal of N. 
Choose a, b, c, x, y, i, b1, b2, x1, x2, y1, y2 in N such that a = bc 
= x(y+i)-xy, b = 	b�b�,  
x = x1 x2 and y = y1y2. Then 
(Am  N  Am)((Am  N) *Am))(a) = min{( Am   N  Am)(a),(( Am  
N) * Am) (a)} 

= min{ min(	Am	�	���
���

 N)(b), Am(c)},(( Am  N ) * Am)( x(y +i)-

xy)} 

= min{ min{�	���
���

 (AmᵒN)(		b�b�), Am (c)}, min���(���)���
���

(( Am  

 N )(x),( Am   N )(y),A(i)}} 
(since AᵒNÍN and since Am is an intuitionistic fuzzy left ideal 
of N, Am(	x(y + i) − xy)≥ Am(i)) 
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≤ min{ min{�	���
���

N(	b�b�),N(c)},	 min���(���)���
���

{� (x),	� (y), 

Am (x(y + i) − xy)}} 
= Am (x(y + i) − xy) 
= Am(a). 
Thus (Am  N  Am)((Am  N) *Am))ÍAm. 
 Hence Am is an intuitionistic fuzzy bi-ideal of N. 
Choose a, b, c, x, y, i, b1, b2, x1, x2, y1, y2 in N such that a = bc 
= x(y+i)-xy, b = b�b�, x = x1 x2 and y = y1y2. Then 
(Bm  N  Bm)È((Bm  N) *Bm))(a) = max{( Bm  N  Bm)(a),(( Bm  
N) * Bm))(a)} 

= max{ 	max	(Bm	�	���
���

 N)(b),	Bmc)},((	Bm N ) * Bm)( x(y+i)-

xy)} 

= max{{ 	max	(Bm	�	���
���

N)(	b�b�),	Bm (c)}, max	{���(���)���
��� (Bm 

 N)(x),(	Bm a N)(y),	Bm(i)}} 

(since Bm NÊN and since Bm is an intuitionstic fuzzy left ideal 

of N, Bm (x(y+i)-xy) ≤ Bm (i)) 

max{ 	max		�	���
��� {N(	b�b�),N(c)},	 max	{���(���)���

��� N(x),N(y), 

Bm(x(y+i)-xy)}} 

= Bm(x(y+i)-xy) = Bm(a). 

Therefore (Bm N  Bm)È((	Bm  N) *Bm)Ê	Bm.  

Hence Bm is an intuitionistic fuzzy bi-ideal of N. 

Thus m = ( Am , Bm) is an intuitionistic fuzzy bi-ideal of N. 
Next we prove: m  is an intuitionistic fuzzy strong bi-ideal of 
N. 
Choose a, b,c,	b�, b�ÎN such that a = bc = b(n + c) - bn. Then 

N Am Am (a) = 	min�(� ∘ Am)(b), Am(c)��	���
���

 

=  min� 	min�� (b�), Am(b�)�, Am(c)�	�	����

���
��	�	��

���
 

=  min� 	{Am(b�), Am(c)�	�	����

���
��	�	��

���
 

(Since Amis a intuitionistic fuzzy left ideal of N, Am(a) = 

Am(bc) = Am(b(n + c) - bn) Am(c) and N(b2) Am (b2)) 

 	 	min�� (b�), Am(b(n + c) − 	bn)��	���
���

 

                                    = 	�	���
���

	Am(b(n + c) − 	bn) 

= Am(bc) = Am (a) 

Therefore N Am AmÍ Am. Hence Am  is an intuitionistic fuzzy 

strong bi-ideal of N. 
Choose a, b,c,	b�, b�ÎN such that a = bc and b = b�	b�. Then 

              N Bm  Bm (a) = max	{����
��� (N  Bm)(b),	Bm(c)} 

=  max� 	max�� (b�), Bm(b�)�, Bm(c)�	�	����

��� ��	�	��
���  

=  max� 	{Bm(b�), Bm(c)�	�	����

��� ��	�	��
���  

(Since A is an anti fuzzy left ideal of N, Bm(a) = Bm(bc) = 

Bm(b(n + c) - bn) ≤ Bm(c))  and 

 	 	max�� (b�), Bm(b(n + c) − 	bn)��	���
���  

= 	max�0, Bm(bc)��	���
���  

= Bm(bc) = Bm(a) 

Therefore N Bm  Bm Ê Bm. Hence Bm is an intutionistic fuzzy 

strong bi-ideal of N. 
Thus m = (Am , Bm) is an intutionistic fuzzy strong bi-ideal of 
N. 
 

Theorem: 3.9 
 

Every left permutable fuzzy ideal of N is a fuzzy strong bi-
ideal of N. 
 
Proof: 
 
The proof is straight forward from the Theorem 3.7 and 
Theorem 3.8. 
 

Theorem: 3.10 
 
Let m = (Am ,Bm) be any intuitionistic fuzzy strong bi-ideal of a 
near-ring N.Then Am(axy)  min{Am(x), Am(y)} and Bm  ≤ max{ 
Bm(x), Bm (y)} a, x, y ÎN. 
 
Proof: 
 
Assume that (Am , Bm) is an intuitionistic fuzzy strong bi-ideal 
of N. Then N Am Am Í Am and N Bm Bm Ê Bm. 
Let a, x and y be any element of N. Then 
Am(axy)  (N Am Am) (axy) 

= 	min�(� ∘ Am)(p), Am(q)����	���
���

 

 min�(� ∘ Am)(ax), Am(y)� 

=  min� min{� (z�), Am(z�)��	�����

���
�, Am(y)} 

 min{min{N(a), Am(x)}, Am(y)} 

= min{min{1,	Am(x), Am(y)} 

= min{Am(x), Am(y)} 

This shows that Am(axy)  min{Am(x), Am(y)} a, x, y ÎN and 

Bm (axy) ≤ (N Bm Bm) (axy) 

= 	max�� ∘ Bm(p), Bm(q)����	���
���  

= max�(� ∘ Bm)(ax), Bm(y)� 

=  max� max{� (z�), Bm(z�)��	�����
��� �, Bm(y)} 

≤ max{max {N(a), Bmx)}, Bm(y)} 

= max{max {1,	Bm(x), Bm(y)} 

= max{Am(x), Bm(y)} 

 

This shows that Bm(axy) ≤ max{Bm(x), Bm(y)} a, x, y ÎN  
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