

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 4, Issue, 10, pp.144-148, October, 2012 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

EVALUATION OF PHYTOCHEMICAL AND IN VITRO ANTIBACTERIAL ACTIVITIES OF ORGANIC SOLVENT FRACTIONS OF *GANODERMA LUCIDUM* METHANOLIC EXTRACT

Shamaki B.U¹ (b) S., Sandabe, U.K¹., Abdulrahman, F.I² and Ogbe, A.O⁴ and Geidam, Y.A¹.

¹Department of Veterinary Physiology, Pharmacology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, PMB 1069, Bama Road, Maiduguri, Borno State, Nigeria ²Department of Chemistry, Faculty of Science, University of Maiduguri, PMB 1069, Bama Road, Maiduguri, Borno State, Nigeria

³Department of Animal Science, Faculty of Agriculture, Nassarawa State University, Keffi, Nigeria

ARTICLE INFO

ABSTRACT

Article History: Received 8th July, 2012 Received in revised form 12thAugust, 2012 Accepted 10th September, 2012 Published online 30th October, 2012

Key words: Phytochemical, Antibacterial, Organic solvent fractions, *Ganoderma lucidum*, Ampisclox^R.

INTRODUCTION

Medicinal plants are widely used in both developing and developed countries with 80% of the World's population relying mainly on traditional therapies which involves the use of plant extracts or their active substances (WHO, 1993). This shift to microbial herbal medication can be due to development of resistance to conventional antibiotics by some of these microbes (Ahmad et al., 1998, Yang et al., 2004) and toxicity in host organ cells (Prakash, 2006). Besides, medicinal preparations of herbal origin eliminate side effects associated with most synthetic drugs (Iwu et al., 1999).Following the discovery of drugs from an array of plants (Farnsworth et al., 1976), there has been serious investigations into other various plant extracts as remedies to variety of diseases (Jigna and Chanda 2007, Geidam et al., 2007, Reddy and Jose 2010) with the aim of finding cheaper, readily available, effective and non toxic medications that are herbal based (Clark, 1996, Cordell, 2000). Extracts from the wild mushroom-Ganoderma lucidum is one of the medicinal healing agent of herbal base that has been used for over 4,000 years in Chinese Traditional Medicine (TCM) to treat wide range of illnesses including cancer (Andreij et al., 2000., Anita et al., 2007), diabetes (Gao et al., 2004, Wasser et al., 1997), HIV/AIDs (El-Mekkawy et al., 1998, McKenna et al., 2002, Gao et al., 2003), stress and coronary disorders (Anita et al., 2006, Berger et al., 2011), allergies (Powell 2006,

Stavinoha, 2011), bacterial infections (Moradali *et al.*, 2006) with inhibitory activity against gram positive and gram negative bacteria (Yoon *et al.*, 1994, Suay *et al.*, 2000), The mushroom extracts have also been reported to posses the ability to strengthen human body immune system (Kim *et al.*, 2011). These reports however, have not demonstrated the use of different organic solvent fraction of the extracts from *Ganoderma lucidum* against different bacterial organisms; hence the need for using methanolic, ethyl acetate and N-butanol soluble extracts fractions of *Ganoderma lucidum* against some selected bacterial agents.

Copy Right, IJCR, 2012, Academic Journals. All rights reserved.

MATERIALS AND METHODS

The phytochemical and antibacterial activity of different organic solvent extracts (methanol, Ethyl

acetate and N-butanol), of the wild mushroom- Ganoderma lucidum was evaluated at different

concentrations 200mgml⁻¹, 150mgml⁻¹, 100mgml⁻¹, 50mgml⁻¹ and 25mgml⁻¹. The antibacterial

activities of the extract were investigated using the disc diffusion method. All the test microbes

showed resistance against methanolic and N-butanolic fractions. However, they all showed

susceptibility to ethyl acetate extract fraction except *Streptococcus faecalis, Escherichia coli* and *Enterobacter aeroginosa* that showed resistance. The Ethylacetate extract fraction exhibited broad

spectrum of activity by acting against both gram positive and gram negative bacteria. The inhitory

effect of the test extract was compared with a standard antibiotic-Ampiclox^R (Ampicillin +

Cloxacillin). The extract showed its potentials as an antibacterial agent that should be exploited.

Sample collection, identification and preparation of extracts

Fresh fruiting part of *Ganoderma lucidum* was harvested from Lafia, the capital city of Nassarawa State in North-central Nigeria during the rainy season (August-September), it was transported using a clean polythene bag. The mushroom was identified and authenticated at the department of Botany, University of Maiduguri, Nigeria. It was then spread on a clean shelf in the Laboratory for air drying to reduce the moisture content. The dried mushroom was then ground to fine powder using clean pestle and mortar, and this powder was stored in an air tight glass jar at 4^oC until required for use. The prepared dried *Ganoderma lucidum* powder was weighted (1.5kg) using a manual balance was placed in a soxhlet

^{*}Corresponding author: shamabala@yahoo.com

chamber, and to it was added 7.5 Litres of methanol and heated to 40° C for 24h until it yielded the methanolic solvent extract fraction. The filtrate was then evaporated within 24h using electric evaporator. A bitter tasting, chocolate coloured, gelatinous extract which can dissolve in water to produce a greenish-yellow colour was obtained and the yield was calculated to be 79.5g(w/w)which represents (5.3%).This was properly labeled and stored in a glass jar at room temperature until use. (Trease and Evans 1997) The *in vitro* antimicrobial evaluation of *Ganoderma lucidum* was carried out using WHO guidelines (WHO, 2000).

Fractionation of the methanolic extract

The residue obtained after methanol extraction, weighing 1420.5g was then washed with 7.5 litres of Ethylacetate (Sigma-Aldrich, Germany) In a soxhlet chamber for 24 hour yielding filtrate containing ethylacetate soluble fraction, this was further filtrated using Whatman No. 1 filter paper and the filtrate obtained was evaporated with electric evaporator to produce a black coloured extract, that is not soluble in water, but soluble in ethyl acetate solvent, and weighing 12.86g (0.91%) was obtained. This was stored in a beaker sealed with foil paper at room temperature until needed for use. The same procedure was applied with 7.5 litres of normal butanol to the residue, now weighing 1407.5g, and a 12.76g (0,91%) of Nbutanol soluble fraction, chocolate in colour was obtained. Thus obtaining a clear soluble fraction of methanol, ethyl acetate and N-butanol extracts in sequence and based on their polarity as described by Motobashi et al., (2004)

Phytochemical analysis

A measure of 2g from the different organic soluble solvent fraction of the mushroom extracts (Methanol and N-butanol) were dissolved in 5ml of distilled water, while the ethylacetate fraction was initially dissolved in 0.5ml ethylacetate and made up to 5mls by adding 4.5ml of distilled water. The solutions were then subjected to qualitative chemical analysis as described by Harbone (1976), to identify various active phytochemical constituents such as; Alkaloids, Flavonoids, Carbohydrates, Reducing sugars, Tanins, Phlebotanins Cardiac glycosides, Terpenoids, Anthraquinones, Saponins, Volatile oils and Steroids.

Microbial cultures

Microbial culture was obtained from the University of Maiduguri Teaching Hospital, made up of gram-positive (Streptococcus faecalis, *Staphylococcus* aureus Corvnebacterium pyogene and Bacillus subtilis) and gramnegative (Salmonella typhi, Escherichia coli, Klebsiela pneumoneae, Pseudomonas aeroginosa, Proteus mirabilis and Enterobacter aeroginosa) bacteria. The isolates were propagated and stored on a nutrient agar plate I Veterinary Medicine Laboratory, University of Maiduguri, the nutrient agar medium was obtained in dehydrated powder form (Oxoids Ltd, England) and reconstituted according to manufacturer's specification. All stock cultures were maintained in nutrient agar plates at 4°C and sub cultured in nutrient broth at 37°C for 8h prior to antimicrobial testing. One milliliter of the broth culture was then used to flood the agar plates.

Extract concentration

A 200mgml⁻¹stock solution of the different organic solvent soluble fraction extracts were prepared by dissolving 2g of each extract in 10ml of distilled water from which the following concentrations of each fraction was prepared; 200mgml^{-1,} 150mgml^{-1,} 100 mgml^{-1,} 50mgml⁻¹ and 25mgml⁻¹. A standard antibacterial agent Ampiclox^R (Ampicillin+ Cloxacillin-500mg, Cipla, Mumbai, India), at a prepared concentration of 25mg ml⁻¹ was equally used on all the test bacterial organisms and their inhibitory zones were compared to those of the test extracts

Antimicrobial Sensitivity testing

In vitro antimicrobial activity of the three organic solvent fraction extracts of Ganoderma lucidum was determined against ten bacterial species by using the disc diffusion method, as described by the National Committee of Clinical Laboratory Standards (1993). A 6mm in diameter disc was prepared using whatman's No.1 filter paper, each disc was impregnated with various concentrations of the extracts. The disc was dried at 50°C. Culture of each bacterium was diluted using sterile normal saline to give an inoculum size of 10^6 cfu ml⁻¹. The inoculums were spread on the surface of the dried nutrient agar plates with cotton wool swabs soaked with diluted suspension of the test organism. These plates were incubated at 37^oC for 30 minutes before the discs were applied aseptically. This treated plate was incubated at 37°C for 24h. The same procedure was carried out using Ampiclox^R at 25mg mL⁻¹as the positive control. A plate with no antibiotic or the extracts was also prepared as the negative control experiment. Zone of inhibition above 6mm diameter of each isolate was used as a measure of susceptibility to the extracts and these was compared to that of the standard antibiotic.

Minimum Inhibitory Concentration (MIC)

The minimum inhibitory concentration (MIC) of the ethyl acetate soluble fraction of the crude methanol extract of Ganoderma lucidum was determined using the method described by Greenwood (1989). Six sterile test tubes were arranged in five rows in a test-tube rack, each row for one of the five microorganisms used for the test. Half a milliliter of sterile nutrient broth was pipetted into all the tubes, and 0.5ml of the ethyl acetate soluble fraction of the extract containing 200mg ml⁻¹ was pipetted into the first test tube of five rows to obtain a concentration of 100mg ml⁻¹, from which a serial dilution of the extract in each row was made to obtain a concentration of 50mg ml⁻¹, 25mg ml⁻¹, 12.5mg ml⁻¹, 6.25mg ml⁻¹ and 3.13mg ml⁻¹ respectively. The test organism (0.5ml) were pipetted into each of the test-tubes and incubated at $37^{\circ}C$ for 24h. The MIC was recorded as the least concentration of the extract that completely inhibits the growth of the test organism. The content of the test-tubes were further sub cultured for 24h to determine bactericidal or bacteriostatic activity of the of the extract. Absence of growth on the subcultured medium after MIC determination indicates bactericidal effect.

RESULTS

Phytochemical analysis of the three soluble fractions of the *Ganoderma lucidum* extract indicates that methanol and N-

Phytochemical.	Tests.	Observations from different organic solvent soluble fractions				
-		Methanol.	Ethyl acetate.	N-butanol.		
Alkaloids	Dragendorff's reagent	-	-	_		
/ inturorad	Meyer's reagent	-	-	-		
Flavonoids	Shinoda's	-	-	_		
1 10 1010103	Ferric chloride	- +	-	_ +		
	Lead acetate	1	-			
	Sodium hydroxide	-	-	-		
Carbohydrates	Molisch's	-	_	-		
Caroonyurates	Bartoed (monosaccharide)	-	-+	_ +		
	Fehling's	+	+	+ +		
			+			
	Combined reducing sugars	+	-	+		
	Ketones	+	-	+		
	Pentose Soluble storeb	+	+	+		
т :	Soluble starch	-	-	_ +		
Tannins	Ferric chloride	+	-	+		
	Lead acetate	-	-	_		
	Hydrochloric acid	_	_	_		
Phlebotanins	Phlebotannin's	+	+	+		
Cardiac glycosides	Salkowski's	+	+	+		
	Lieberman-Bucharnard's					
Anthraquinone	Free anthraquinones	_	_	_		
	(Berntragent's)	_	_	_		
	Combined anthraquinones	+	_	_		
Saponin glycosides	Frothing	+	+	+		
	Fehling's solution	+	+	+		
Terpenoids	Terpenoids					

Table I: Qualitative phytochemical composition of Ganoderma lucidum from different organic Solvent soluble fraction

Table 2: In vitro antibacterial activity of ethyl acetate fraction extract of Ganoderma lucidum

Test organisms	Extra	ct concentra	ition (mg m	¹⁻¹) Anti	biotic (Ampiclox [®])
	200	150	100	50	25mg ml ⁻¹
S. faecalis	R	R	R	R	15mm
S. aureus	13mm	10mm	9mm	R	20mm
C. pyogene	15mm	13mm	12mm	11mm	40mm
B. subtilis	14mm	13mm	12mm	11mm	45mm
S. typhi	13mm	11mm	10mm	R	26mm
E. coli	R	R	R	R	16mm
K. pneumoneae	14mm	13mm	13mm	12mm	32mm
P. aeroginosa	12mm	11mm	9mm	8mm	18mm
P. mirabilis	15mm	13mm	12mm	10mm	42mm
E. aeroginosa	R	R	R	R	18mm

R- Resistance. mm- Milliliters (zone of inhibition).

 Table: 3 Minimum inhibitory concentrations (MIC) of

 Ganoderma lucidum ethyl acetate extract

	Extract concentration. (mg ml ⁻¹)						
		50	25		12.5	6.25	3.13
	-			+	+		
-	-	-		+	+		
-	-			+	+		
-	-		+	+	+		
-	-	+		+	+		
	-	· · ·	50		50 25 + + +		50 25 12.5 6.25 + + + + + +

butanol fraction extracts contain; Flavonoids, Carbohydrates, Tanins, Cardiac glycosides, Saponins and terpenoids, however, the ethyl acetate fraction showed the presence of Carbohydrates, Cardiac glycosides, Saponins and Terpenoids. This study also observed that the phytochemicals, Carbohydrates, Cardiac glycosides and Terpenoids showed stronger presence in the three organic solvent fractions. (Table 1) The result of extract fractionations also showed that methanol has the highest yield of 79.5g (5.3%) followed by ethyl acetate with 12.86g (0.91%) and N-butanol 12.76g

 Table 4: Mean bactericidal concentrations of ethyl acetate extract

 of Ganoderma lucidum

			50	25	12.5	6.25	3.13
C. pyogene	-	-	+	4	÷	+	
B. subtilis	-	-	+	+		+	
K. pneumoneae	-	-	-	÷	F .	+	
P. aeroginosa	-	+	+		+	+	
P. mirabilis	-	+	+		+	+	

(0.91%) soluble fractions respectively. No in vitro inhibition of bacterial growth by methanol and N-butanol soluble fraction extracts against when used against both gram positive and gram negative bacterial organisms tested as seen with the standard drug Ampiclox^R, however, a concentration dependent growth inhibitory activity of the ethyl acetate fraction extract was observed on some of the test organisms such as S. aureus and S. typhi which showed more susceptibility at a concentration of 100-200mg ml⁻¹, while there was resistance at 50mg ml⁻¹. However, C. pyogene, B. subtilis, K. pneumoneae, P. aeroginosa and P. mirabilis equally showed concentration dependent susceptibility to ethyl acetate soluble fraction extract, with all their growth inhibited at higher concentration of 200mg mL⁻¹, moderately at 150mgml⁻¹ and 100 mg ml⁻¹ and less at 50mg ml⁻¹. Resistance to ethyl acetate fraction extract was observed with S. faecalis, E. coli and E. aeroginosa. Ampiclox^R, the standard antibacterial agent used as positive control in this study, inhibited all the test organisms at 25mg ml⁻¹. Zones of inhibition produced by this agent were greater than that of the ethyl acetate organic soluble fraction in this study. (Table 2). The mean inhibitory concentration (MIC) of ethyl acetate soluble fraction from G. lucidum crude methanol extract for five (5) micro organism tested is presented in Table 3, C. pyogene, B. subtilis

and *K. pneumoneae* were the most sensitive, showing susceptibility at lower concentrations of 12.5mg ml⁻¹, followed by *P. aeroginosa* and *P. mirabilis*. Subculture of the test tube contents above the MIC showed bacterial growth (Table 4) and provided results of mean bactericidal concentration (MBC). The result showed that ethyl acetate soluble fraction has more bactericidal activity against *K. pneumoneae* at a concentration as low as 12.5mg mL⁻¹. *C. pyogene and B. subtilis* showed growth at concentrations of 12.5mg mL⁻¹, while P. aeroginosa and P. mirabilis showed growth at 25mg ml⁻¹.

DISCUSSION

The present study strengthens reports of antibacterial properties of Ganoderma lucidum by Wasser and Weis (1997), Stamets (2000) and Gao, et al., (2003). This also agrees with the claims of folkloric beliefs and herbal practices for the use of extracts of this mushroom to treat bronchitis and other unspecified bacterial organisms infection (HealthyGanoderma.com, 2011), by acting on both gram positive and gram negative bacteria, the ethyl acetate fraction have depicted broad spectrum of activity with better antibacterial activity than methanol and N-butanol extracts. However, contrary to findings by Wang and Ng (2006), ethyl acetate fraction in this in vitro study showed no activity against E. coli, equally showing resistance are S. faecalis and E. aeroginosa, all other tested organism showed a concentration dependent susceptibility to the ethyl acetate fraction. Thus diseases that these organisms are implicated in, can be managed with this extract. This stresses the importance of subjecting herbal preparations to fractionation for better biological activity. (McLaughlin, 1991) The antibacterial activity of this extract may be attributed to the presence of polysaccharides that are reported to bind to leucocytes surfaces or serum specific proteins leading to activation of macrophages, T-helper, Natural killer (NK), and other effector cells (Mueller et al., 2000). However, carbohydrates can facilitate the growth of bacterial organism, therefore, can antagonize the antibacterial activity of the active principles. This can explain the reason for resistance of some of the tested bacterial organisms with ethyl acetate fraction, and complete resistance to other extract fractions in this study. Besides, Flavonoids, Tanins, Terpenoids and Saponins also found in this study, are reported to possess antibacterial activities (Narayana et al., 2001, Cushnie and Lamb, 2005; Ray-Sahelian, 2005). In addition, Saponins are also reported to have cytotoxic effect with surfactant properties on cell membrane (Ray-Sahelian, 2005), this can assist in destruction of invading micro organisms. The in vitro susceptibility of gastrointestinal microbes such as S. typhi, K. pneumoneae, P. aeroginosa and P. mirabilis to this extract further indicates the antidiarroeal property of the extract from this mushroom In conclusion, this study has shown that the ethyl acetate soluble fraction of Ganoderma lucidum have broad spectrum antibacterial activity against a variety of gram positive and gram negative bacteria, thus stressing the importance of exploiting its use in the management of diseases in which these organisms are implicated.

Acknowledgement

We wish to acknowledge the efforts of Dr. Abdul-Dahiru El-Yuguda of the Department of Veterinary Microbiology and Parasitology for his technical support, and to appreciate the Laboratory assistance of Mal. Isa Gulani of Veterinary Medicine Laboratory, and Mr. Fine Akawu of the Physical and organic Chemistry Laboratory, all at the University of Maiduguri, Nigeria.

REFERENCE

- Ahmad, I., Mahmood, Z and Mohammad, F. 1998. Screening of some Indian medicinal plant for their antibacterial properties. Journal of Ethnopharmacology, 62" 152-193.
- Andreij, J., Anita, T.S., Jiahua, J., Sliva, D. 2011. Ganodermanontriol, a lanosternoid triterpene from *Ganoderma lucidum* suppresses growth of colon cancer cells through B-catenin signaling. International Journal of oncology. 761-767.
- Anita, T., Jiahua, J., Amber, H and Sliva, D. 2006, Inhibition of oxidative stress-induced invasiveness of cancer cells by *Ganoderma Lucidum* is mediated through the suppression of interleukin-8 secretion. International Journal of Molecular Medicine, 18: 657-664.
- Anita, T., Jiashi Z and Sliva, D. 2007. Combined effect of green tea and *Ganoderma lucidum* on invasive behavior of breast cancer cells. International Journal of Oncology, 30: 963-969.
- Berger, A., Rein, D., Kratky, E., Monnard, J., Hajjaj, H., Meirim, I., Piquet-Weisch, C, Hauser, J., Mace, k and Niederberger, P. 2011. Cholesterol lowering properties of *Ganoderma lucidum in vitro, ex vivo* and in hamsters and Minipigs, Research, Lipids in Health and Diseases, 3(2): 1-10.
- Clark, A.M. 1996. Natural products as sources for new drugs, Pharmacology Research, 13: 1133- 1141.
- Cordell, G.A. 2000. Biodiversity and drug discovery: a symbiotic relationship, Phytochemistry, 55: 463- 480.
- Cushnie, T.P.T and Lamb, A. J. 2011. "Recent advances in understanding the antimicrobial properties of Flavonoids," International Journal of Antimicrobial agents, 38(2): 99-107.
- Cushnie, T.P.T and Lamb A.J. 2005. "Antibacterial activity of Flavonoids", International Journal of Antimicrobial agents, 26(5): 343-356.
- El-Mekkawy, S., Meselhy, M.R., Nakamura, N., Tezuka, Y., Hatton, M., Kakiuchi, N, Shimotohno, K., Kawahata, J and Otake, T. 1998. Anti HIV-1 and anti HIV-1-Protease substance from *Ganoderma lucidum*, Phytochemistry, 49(6): 1651-1657.
- Farnsworth, N.R and Morries, R.W. 1976. Higher plants, the sleeping giants of drug
- development, American Journal of Pharmacology, 148: 46-52.
- Gao, Y. Zhou, S., Huang, M., Xu, A. 2003. Antibacterial and antiviral value of the genus *Ganoderma P. karst* species. (Aphyllophoromycetideae): A Review. International Journal for Medicinal Mushrooms, 5(3): 235-246.
- Gao, Y., Lan, J., Dai, X., Ye, J., Zhou, S. 2004. A phase I/II study of Lingzhi mushroom, *Ganoderma lucidum* (W. Curt: Fr) Lloyd (Aphyllophoromycetideae) extract in patients with type II diabetes mellitus. International journal of Medicinal Mushroom, 6(1): 245 - 257.
- Geidam, Y.A., Ambali, A G and Onyeyili P.A. 2007. Phytochemical screening and antibacterial properties of organic solvent fractions of *psidium guajava* aqueous

leaf extract International Journal of Pharmacology. 3(1): 68-73.

- Greenwood, D. 1989. Chemotherapy. Greenwood D. (Ed). Oxford University Press, New York. 91-100.
- Harbone, J.R.1976. Phytochemical methods, A guide to modern technique of plant analysis, Charpan and Hall, London, 78.
- HealthyGanoderma.com 2011. Ganoderma health care system, 1-4.
- Iwu, M.W., Duncan, A.R., Okunji, C.O. 1999. New antimicrobial of plant origin in Jannick, J, (ed). Perspectives on new crops and new uses, ASHS press, Alexandria, VA, 457-462.
- Jigna, P and Chanda, S. 2007. In vitro antibacterial activity of the crude methanolic extract o *Woofordia fruticosa kurz*. Flower (lythraceae). Brazilian Journal of Microbiology, 38: 204-207
- Kim, B.K., Kim, R.S., Kim, H.W.2011. Effects of Ganoderma lucidum on human leucocytes, Reishi 97d-2.1-3. www.cannited.com/reishi97d-2.htm
- McKenna, J.J., Jones, K., Hughes, K. 2002. Reishi Botanical Medicines, The desk reference for major herbal supplements, 2nd Ed, the Haworth herbal press: New York, Oxford London, 825-855.
- McLaughlin, J.L. 1991. Crown gall tumors on potatoe disc and brine shrimps lethality: Two Simple bioassays for higher plant screening and fractionation. In: assays for bioactivity. Hostettman (Ed). Academic press London, 1-32.
- Motobashi, N., Wakabayashi, H., Kurihara, T., Fukushima, H., Yamada, T., Kawase, M and Sohara, Y. 2004. Biological activity of Barbados cherry (Acerola fruits, fruits of *malpighia emarginata* DC) extracts and fractions, Phytotherapy Research.18: 212-223.
- Moradali, M.F., Mostafavi, H., Hajaroude, G.A., Tehrani, A.S., Abbasi, M and Ghods, S. 2006. Investigations of potential antibacterial properties of methanolic extracts from the fungus *Ganoderma applanatum*, Chemotherapy, 52 (5): 241-244.
- Mueller, A., Raptis, J., Rice, P.J., Kalbfleisch, J.H., Stout, R.D., Ensley, H.E., Browder, .W and Williams, D.J. 2000. The influence of glucan polymer structure and solution conformation on binding to (1,3)-beta-D-glucan receptors in a human monocyte like cell line. Glycobiology, 10:339-346
- Narayana, K.R., Reddy, M.S., Chaluvadi, M.R and Krishna, D.R. 2001. Bioflavonoids classification pharmacology, biochemical effects and therapeutic potentials, Indian Journal of Pharmacology, 33:2-16.
- National Committee of Clinical Laboratory Standards, 1993. Performance standards for antimicrobial disc susceptibility test. Approved standards, NCCLS Document M2-A5 (ISBN 1-56238-377-9), NCCLS 940 West Valley Road, Suite 1400, Wayne, Pennsylvania, 19087, USA.

- Powell, M. 2006. The use of *Ganoderma lucidum* in the management of histamine-mediated allergic responses. Townsend letters for Doctors and patients. Health publications, 1-2.
- Prakash, S.K.2006. Effects of herbal extracts towards microcidal activity against pathogenic *Escherichia coli* in Poultry. International Journal of Poultry Science, 5: 259-261.
- Ray-Sahelian M.D. 2005. Isolation of new saponins and cytotoxic effects of saponins from the roots of Platycodon grandiflorum, on human tumor cell line. Planta Medica, 241-248.
- Reddy, L.J. and Jose, B. 2010. Evaluation of antibacterial activity of the bark, flower and leaf extracts of *Gliricidia sepium* from South India, International Journal of Current Pharmaceutical Research, 2(3): 18-20.
- Stamets, P. 2000. Growing gourmets and medicinal mushroom, 3rd Eds, Ten speed press. CA, USA.234-236
- Stavinoha, W.P. 2011. Status of Ganoderma lucidum in United States: Ganoderma lucidum a an anti inflammatory agent. University of Texas Health Science Center, San Antonio USA. www.canited.com/reishi97d-5.htm.
- Suay, J., Arenal, F., Asencio, F.J., Basilio, A., Cabelio, M.A., Diez, M.T., Garcia, J.B., del-Val, A.J., Corrochategui, J., Hernandez, P., Palaez, P and Vicente, M.F. 2000. Screening of *Basidiomycetes* for antibacterial activities. Antonie vanleu-wenhoek, 78: 129-139.
- Trease, G.E and Evans, W.C.1997. A textbook for pharmacognosy, 14th Eds. Saunders, W.B (Ed), London. 13-53.
- Wasser, S.P and Weis, A.L.1997. Medicinal mushrooms, Ganoderma lucidum. (Curtis:fr), P.Karst. Novo E., Paledfuls publication house Haifa, Israel. 139.
- Wang, H and Ng, T.B. 2006. "Ganodermin, an antifungal protein from the fruiting body of the
- medicinal mushroom, *Ganoderma lucidu*,. Peptides, 27(1): 27-30
- World Health Organization, 1993. Summary of WHO guidelines for assessment of herbal medicine Herbal gram, 28: 13-14.
- World Health Organization, 2000. General guidelines for methodologies on research and evaluation of traditional medicine, WHO/EDM/TRM/2001.1. 1-70.
- Yoon, S.Y., Eo, S.K., Kim, Y.S., Lee, C.K and Han, S.S. 1994. Antimicrobial activity of *Ganoderma lucidum* extract alone and in combination with some antibiotics. Arch. Pharm. Res. 17: 438-442.
- Yang, H.S., Chen, D.G., White, S., Zhao, P., McDermott, R., Walker, R and Meng, J. 2004. Characterization of multiple-antimicrobial-resistant Escherichia coli isolates diseased chickens and swine in China. Journal of Clinical Microbiology, 42:3683-3489.
