

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 09, pp.57575-57577, September, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

QUESTION-ANSWERING SYSTEM USING NATURAL LANGUAGE PROCESSING WITH NLIDB APPROACH

Prof. Pooja Malhotra, *Yash Kapadia, Krishna Saboo and Ankita Sarda

K.J. Somaiya College of Engineering, Vidyavihar-77

ARTICLE INFO	ABSTRACT
Article History: Received 14 th June, 2017 Received in revised form 25 th July, 2017 Accepted 22 nd August, 2017 Published online 29 th September, 2017	With increasing information, lot amount of data is stored in relational databases in organized manner. Structured query language (SQL) is primarily used for extracting information from a relational database and allows us to manage and access process on database. But this is insufficient as not all users are accustomed to write SQL queries if the user question is in Natural language (NL). Hence there is a need to develop a system where non-sophisticated users can access data freely without going into technicality by asking question in Natural language. This paper focuses on creating semantic
<i>Key words:</i> Natural language processing (NLP), Natural language interface for database (NLIDB), SQL, Question-answering.	analyzer for automatic Question-answering system for domain specific database. It provides user with the relevant answers to the user questions using Natural Language processing (NLP) and Natural language interface for database (NLIDB). NLIDB are the systems that translate a natural language sentence into a database query. It contains the stepwise description on conversion of question to simple SQL query without using any clauses. It portrays completely automatic, reliable, fast way to query a database. Hence, Natural language processing techniques applied on English text is converted to SQL query using series of steps like lowercase conversion, tokenization, chunking, generation of SQL query and mapping the query to the database.

Copyright©2017, Prof. Pooja Malhotra et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Prof. Pooja Malhotra, Yash Kapadia, Krishna Saboo and Ankita Sarda, 2017. "Question-answering system using natural language processing with NLIDB approach", *International Journal of Current Research*, 9, (09), 57575-57577.

INTRODUCTION

Databases are one of the major sources of Information. With the increase in large chunks of data and need for easy and fast retrieval of data, information is stored in databases is relational model and then can be retrieved by querying the database using Structured Query Language (SQL). Hence SQL acts as hotspot for retrieval of information from database. But this is inconvenient for users with no knowledge of generation of these complex SOL queries. Artificial Intelligence (AI) and Linguistics can be combined to develop programs that can help to understand and produce information in a natural language. These information retrieval systems can be used in various educational and informational institutes, in companies to manage and retrieve information. NLIDB approach is used where the information seeker uses natural language for submitting the query and retrieve the results from databases, hence this save the user to master the database language/schemas formulate the queries. NLIDB uses various processes to transfer the raw English text to the database query. This query is then fired on database for efficient information retrieval. The process description used in the paper is as follows:

Thus NLIDBS are built to optimize the search results and produce information with more accuracy. The present research extends the existing work further by processing more complex queries along with ambiguity removal. Here, we will study how to preprocess the user question and the preprocessed question is passed to the lexical analyzer where the question is converted to the appropriate SQL query using production rules. And finally this generated query is mapped to the knowledge base for information retrieval.

System Implementation

Main components of a question-answering system are: lexical analyzer and NLP to SQL conversion. After the preprocessing of the user question which includes tokenizing, lower case conversion, escape word remover, removing ambiguous attributes, lexical analyzer does the further processing by generating various production rules which converts the user question to the relevant SQL query. Finally, it maps the generated SQL query to the relational Database. (Garima Singh and Arun Solanki, 2016)

^{*}*Corresponding author:* Yash Kapadia, K.J. Somaiya College of Engineering, Vidyavihar-77

Figure 2: System Implementation

Tabl	le 1	Escape	words	list
	-	Locupe		

A	An	The	Select		
find	which	whose	Is		
Of	A	With	То		
for	Are	And	What		

Example: List of all the students from IT department

Figure 3: Processing of User query

Table 2: Rules of attribute in relation Student

Rules	Rule Description			
Name	Attribute for relation 'student'			
Email id	Attribute for relation 'student'			
Date of birth	Attribute for relation 'student'			
Address	Attribute for relation 'student'			
Department	Attribute for relation 'student'			
Mobilenumber	Attribute for relation 'student'			

Table 3: Rules of attribute in relation Faculty

Rules	Rule Description
Name	Attribute for relation 'student'
Email id	Attribute for relation 'student'
Branch	Attribute for relation 'student'
Position	Attribute for relation 'student'

Example Input: List of all th

Input: List of all the students Production Rule:

```
list {operation="select";}
students | student {table_name="Student";}
all {attribute_name="*";}
names {attribute_name="Student.candidate_name";}
\n {}
. {}
```

Output: Select * from students

Results and final output

Output 1:

C

Output 2

Sentence		list all stud	list all students				
		list all students					
QL.		select * fro	m Student		_		
Message							×
	candidate	mobile no	email id	dob	address	denartment	
U	ABHLIEFT	9954210067	ARHIGSON	13/03/1995	BOIRAGIM	Information	
	RUCHITAA	7742557746	liwnisr432	01/12/1994	BASANT VI	Computers	
	JASKARAN	9919360684	cool jaskar	03/02/1997	PALIA KAL	EXTC	-
	AHIR SHU	9725856480	PRATIK AH	08/09/1995	VIJALPUR	Electronics	
	ROHAN PA	9426381258	ashok 515	05/01/1996	RAMNAGA	Information	
	JAGTAP S	9960146626	Jagtapsha	28/09/1995	VIDYANAG	Electronics	
	ANUPAMA	9018340916	anupama2	30/11/1995	jammu	Computers	
	KHARABE	9922092091	akkiekhara	05/09/1995	PUASD DI	Electronics	
	GIRDWAD	9527888220	tidkepatil@	10/06/1995	VASNTNAG	Information	
	PRANAY	9504303320	rohan.hi15	15/08/1995	Sail Towns	EXTC	
	K CHANDR	9666647965	kodetichan	23/01/1996	CHANDAN	Mechanical	
	KSHITIJ K	9792314816	mkesharw	11/01/1995	HANUMAN	Electronics	
	SUTHAR C	9909459696	cgcompug	21/06/1995	AT - PILVAI	Mechanical	
	RAJAT SHA	9418214940	prabhuram	06/12/1996	V.P.O SE	Information	
	AAKRITI SA	9829667779	shaillysaxe	29/04/1997	A-66, SHIV	Computers	
	KATADARE	9270265297	deepakkat	10/08/1995	CHIPLUN	EXTC	
	VIKASH KU	8948700309	youthbooks	05/07/1997	DEEGHA C	Computers	
	ANURAG K	8084540321	absreg90	11/05/1996	UDANTPU	Information	
	DEOKAR P	8975408040	sainetcafe	23/02/1995	VIDYA PRA	Electronics	
	BRIJESH Y	8601154005	santoshku	01/10/1996	GORAKHP	EXTC	
	GOPARAJ	9849513282	iitjee2013	14/05/1996	VELIVENN	EXTC	
	BHAGAT R	9766288373	durgaexpre	19/04/1994	GODHANI	Mechanical	
	PRAVEEN	9570905761	lalit.chirag5	01/01/1996	CHANDINA	Information	
	SUDHAKA	8795125848	ashutoshp	08/12/1995	LUXIMIPU	Mechanical	
	RAHUL KU	9431558591	RAAHUL12	22/02/1993	CO-OPERA.	EXTC	-

Lexical Analyzer

Lower case conversion: User input is converted to lower case irrespective of the input statement. Hence it marks all the text to lower case and helps in minimizing the number of production rule.

Tokenization: Process of breaking a stream of text into words, phrases, and other meaningful elements called as tokens. The generated statement with token is used as input to the further processing in production rules.

Escape word remover: The extra/stop words are removed which are not needed in the analysis of query. The following are the words selected from sentence and removed in escape word remover

Production Rules:

Conversion of user query to SQL

Production rules are primarily pre-described set of rules and behavior. The production is said to be triggered. Hence the executed production rule converts the user statement into SQL query and then is fired on database. (Garima Singh and Arun Solanki, 2016) Production rule consist of two parts i.e. a precondition (IF condition) and action (Then condition). Hence the rules specify the condition-action behavior of user query. (Sangeeth and Rejimoan, 2015)

Conclusion

Natural Language Processing can change the complete working of the computer programming interface. The proposed system

is designed to handle the challenges in Natural language processing and make it more robust and flexible for all kinds of queries respective to its domain. It uses semantic matching technique to translate the NL question to the relative SQL query. Various steps such as lower case conversion, tokenization and ambiguity remover are used to convert to SQL query which is mapped to the database to get the required information.

Goals and future work

Goal is to increase its accuracy and make it robust, hence allowing it to handle more difficult and challenging questions and increasing the scope of database. Further complex queries that can be considered are queries that make use of GROUP BY and HAVING clauses. The queries containing GROUP BY clause gather all the rows with some common specification and the HAVING clause allows to specify conditions that filter which group of results appear in the Final results. Following system can be added to our college website for easy searching and information retrieval and hence making it more handy.

REFERENCES

- An algorithm to transform natural language into SQL queries for relational databases by Garima Singh, Arun Solanki Department of Computer Science and Engineering, Gautam Buddha University, Greater Noida, India, 2016.
- An Intelligent system for information extraction from relational database using HMM by Sangeeth N. and Rejimoan R. 2015.
- Androutsopoulos, G.D. Ritchie, and P. Thanisch, "Natural Language Interfaces to Databases - An Introduction, Journal of Natural
- Conversion of natural language query to SQL by Prabhdeep Kaurl and Shruthi J2 1Student, 2Assistant Professor, Department of Computer Science & Engineering, BMS Institute of Technology, Bangalore, India
- Hendrix, G., Sacrdoti, E., Sagalowicz, D. and Slocum, J. 1978.
 "Developing a natural language interface to complexdata." ACM Transactions on Database Systems, Volume 3, No. 2, USA, Pages 105 – 147.
- http://www.cs.utexas.edu/users/m llnldata/geoquery.html.
- Language Engineering 1 Part 1" volume-I, pp 29-81, 1995.
- Parse Tree Database for Information Extraction by Luis Tari, Phan Huy Tu, J^{*}org Hakenberg, Yi Chen, Tran Cao Son, Graciela Gonzalez and ChittaBaral
- Rohit Agrawal, Amogh Chakkarwar, Prateek Choudhary, Usha A. Jogalekar, and Deepa H. Kulkarni, "DBIQS - An Intelligent System for Querying and Mining Databases using NLP", International Conference on Information Systems and Computer Networks, pp 39-43, 2014.
- Semantic grammar. International Journal on Computer Science and Engineering, 2(2): 219-223 Rukshan A, Rukshan P, Mahesan S. 2013. Natural Language Web Interface for Database (NLWIDB).
- Sreenivasulu M. 2014. Information retrieval using natural language interfaces. International Journal of Computer Applications, 92(12):43-37