

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 06, pp.52630-52635, June, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

ROLE OF CBCT IN HALLER CELLS IDENTIFICATION AND ITS CLINICAL SIGNIFICANCE

*Pallavi Kamdi, Vijayalakshmi Nimma, Amit Ramchandani, Easwaran Ramaswami, Ajas Gogri and Hemant Umarji

Department of Oral Medicine and Radiology, GDC Mumbai, India

ARTICLE INFO	ABSTRACT
Article History: Received 13 th March, 2017 Received in revised form 19 th April, 2017 Accepted 21 st May, 2017 Published online 30 th June, 2017	Introduction: Haller cells are also known as infraorbital ethmoidal cells. These are the anterior extentions of ethmoid sinuses, located in median orbital floor. Haller cells are implicated as cause of sinusitis symptoms or orofacial pain. They may become infected and can spread infection to the orbit, also can complicate endoscopic sinus surgery. Their identification on conventional radiographic examination is limited, further necessitating need for advanced imaging like CBCT. Aims and Objectives: The purpose of this study was to demonstrate prevalence of Haller cells as
<i>Key words:</i> CBCT, Haller cells, Maxillary Sinusitis, Orbital Floor Dehiscence.	 visualized in CBCT images and to evaluate correlation between Haller cells with ipsilateral maxillary sinusitis and ipsilateral orbital floor dehiscence. Material and Method: A retrospective study was planned in which 200 CBCT scans were analyzed by two observers independently. Haller cells were identified by using diagnostic criteria used by Mathew <i>et al</i> in his study. The data obtained were tabulated and analyzed by using SPSS software. Result: Out of 200 CBCT scans, 99 showed presence of Haller cells. There was statistically significant association between the existence of Haller cells and ipsilateral maxillary sinusitis (20.93%) as well as ipsilateral orbital floor dehiscence (53.48%). Conclusion: CBCT is a fascinating imaging modality that has enhanced the scope of oral and maxillofacial radiologist and the advantage is that diagnosis of pathologies which have Haller cells as implicated etiological role is become easier. Our study has evaluated and established the relationship of existence of Haller cells its size and shape with ipsilateral maxillary sinusitis and orbital floor dehiscence by using advanced imaging technique CBCT.

Copyright©2017, Pallavi Kamdi et al., This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Pallavi Kamdi, Vijayalakshmi Nimma, Amit Ramchandani, Easwaran Ramaswami, Ajas Gogri and Hemant Umarji, 2017. "Role of CBCT in Haller cells identification and its clinical significance", *International Journal of Current Research*, 9, (06), 52630-52635.

INTRODUCTION

Haller's cells are named after anatomist Albert Von Haller, who in 1765 had first identified this ethmoidal pneumatization of orbital floor (Von Haller, 1803; Ahmed et al., 2006). Haller cells are anatomical variation of paranasal sinuses (Ahmed et al., 2006; Basic et al., 1999). They are located medial to the infra-orbital canal and lateral to the nasolacrimal duct (Fig.1). They are considered as the anterior extentions of ethmoidal sinuses in to the orbital floor or superior aspect of maxillary sinus, therefore also named as orbito-ethmoidal cells or maxillo-ethmoidal cell (Ahmed et al., 2006; Yanagisawa et al., 2001). However, the name infraorbital ethmoidal cell is more recommended as it explains location and origin of structure which gained fame as Haller cells. Haller cells have been implicated in diseases of maxillary sinus, orbital floor dehiscence, orofacial pain and others. Detailed description of these significances and contributing authors are presented here (Table 1).

Haller cells can be visualized using conventional radiographic techniques like orthopantamogram and specialized techniques which include computed tomography, endoscopy and cone beam computed tomography. Orthopantamogram gives only two dimentional information about Haller cells. Endoscopy alone cannot diagnose Haller's cells because they are present lateral to the uncinate process. There are chances that Haller's cells may be missed on coronal CT, depending on the window settings and/or section thickness used, especially when they are small and thin walled (Bolger et al., 1991). Haller cells can be visualized in CBCT as it provides section as thin as 1.5mm, moreover it also has advantages of low radiation dose, more comfortable to the patient and also cost effective. Since Haller cells have profound clinical significance we studied them on CBCT as they are best visualized on CBCT. To the best of our knowledge, this is the first study that uses CBCT for the evaluation of Haller cells in Indian population. The basic aim of the study was to find out prevalence of Haller cells according to age, sex and gender as visualized on CBCT amongst the study population. Objective of study was to evaluate relationship between,

Author/year	Clinical significance of haller cells
Bolger at el, 1991	Considered Haller cells as one of the predisposing factor for orofacial pain and headache.
Earwaker at el, 1993	Haller cells can be a cause of mucocele.
Sebrechts et al, 2000	Haller cells inflammation can be a potential reason of orbital unilateral edema.
Dale et al, 2004	When larger in size Haller cells can cause compression of infundibulum of maxillary sinus which further lead to
	the blockage of mucociliary flow thereby causing stagnation of fluid ,which provide favorable environment for of
	bacterial growth which predispose to the maxillary sinusitis (Fig.2).
Alkire and Bhattacharyya, 2010	Evaluated the effects of septum deviation, choncha bullosa and Haller's cells on the occurrence of acute rhinosinusitis, and their results showed that just obstruction caused by Haller's cells can lead to the disease.
Shishir Ram Swamy, 2015	Haller cells restrict accessibility to the maxillary sinus or the anterior ethmoidal cells during the endonasal procedure, and can lead to the intraoperative complications like inadvertent perforations of orbital floor. Therefore, their identification prior to surgery is very important.
Dibangshu ghosh, 2015	Haller cells causes thinning of orbital floor (Fig.2), thus when get infected may lead to further spread of infection to the orbit.

Table 1. Description of clinical significances of Haller cells

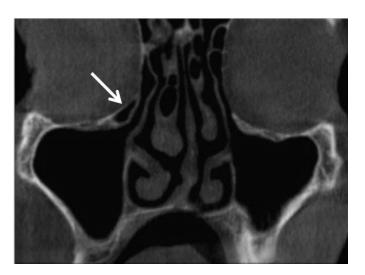


Fig. 1. Coronal cone beam CT at Paranasal sinus level shows radiolucent, well corticated Haller cell on left side (arrow)

- Presence of Haller cells with ipsilateral maxillary sinus disease.
- Presence of Haller cells with ipsilateral orbital floor dehiscence amongst study population.

MATERIALS AND METHODS

This was a retrospective study in which 200 CBCT scans were evaluated. All CBCT scans were acquired with Planmeca promax 3D Mid machine in department of oral medicine and maxillofacial radiology. The evaluation of images were done by using Romexis 3.1 software, in coronal section, keeping Slice thickness of 0.4 mm, by two different observers at time interval of one month. Images requested for various dentomaxillofacial indications, including dental implants, orthodontic and temporomandibular joint evaluation were screened and scans showing complete maxilla extending from maxillary alveolus to the orbit (90mm maxilla and full face scans) were included in the study. Scans showing any intrinsic or extrinsic sinus pathology (tumor, cyst), abnormality due to trauma, scans distorted due to artifact, scans of patients younger than 16yrs of age were excluded, as according to Gray's anatomy, sinonasal cavity does not reach its full development until adolescence (Gray, 1989). The study was approved by the ethical committee of institute. Specially designed proforma with details of age of patient mentioning the Haller cells presence, size, shape and pathologies of maxillary sinus and orbital floor dehiscence recorded independently by two observers.

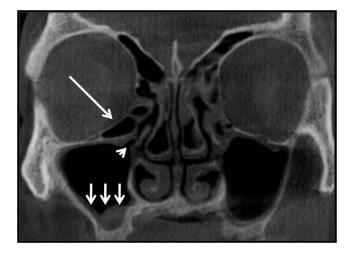


Fig. 2. Coronal cone beam CT shows, Haller cell causing thinning of bone of orbital floor (long arrow), compression of infundibulum of left maxillary sinus (arrow head), thickened mucosa of left maxillary sinus (short arrow)

Criteria of recognition

Haller cells can be recognized by the criteria given by Mathew et al. (2013), as air filled cavities located medially on orbital floor and/or lamina papyracea, inferior to the bulla ethmoidalis (large ethmoidal cell) (Fig.1). Haller cells are surrounded by the ethmoidal capsule which distinguishes them from infraorbital recess of maxillary sinus (Mathew et al., 2013). Haller cells can be of any sizes and shape such as oval, round, triangular, pear or irregular (Fig.3a,b,c). They can be single or multiple in number and can be present unilaterally or bilaterally (Fig.3d). While measuring the size of Haller cells, maximum mediolateral dimension was measured. According to measurement Haller cells were categorized as small size < 2mm, medium size = 2mm-4mm, large size > 4mm (Fig.4). Maxillary sinusitis was recognized as radiographic evidence of thickening of sinus mucosa and/or fluid accumulation at any level (Fig.5). The finding of mucous retention cyst was not considered as a sinus disease. Orbital floor dehiscence is considered as loss of bone density of orbital bone in areas where Haller cell were present (Fig.6). The areas with very thin bony wall were also accepted as a dehiscence (Mathew et al., 2013) (Fig.2). Two observers were recruited for evaluation of the scans independently. Data obtained was subjected to statistical analysis, the x^2 test was used to evaluate the association of Haller cells with ipsilateral maxillary sinusitis and ipsilateral orbital floor dehiscence, using SPSS software. Kohen-kappa test was used to calculate inter-obeserver agreement. P<0.05 was considered to be statistically significant.

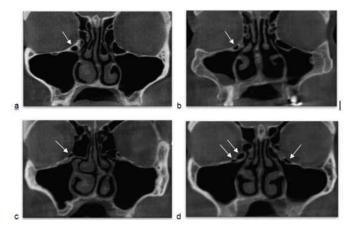


Fig. 3. Coronal cone beam CT shows different shapes of Haller cells, a. round, b. oval, c. triangular, d. multiple and bilateral Haller cells

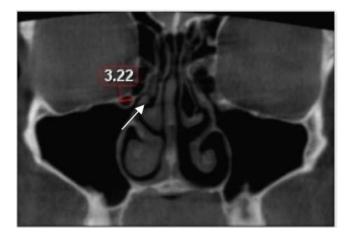


Fig. 4. Coronal cone beam CT shows, measurement of Haller cells (arrow)

RESULTS

In 200 CBCT scans of patients, 138(69%) were male and 62(31%) were female. youngest patient was 16yr and oldest patient was 73yrs old (mean age 32 yrs). Haller cells were recognized in 99 (49.5%) cases, 73(52.89%) in male and 26(49.93%) in female. No significant statistical correlation was observed between occurrence of Haller cells and gender (p-value>0.05). Prevalence of Haller cells was found more in younger patients specifically in age group of 16yr-25yr (Table 2).

Table 2. Distribution of Haller cells in different age group

Age group	Percentage of occurrence
16YRS-25YRS	39(30.23%)
26YRS-25YRS	29(22.48%)
36YRS-45YRS	16(12.40%)
46YRS-55YRS	4(3.10%)
56YRS-65YRS	6(4.65%)
66YRS-75YRS	5(3.87%)

Table 3. Distribution of Haller cells according to shape

Shape of haller cells	Percentage of occurrence
Oval	70(51.85%)
Round	52(38.51%)
Pear	6(4.44%)
Triangular	5(3.70%)
Irregular	2(1.48%)

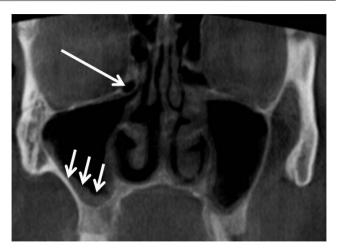


Fig. 5. Coronal cone beam CT shows, Haller cell (long arrow), mucosal thickening of right maxillary sinus (short arrow).



Fig. 6. Coronal cone beam CT shows, Haller cells causing orbital floor dehiscence (arrow)

Out of total 400 sites Haller cells were present at 129 sites. Haller cells were found to be unilateral in 69 and bilateral in 30 cases, commonly seen on right side 69(30.23%), left side 60(23.25%). There was no significant statistical association between occurrence of Haller cells and their site of occurrence (p-value>0.05). Haller cells were found in different shapes (Table 3) and sizes (Table 4).

Table 4. Distribution of Haller cells according to size

Size of haller cells	Percentage of occurrence
Small (<2mm)	27(20%)
Medium (2mm-4mm)	86(63.70%)
Large (>4mm)	22(16.29%)

Oval shaped and medium sized Haller cells were seen more commonly in our study population. Haller cells concurring with ipsilateral maxillary sinusitis were encountered in 27 (20.93%) cases (13 on the right side, 14 on the left side). Maxillary sinusitis was more observed in medium and large size Haller cells. Significant statistical association between presence of Haller cells and ipsillateral maxillary sinusitis observed (pvalue<0.05) (Table 5). Concomitant presence of orbital floor dehiscence with Haller cells was encountered in 69 cases (34 on right side and 35 on left side). x^2 test showed significant association between presence of Haller cells and ipsilateral orbital floor dehiscence with p-value <0.05 (Table 6). Kohen kappa shows almost perfect agreement between two observers (Table 8).

Table 5. Association between Haller cells and ipsilateral maxillary sinusitis

	Maxillary sinusitis present	Maxillary sinisitis absent	Total sites	X ² statistic	P value	Interpritation
Haller cells present	27	102	129			
Haller cells absent	22	249	271			
Total sites	49	351	400	13.3463	0.0002	Significant

Table 6. Association between Haller cells and ipsilateral orbital floor dehiscence

	Orbital floor dehiscence present	Orbital floor dehiscence absent	Total sites	X ² statistic	P value	Interpritation
Haller cell present	69	60	129			
Haller cell absent	00	271	271			
Total sites	69	331	400	131.146	< 0.0001	Significant

Table 7. Incidental findings associated with Haller cells observed during analysis of CBCT scans of patients.

Incidental findings	Right	Left	Both	Total (out of 200)	In concurrence with haller cells (out of 129)
Concha bullosa	17	22	27	66(33%)	34 (26.3%)
Deviated nasal septum	12	21	-	33(16.5%)	11 (8.5%)
Hyperplasia of inferior terbinate	10	14	1	25(12.5%)	11 (8.5%)
Maxillary sinus septa	8	5	9	22(11%)	7 (5.4%)

Table 8. Value of kappa and inter-observer variability

	Value of k	Interpretation
Presence of haller cells	0.84	Almost perfect agreement
Presence of maxillary sinusitis	0.91	Almost perfect agreement
Presence of orbital floor dehiscence	0.80	Almost perfect agreement

Table 9. Previous researches on prevalence of Haller cell using different imaging modalities and variable sample size

Research	Year	Imaging modality	Sample size	Prevalence(%)
Valizadeh et al	2010	Opg	310	37
Azila a <i>et al</i>	2011	Hret	120	62
Raina et al	2012	Opg	96	16
R mathewa et al	2013	Cbct	50	60
Khayam et al	2013	Opg	200	32.5
Solanki et al	2014	Opg	1000	19.2
a l – rabri	2014	Ct	435	24
Pekinar et al	2014	Cbct	150	43.3
Khojastepour et al	2014	Cbct	281	68
Ramaswamy et al	2015	Digital opg	400	20.75

DISCUSSION

Previous literature showed a wide range of variability in the prevalence of Haller cells, ranging from 2.7% to 45.1% (Mathew et al., 2013). Variability in prevalence may be due to 1) use of different imaging modality, sample size, patient age group and race, subjective judgment regarding the presence and absence of Haller cells. 2) Changeability in definition of Haller cells. Kenned and Zinreich (Kennedy and Zinreich, 1988) recognized Haller cells as ethmoid cells projecting below the ethmoid bulla within the orbital floor in region of opening of the maxillary sinus. Kainz et al., 1993 defined Haller cells as cells within orbital floor. Bolger et al., 1991 considered Haller cells as any cell located between the ethmoid bulla, the orbital lamina of the ethmoid bone and the orbital bone and the orbital floor. Methew et al., 1988 recognized Haller cells as air cells, of any size, located along the medial portion of the orbital floor and/or the lamina papyracea inferior to the bulla ethmoidalis, and continuity with the ethmoid capsule. We used this criteria for idenifiction of Haller cells as it is the most recent research finding. Prevalence of Haller cells in our study was found 49.5% which is relatively high. This could be explained on basis of the imaging modality used in the investigation, CBCT is volumetric imaging technique, so it can capture any Haller cell present, irrespective of their size.

In this study many Haller cells that was identified were less than 1.5mm in size, such small sized Haller cells could easily be missed in interslice intervals in multislice CT scans. This shows sensitivity of CBCT in the detection of small delicate bony structure. We can say that prevalence of Haller cells was more when advanced imaging technology (eg. CBCT) was used (Table 9). In this study we analyzed variation of Haller cells on CBCT with respect to age, gender, site, number, shape and size which were sparsely reported in past. Prevalence of Haller cells amongst younger generation is found more in our study, this finding is consistent with the finding of Raina et al., 2000; Kantarci et al., 2004. This could also be because we had maximum patients in the age group below 25 years and meager numbers of elderly patients for the study. More valid information could be obtained if haller cells studied and compared in different age groups. Significant association noted between prevalence of Haller cells in male and female which is similar with the finding of Raina et al., 2000; Basic et al., 1999. In our study we found Haller cells occurring predominantly unilaterally and on right side, this finding is consistent with finding of Ahemad et al., 2006 and Raina et al., 2012 but Khayam et al and Methew et al., 2013 found Haller cells more bilaterally which is contradictory to our finding. Oval and round shaped Haller cells were common in our study, Raina et al., 2012 also showed same result in his study.

Medium sized Haller cells reported maximum during our study, where as Mathew et al., 2013 reported more of large sized Haller cells in his study. It is seen in our study that significant association exists between presence of Haller cells and ipsilateral maxillary sinusitis, which is contradictory with results of Mathew et al., 2013. However, there are other authors who found Haller cells as one of the etiologic factor in maxillary sinusitis certainly when the cells are large enough to cause ample of narrowing of maxillary infundibulum (Sebrechts et al., 2000). This finding supports the theory of obstruction causing maxillary sinusitis. Equal prevalence of Haller's cells in cases with and without Sinus disease was noted in the studies of Bolger et al., 1991 and Earwaker (Earwaker, 1993) and; whereas Milczuk et al., 1993 reported Haller's cells associated with ipsilateral sinus disease in 66.7% of his patients. The limitation of our analysis is that maxillary sinusitis could have been overrated since infectious sinusitis cannot be differentiated radioghraphicaly from allergic sinusitis (Mathew et al., 2013). We found significant association between presence of Haller cells and ipsilateral orbital floor dehiscence. Dehiscent orbital floor could make orbit vulnerable in cases of Haller cell disease and also during surgical instrumentation of ostiomeatal complex. Subrechts et al., 2000 reported three cases of unilateral orbital cellulitis, resulting from isolated inflammation of Haller cells. Management of these cases required endoscopic incision and drainage of infected Haller cells. As there is no lymphatic system in orbit, they therefore assumed that infection is spreading through a dehiscence in orbital floor, lamina papyracea or sutures in the medial orbital floor (Mathew et al., 2013). Thus they considered the pathology of Haller cells as potential cause of unilateral orbital cellulites. In the cases of Haller cell inflammation, due to hypertrophic mucosa it is difficult to recognize existent dehiscence of orbital floor. Hence in cases of inflamed Haller cells orbital floor dehiscence should always be considered unless otherwise proven (Kennedy and Zinreich, 1988). Other observations recorded during examination of scans include concha bullosa, deviated nasal septum, hyperplasia of inferior turbinate, maxillary sinus septa associated with Haller cells (Table 7). These findings are not reported previously and needs further research for establishing the association with Haller cells.

Conclusion

Present study showed quite high prevalence of Haller cells and significant association between presence of Haller cells with ipsilateral maxillary sinusitis and ipsilateral orbital floor dehiscence. Haller cells have clinical significant aspects and our study has established this correlation using advance imaging technique CBCT, which play a key role in oral and maxillofacial radiology. CBCT allows more precise evaluation of bony anatomy with other advantages such as low patient radiation dose, low cost and less cumbersome to the patient.

In future CBCT analysis of patients with definite signs and symptoms of maxillary sinusitis may strongly suggested to further investigate the association between size of Haller cells and maxillary or ethmoidal sinusitis. Thus all oral and maxillofacial radiologist should scrutinize the scan more carefully to detect or rule out other coexisting pathology when Haller cells are observed.

REFERENCES

Ahmed, M., Khurana, N., Jaberi, J., Sampair, C., Kuba, K.R. 2006. Prevalence of infraorbital ethmoid (Haller's) cells on

panoramic radiographs. Oral Surgery Oral Medicine Oral *Pathology Oral Radiology and Endodontology*, 101(1): 658–61.

- Al-Abri, R., Bhargava, D., Al-Bassam, W., Al-Badaai, Y., Sawhney, S. 2014. Clinically Significant Anatomical Variants of the Paranasal Sinuses. *Oman Medical Journal*, 29(2):110-113.
- Alkire, B.C., Bhattacharyya, N. 2010. An assessment of sinonasal anatomic variants potentially associated with recurrent acute rhinosinusitis. *Laryngoscope*, 120(3):631-4.
- Basic, N., Basic, V., Jukic, T., Basic, M., Jelic, M., Hat, J. 1999. Computed tomographic imaging to determine the frequency of anatomical variations in pneumatization of the ethmoid bone. *Eur Arch Otorhinolaryngol.*, 256: 69–71.
- Bolger, W.E., Butzin, C.A., Parsons, D.S. 1991. Paranasal sinus bony anatomic variations and mucosal abnormalities: CT analysis for endoscopic sinus surgery. *Laryngoscope*, 101:56-64.
- Debangshu, G., Dilip, B., Subodh, G., Sumit, B. 2015. Lateral Rhinotomy For a Large Infected Hallers Cell Causing Proptosis. *Philippine Journal Of Otolaryngology- Head and Neck Surgery*, Vol.30NO.1. January-June.
- Earwaker, J. 1993. Anatomicvariants in sinonasal CT. Radiograph- ics, 13:381-415.
- Endoscopic paranasal sinus surgery. Dale H. Rice, Steven D. Schaefer; with illustrations by Lewis E. Calver, Scott Thorn Barrows, Eli Ensor. Philadelphia: Lippincott Williams & Wilkins, c2004.
- Gray, H. 1989. Gray's anatomy.37th edn. Edinburgh, Scotland: Churchill Livingstone, pp 376–377.
- Kainz, J., Braun, H., Genser, P. 1993. Haller's cells: morphologic evaluation and clinico-surgical relevance. *Laryngorhinootologie*, 72: 599–604.
- Kantarci, M., Karasen, R.M., Alper, F., Onbas, O., Okur, A., Karaman, A. 2004. Remarkable anatomic variations in paranasal sinus region and their clinical importance. *Eur J Radiol.*, 50: 296–302.
- Kennedy, D.W., Zinreich, S.J. 1988. The functional endoscopic approach to inflammatory sinus disease: current perspective and technique modifications. *Am J Rhinol.*, 2: 89-96
- Khojastepour, L., Mirhadi, S., Mesbahi, S. A. 2015. Anatomical Variations of Ostiomeatal Complex in CBCT of Patients Seeking Rhinoplasty J Dent Shiraz Univ Med Sci., March., 16(1): 42-48.
- Lang, J. 1989. Clinical anatomy of nose, nasal cavity and paranasal sinuses: a basis for diagnosis and surgery. New York, NY: Thieme.
- Luxenberger, W., Anderhuber, W., Stammberger, H. 1999. Mucocele in an orbitoethmoidal (Haller's) cell (accidentally combined with acute contralateral dacryocystitis). *Rhinology.*, 37:37-9.
- Mathew, R., Omani, G., Hand, A., Fellows, D., Lurie, A. 2013. Cone beam CT analysis of Haller Cells: Prevalence and clinical significance *Dentomaxillofac Radiol.*, 42:20130055.
- Milczuk, H.A., Dalley, R.W., Wessbacher, F.W., Richardson, M.A. 1993. Nasal and paranasal sinus anomalies in children with chronic sinusitis. *Laryngoscope.*, 103:247-52.
- Pekiner, F.N., Borahan, M.O., Dumlu, A., Ozbyrak S. 2014. Infraorbital ethmoid (Haller) cells: a cone beam Computed tomographic study. *Oral Radiol.*, 30; 219-225.

- Raina, A., Guledged, M.V., Patil, K. 2012. Infraorbital ethmoid (Haller's) cells: a panoramic radiographic study. *Dentomaxillofac Radiol May*; 41(4):305-308. 2000; 54(1):39-43.
- Sebrechts, H., Vlaminck, S., Casselman, J. 2000. Orbital edema resulting from Haller cell pathology: 3 case reports and review of literature. *Acta Otorhinolaryngol Belg.*, 54: 39–43.
- Shetty, et al.: Haller' s cells, Balkan Military Medical Review 2015; 18(4):147-150
- Stammberger, H. 1991. Functional endoscopic sinus surgery: the Messerklinger technique. 1st ed. Philadelphia: B.C. Decker, 201-2.

Von Haller A. First Lines of Physiology. W. Cullen, Ed. Edinburgh: Obrabran, Penniman; pp. 223-225, 1803.

- Wanamaker, H.H. 1996. Role of Haller's cell in headache and sinus disease: a case report. Otolaryngol Head Neck Surg., 114: 324–327
- Yanagisawa, E., Marotta, J.C., Yanagisawa, K. 2001. Endoscopic view of a mucocele in an infraorbital ethmoid cell (Haller cell). *Ear Nose Throat J.*, 80: 364–368.
