
z

RESEARCH ARTICLE

FPGA IMPLEMENTATION OF ENHANCED SHA-192 ALGORITHM

*Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V.UG Scholar, Dept of ECE, SNIST, Hyderabad
ARTICLE INFO ABSTRACT

Hash functions were introduced in Cryptology as a tool to protect the integrity of information. Secure
Hash Algorithm-1 (SHA-1) and Message Digest-5 (MD-5) are among the most commonly used hash
function message digest algorithms. Scientists have found collision attacks on SHA-1, MD-5 hash
functions so the natural response to overcome this threat was assessing the weak points of these
protocols that actually depend on collision resistance for their security. So to increase the security,
modified SHA-192 is introduced in this paper having a message digest of length 192 bits with larger
bit difference. To generate larger bit difference, best properties of MD-5andSHA-1 are combined. So
the new solution will be no longer vulnerable to the collision attacks.SHA-192 currently used in
security applications and protocols applications including Transport Layer Security (TLS), Secure
Socket Layer (SSL), Internet Protocol Security (IPSec) and as Digital Signatures. This technique is
designed by using Verilog HDL with Xilinx ISE Design suite 12.4 version tool. The designs
implemented in Xilinx SPARTAN 3E XC3S500EFG320 FPGA board.

Copyright©2017, Shiva Nagender Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Mobile computers have become an essential tool for many of
our daily activities. As we turn increasingly to portable devices
for our professional and personal needs, we are left with little
choice but to entrust sensitive information to digital media.
Since these devices are susceptible to physical theft, we must
rely on cryptographic algorithms to ensure the confidentiality
and integrity of our personal data. Thus, the security of this
data rests on the inability of an attacker to guess one important
piece of information. In this age of universal electronic
connectivity, of viruses and hackers, of electronic
eavesdropping and electronic fraud, there is indeed no time at
which security does not matter. Two trends together made me
to choose this topic of vital interest. First, the explosive growth
in computer systems and their interconnections via networks
has increased the dependence of both organizations and
individuals on the information stored and communicated using
these systems. This, in turn, has led to heightened awareness of
the need to protect data and resources from disclosure, to
guarantee the authenticity of data and messages, and to protect
systems from network based attacks. Second, the disciplines of
cryptography and network security have matured, leading to
the development of practical, readily available applications to
enforce network security.

*Corresponding author: Shiva Nagender Rao,
UG Scholar, Dept of ECE, SNIST, Hyderabad, India.

This security is achieved by using cryptographic algorithms
such asymmetric, asymmetric and hash algorithms like MD4
(Message Digest 4), MD5 (Message Digest 5) and SHA
(Secure Hash Algorithm) series.

Enhanced sha-192 Algorithm

The most widely used hash function is the Secure Hash
Algorithm (SHA) because virtually every other widely used
hash function had been found to have substantial cryptanalytic
weaknesses, SHA was more or less the last remaining
standardized hash algorithm by 2005. SHA was developed by
the National Institute of Standards and Technology (NIST) and
published as a federal information processing standard (FIPS
180) in 1993. When weaknesses were discovered in SHA, now
known as SHA-0, a revised version was issued as FIPS 180-1
in 1995 and is referred to as SHA-1. SHA is based on the hash
function MD4, and its design closely models MD4. SHA-1 is
also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.
SHA-1 produces a hash value of 160 bits. In 2002, NIST
produced a revised version of the standard, FIPS 180-2, that
defined three new versions of SHA, with hash value lengths of
256, 384, and 512 bits, known as SHA-256, SHA-384, and
SHA-512, respectively. Collectively, these hash algorithms are
known as SHA-2. These new versions have the same
underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised
document was issued as FIP PUB 180-3 in 2008, which added

ISSN: 0975-833X

International Journal of Current Research
Vol. 9, Issue, 10, pp.58607-58611, October, 2017

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

Article History:
Received 15th July, 2017
Received in revised form
07th August, 2017
Accepted 24th September, 2017
Published online 17th October, 2017

Citation: Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V. 2017. “FPGA implementation of enhanced SHA-192 algorithm”,
International Journal of Current Research, 9, (10), 58607-58611.

Available online at http://www.journalcra.com

Key words:

SHA, Cryptology,
TLS, SSL.

z

RESEARCH ARTICLE

FPGA IMPLEMENTATION OF ENHANCED SHA-192 ALGORITHM

*Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V.UG Scholar, Dept of ECE, SNIST, Hyderabad
ARTICLE INFO ABSTRACT

Hash functions were introduced in Cryptology as a tool to protect the integrity of information. Secure
Hash Algorithm-1 (SHA-1) and Message Digest-5 (MD-5) are among the most commonly used hash
function message digest algorithms. Scientists have found collision attacks on SHA-1, MD-5 hash
functions so the natural response to overcome this threat was assessing the weak points of these
protocols that actually depend on collision resistance for their security. So to increase the security,
modified SHA-192 is introduced in this paper having a message digest of length 192 bits with larger
bit difference. To generate larger bit difference, best properties of MD-5andSHA-1 are combined. So
the new solution will be no longer vulnerable to the collision attacks.SHA-192 currently used in
security applications and protocols applications including Transport Layer Security (TLS), Secure
Socket Layer (SSL), Internet Protocol Security (IPSec) and as Digital Signatures. This technique is
designed by using Verilog HDL with Xilinx ISE Design suite 12.4 version tool. The designs
implemented in Xilinx SPARTAN 3E XC3S500EFG320 FPGA board.

Copyright©2017, Shiva Nagender Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Mobile computers have become an essential tool for many of
our daily activities. As we turn increasingly to portable devices
for our professional and personal needs, we are left with little
choice but to entrust sensitive information to digital media.
Since these devices are susceptible to physical theft, we must
rely on cryptographic algorithms to ensure the confidentiality
and integrity of our personal data. Thus, the security of this
data rests on the inability of an attacker to guess one important
piece of information. In this age of universal electronic
connectivity, of viruses and hackers, of electronic
eavesdropping and electronic fraud, there is indeed no time at
which security does not matter. Two trends together made me
to choose this topic of vital interest. First, the explosive growth
in computer systems and their interconnections via networks
has increased the dependence of both organizations and
individuals on the information stored and communicated using
these systems. This, in turn, has led to heightened awareness of
the need to protect data and resources from disclosure, to
guarantee the authenticity of data and messages, and to protect
systems from network based attacks. Second, the disciplines of
cryptography and network security have matured, leading to
the development of practical, readily available applications to
enforce network security.

*Corresponding author: Shiva Nagender Rao,
UG Scholar, Dept of ECE, SNIST, Hyderabad, India.

This security is achieved by using cryptographic algorithms
such asymmetric, asymmetric and hash algorithms like MD4
(Message Digest 4), MD5 (Message Digest 5) and SHA
(Secure Hash Algorithm) series.

Enhanced sha-192 Algorithm

The most widely used hash function is the Secure Hash
Algorithm (SHA) because virtually every other widely used
hash function had been found to have substantial cryptanalytic
weaknesses, SHA was more or less the last remaining
standardized hash algorithm by 2005. SHA was developed by
the National Institute of Standards and Technology (NIST) and
published as a federal information processing standard (FIPS
180) in 1993. When weaknesses were discovered in SHA, now
known as SHA-0, a revised version was issued as FIPS 180-1
in 1995 and is referred to as SHA-1. SHA is based on the hash
function MD4, and its design closely models MD4. SHA-1 is
also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.
SHA-1 produces a hash value of 160 bits. In 2002, NIST
produced a revised version of the standard, FIPS 180-2, that
defined three new versions of SHA, with hash value lengths of
256, 384, and 512 bits, known as SHA-256, SHA-384, and
SHA-512, respectively. Collectively, these hash algorithms are
known as SHA-2. These new versions have the same
underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised
document was issued as FIP PUB 180-3 in 2008, which added

ISSN: 0975-833X

International Journal of Current Research
Vol. 9, Issue, 10, pp.58607-58611, October, 2017

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

Article History:
Received 15th July, 2017
Received in revised form
07th August, 2017
Accepted 24th September, 2017
Published online 17th October, 2017

Citation: Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V. 2017. “FPGA implementation of enhanced SHA-192 algorithm”,
International Journal of Current Research, 9, (10), 58607-58611.

Available online at http://www.journalcra.com

Key words:

SHA, Cryptology,
TLS, SSL.

z

RESEARCH ARTICLE

FPGA IMPLEMENTATION OF ENHANCED SHA-192 ALGORITHM

*Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V.UG Scholar, Dept of ECE, SNIST, Hyderabad
ARTICLE INFO ABSTRACT

Hash functions were introduced in Cryptology as a tool to protect the integrity of information. Secure
Hash Algorithm-1 (SHA-1) and Message Digest-5 (MD-5) are among the most commonly used hash
function message digest algorithms. Scientists have found collision attacks on SHA-1, MD-5 hash
functions so the natural response to overcome this threat was assessing the weak points of these
protocols that actually depend on collision resistance for their security. So to increase the security,
modified SHA-192 is introduced in this paper having a message digest of length 192 bits with larger
bit difference. To generate larger bit difference, best properties of MD-5andSHA-1 are combined. So
the new solution will be no longer vulnerable to the collision attacks.SHA-192 currently used in
security applications and protocols applications including Transport Layer Security (TLS), Secure
Socket Layer (SSL), Internet Protocol Security (IPSec) and as Digital Signatures. This technique is
designed by using Verilog HDL with Xilinx ISE Design suite 12.4 version tool. The designs
implemented in Xilinx SPARTAN 3E XC3S500EFG320 FPGA board.

Copyright©2017, Shiva Nagender Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

INTRODUCTION

Mobile computers have become an essential tool for many of
our daily activities. As we turn increasingly to portable devices
for our professional and personal needs, we are left with little
choice but to entrust sensitive information to digital media.
Since these devices are susceptible to physical theft, we must
rely on cryptographic algorithms to ensure the confidentiality
and integrity of our personal data. Thus, the security of this
data rests on the inability of an attacker to guess one important
piece of information. In this age of universal electronic
connectivity, of viruses and hackers, of electronic
eavesdropping and electronic fraud, there is indeed no time at
which security does not matter. Two trends together made me
to choose this topic of vital interest. First, the explosive growth
in computer systems and their interconnections via networks
has increased the dependence of both organizations and
individuals on the information stored and communicated using
these systems. This, in turn, has led to heightened awareness of
the need to protect data and resources from disclosure, to
guarantee the authenticity of data and messages, and to protect
systems from network based attacks. Second, the disciplines of
cryptography and network security have matured, leading to
the development of practical, readily available applications to
enforce network security.

*Corresponding author: Shiva Nagender Rao,
UG Scholar, Dept of ECE, SNIST, Hyderabad, India.

This security is achieved by using cryptographic algorithms
such asymmetric, asymmetric and hash algorithms like MD4
(Message Digest 4), MD5 (Message Digest 5) and SHA
(Secure Hash Algorithm) series.

Enhanced sha-192 Algorithm

The most widely used hash function is the Secure Hash
Algorithm (SHA) because virtually every other widely used
hash function had been found to have substantial cryptanalytic
weaknesses, SHA was more or less the last remaining
standardized hash algorithm by 2005. SHA was developed by
the National Institute of Standards and Technology (NIST) and
published as a federal information processing standard (FIPS
180) in 1993. When weaknesses were discovered in SHA, now
known as SHA-0, a revised version was issued as FIPS 180-1
in 1995 and is referred to as SHA-1. SHA is based on the hash
function MD4, and its design closely models MD4. SHA-1 is
also specified in RFC 3174, which essentially duplicates the
material in FIPS 180-1 but adds a C code implementation.
SHA-1 produces a hash value of 160 bits. In 2002, NIST
produced a revised version of the standard, FIPS 180-2, that
defined three new versions of SHA, with hash value lengths of
256, 384, and 512 bits, known as SHA-256, SHA-384, and
SHA-512, respectively. Collectively, these hash algorithms are
known as SHA-2. These new versions have the same
underlying structure and use the same types of modular
arithmetic and logical binary operations as SHA-1. A revised
document was issued as FIP PUB 180-3 in 2008, which added

ISSN: 0975-833X

International Journal of Current Research
Vol. 9, Issue, 10, pp.58607-58611, October, 2017

INTERNATIONAL JOURNAL
OF CURRENT RESEARCH

Article History:
Received 15th July, 2017
Received in revised form
07th August, 2017
Accepted 24th September, 2017
Published online 17th October, 2017

Citation: Shiva Nagender Rao, L., Sai Rishishwar Reddy, Y. and Manoj Yasaswi, V. 2017. “FPGA implementation of enhanced SHA-192 algorithm”,
International Journal of Current Research, 9, (10), 58607-58611.

Available online at http://www.journalcra.com

Key words:

SHA, Cryptology,
TLS, SSL.

a 224-bit version. SHA-2 is also specified in RFC 4634, which
essentially duplicates the material in FIPS 180-3 but adds a C
code implementation. The weakness in SHA family is that two
different inputs will produce the same output. There is a need
to have a good diffusion so that the output in each round will
be spread out and not to be equal with the same output in the
next coming stages. For a hash function finding a message that
corresponds to a given message digest can always be done
using a brute force search in 2L evaluations, where L is the
number of bits in the message digest. This is called a pre image
attack and may or may not be practical in a particular
computing environment. The second criterion, finding two
different messages that produce the same message digest,
known as a collision, requires on average only 2L/2evaluations
using a birthday attack. For the latter reason the strength of a
hash function is usually compared to a symmetric cipher of
half the message digest length. Thus SHA-1 was originally
thought to have 80-bit strength but it has been identified that
security flaws were identified in SHA-160 indicating that
stronger hash function would be desirable. Hence the
modifications are proposed enhance the security of the existing
algorithm. So to increase the security, modified SHA-192 has
been explained in this chapter having a message digest of
length 192 bits with larger bit difference. To generate larger bit
difference, best properties of MD-5 and SHA-1 are combined.
The proposed algorithm will be no longer vulnerable to the
collision attacks.

Block Diagram of SHA-192 Algorithm

Figure 1. SHA-192 Algorithm consists of four modules which are

 Message preparation.
 Message expansion.
 Round logic and
 Round addition

Firstly, the message input (‘msg_in’) is given to message
preparation module which converts it into ‘msg’ according to
the principle which will be explained in chapter 3.2. This
output is given as input to the message expansion module
which will split the given input based on the expansion
principle explained in chapter 3.3. Now this message
expansion output ‘Wt’ produces the output ‘shaout1’ from the
round logic module with the consideration of constants ‘a’, ‘b’,
‘c’, ‘d’, ‘e’ and ‘f’. Finally, the initial hash value is added to
‘shaout1’ to obtain the output ‘shaout’ which is the required
message output (‘msg_out’) as explained in chapter 3.5.

Message Preparation

Message preparation includes Padding and appending of the
message (‘msg_in’) which is shown in figure 3.2. The purpose
of padding is to ensure that the padded message is multiple of
512 bits which is called as a frame. If the length of the message
M, is L bits it is append the bit 1 to the end of the message
followed by k zero bits, where k is smallest, non-negative
solution to the equation L+1+k = 448 mod512. Now, append
the 64 bits block that is equal to the number L written in
binary. The maximum number of input bits to this block is 264-
1 bits.

For example, let the message ‘M’ be (01100010 11001010
1001)2 which is of the length L = 20-bits. The value of M is
followed by 1-bit ‘1’ and 427 zeroes i.e, ‘512-(20+64+1)’ 0’s.
Remaining 64-bits of LSB is the message length represented in
64-bit format of ‘L’ i.e, 20 ((00000000 00000000 00000000
00000000 00000000 00000000 00000000 00010100)2). The
final output of message preparation in 512-bit format is:

(01100010 11001010 10011000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000

Message Expansion

The output of message preparation block is 512 bits for every
447 bits or less. If the length of message exceeds 447 bits, the
message will be expanded into 512 bits for every 447 bits by
message preparation principle as explained in the chapter 3.2.
This module divides the input message into blocks, each of
length 512 bits, i.e. cut M into sequence of 512 bit blocks
M[1], M[2]…..M[N]. Then the current 512 bit block is divided
into 16 sub blocks each consisting of 32 bits. Each of Mi
parsed into thirty-two 16 bits words Mi[0], Mi[1]…....Mi [32]
which is labeled as Wt as shown in Figure 3.

Figure 3. Representation of Message Expansion

58608 Shiva Nagender Rao et al. FPGA implementation of enhanced SHA-192 algorithm

For example, let the message ‘M’ of 512-bits be “(01100010
11001010 10011000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000 00000000 00000000
00000000 00000000 00010100)2”. The output of message
expansion Wt0, Wt1, Wt2, ….., Wt13, Wt14 and Wt15 each of
32-bits is as follows:

Wt0 = 00000000 00000000 00000000 00010100,
Wt1 = 00000000 00000000 00000000 00000000,
Wt2 = 00000000 00000000 00000000 00000000,
Wt3 = 00000000 00000000 00000000 00000000,
Wt4 =00000000 00000000 00000000 00000000
Wt5 = 00000000 00000000 00000000 00000000,
Wt6 = 00000000 00000000 00000000 00000000,
Wt7 = 00000000 00000000 00000000 00000000,
Wt8 = 00000000 00000000 00000000 00000000,
Wt9 = 00000000 00000000 00000000 00000000,
Wt10 = 00000000 00000000 00000000 00000000,
Wt11 = 00000000 00000000 00000000 00000000,
Wt12 = 00000000 00000000 00000000 00000000,
Wt13 = 00000000 00000000 00000000 00000000,
Wt14 = 00000000 00000000 00000000 00000000 and
Wt15 = 01100010 11001010 10011000 00000000.

Round Logic

Round Logic is the main functional element of proposed
algorithm. Here, the rounded logic output is obtained by
performing the logic which is explained later in this chapter in
the sections 3.4.1 and 3.4.2.The Round Logic architecture for
SHA-192 and Enhanced SHA-192 algorithms shown in the
Figures 3.4 and 3.5 which looks similar but the difference is
that Enhanced SHA-192 has two stages, while SHA-192 has
single stage. Round Logic is the main functional element of
proposed algorithm. Here, the rounded logic output is obtained
by performing the logic which is explained later in this chapter
in the sections 3.4.1 and 3.4.2.The Round Logic architecture
for SHA-192 and Enhanced SHA-192 algorithms shown in the
figures 3.4 and 3.5 which looks similar but the difference is
that Enhanced SHA-192 has two stages, while SHA-192 has
single stage.

Figure 4. Round Logic Architecture for SHA-192

Figure 5. Round Logic Architecture for Enhanced SHA-192

The two steps that constitute the Round Logic are as follows:

 Initialize Chaining variables and
 Processing of Message block

Initialize Chaining Variables

In this step, six chaining variables A through F are initialized.
Before the hash function begins, the initial hash value H0 must
be set. The hash is 192 bits used to hold the intermediate and
final results the hash can be represented as six 32 bit words
registers A, B, C, D, E, F.

These values are given as:

A=67452301,
B=EFCDAB8,
C=98BADCF,
D=10325476,
E=C3D2E1F0 and
F=40385172

Processing of Message Block

After initializing the variables, the actual algorithm begins.
Each message block is processed in order using following
steps:

 Copy the chaining variables A-F into variables a-f. For
i=1 to N prepare the message schedule.

 Divide the current 512 bit block into 16 sub blocks each
consisting of 32 bits. Each of Mi parsed into thirty-two
16 bits words Mi[0], Mi[1]..Mi [32]. These blocks
become input to the message digest processing logic.

 This algorithm has 4 rounds, each round consists of 16
steps. Each round takes the current 512 bit block, the
register abcdef and a constant K[t](where t=0 to 63) as
the three inputs.

 Here we have 4 constants defined for K[t],one used in
each of the 4 rounds. The values of K[t] are shown in
the Table 1.

Table 1. Values of K[t]

Round Value of ‘t’ between K[t] in hexa-decimal

1 1 and 16 0x5A927999
2 17 and 32 0x6ED9EBA1
3 33 and 48 0x9F1BBCDC
4 49 and 64 0XCA62C1D6

Each round containing 16 iterations this makes it a total of 64
iterations. Aniteration consists of following operations:

58609 International Journal of Current Research, Vol. 9, Issue, 10, pp.58607-58611, October, 2017

Wt = Mti 0<t<16.

The values of Wt are calculated as follows:

For the first 16 words of W(i.e t=0 to 15), the contents of the
input message sub block M[t] become the contents of W[t].
The first 16 blocks of the input message M are copied to W.
The remaining values of W are derived using equation:

w[i] = (w[i-3] xor w[i-8] xor w[i-14] xor w[i-16]) (3.1)

F is the logical operations performed in each round. Process is
divided in four rounds and each round contains sixteen
transformation steps. Values of constant using in this 64
rounds is from i=0 to 63.

The pseudo code for each round which consists of 16
transformation steps is given below:

if 0 ≤ i ≤ 15 then

f = (b and c) or ((not b) and d) K[t] = 0x5A827999

P =(b and c) or ((not b) and d) if 16 ≤ i ≤ 31

f = b xor c xor d K[t] = 0x6ED9EBA1

p = (d and b) or ((not d) and c); if 32 ≤ i ≤ 47

f = (b and c) or (b and d) or (c and d) K[t] = 0x8F1BBCDC

p = (b and c) and d if 48 ≤ i ≤ 63

f = b xor c xor d K[t] = 0xCA62C1D6

p= c and (b or (not d))

Initialize the six chaining variables with (t-1) hash value. for
t=0 to 63

{

T =ROTL2 (A) + f (B, C, D) +E + Kt + Wt; L =ROTL2 (A) +
f (B, C, D) +E +F +Kt+ Wt; F=T; E= D; D= C;
C= ROTL15(B); B= ROTL5 (A); A=L;

F=E; E=D; D=C; C=B;

B= A+p(B,C,D)+Mi+tk+S+B; A=F;

}

Where tk= t[k] is the constant used in second block, s is the
number of left rotation to be executed, f is the coefficients of
each round is a bitwise Boolean function that is used in first
block, p is a bitwise Boolean function that is used in second
block.

The values of constant t[k] are given as:

t[k] from [0..3] := { 0xd76aa478, 0xe8c7b756, 0x242070db,
0xc1bdceee }, t[k] from [4.. 7] := { 0xf57c0faf, 0x4787c62a,
0xa8304613, 0xfd469501 }, t[k] from [8..11] := {
0x698098d8, 0x8b44f7af, 0xffff5bb1, 0x895cd7be }, t[k] from
[12..15] := { 0x6b901122, 0xfd987193, 0xa679438e,
0x49b40821 }, t[k] from [16..19] := { 0xf61e2562,

0xc040b340, 0x265e5a51, 0xe9b6c7aa }, t[k] from [20..23] :=
{ 0xd62f105d, 0x02441453, 0xd8a1e681, 0xe7d3fbc8 }, t[k]
from [24..27] := { 0x21e1cde6, 0xc33707d6, 0xf4d50d87,
0x455a14ed }, t[k] from [28..31] := { 0xa9e3e905, 0xfcefa3f8,
0x676f02d9, 0x8d2a4c8a }, t[k] from [32..35] := { 0xfffa3942,
0x8771f681, 0x6d9d6122, 0xfde5380c }, t[k] from [36..39] :=
{ 0xa4beea44, 0x4bdecfa9, 0xf6bb4b60, 0xbebfbc70 }, t[k]
from [40..43] := { 0x289b7ec6, 0xeaa127fa, 0xd4ef3085,
0x04881d05 }, t[k] from [44..47] := { 0xd9d4d039,
0xe6db99e5, 0x1fa27cf8, 0xc4ac5665 }, t[k] from [48..51] := {
0xf4292244, 0x432aff97, 0xab9423a7, 0xfc93a039 }, t[k]
from [52..55] := { 0x655b59c3, 0x8f0ccc92, 0xffeff47d,
0x85845dd1 }, t[k] from [56..59] := { 0x6fa87e4f, 0xfe2ce6e0,
0xa3014314, 0x4e0811a1 } and t[k] from [60..63] := {
0xf7537e82, 0xbd3af235, 0x2ad7d2bb, 0xeb86d391 }.

S specifies per round shift amount and its values are given
below. s[0..15] := {7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7,
12, 17, 22}, s[16..31] := {5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20,
5, 9, 14, 20}, s[32..47] := {4, 11, 16, 23, 4, 11, 16, 23, 4, 11,
16, 23, 4, 11, 16, 23} and s[48..63] := {6, 10, 15, 21, 6, 10, 15,
21, 6, 10, 15, 21, 6, 10, 15, 21}.

Round Addition

Round addition computes the summation of round logic output
with the initial Hash values to obtain the final Hash output
which is of 192-bits. The intermediate Hash values are
computed for larger length messages which are given below.

H0(i) =A+ H0(i-1),

H1(i) =B+ H1(i-1),

H2(i) =C+ H2(i-1),
H3(i) =D+ H3(i-1),

H4(i) =E+ H4(i-1) and

H5(i) =F+ H5(i-1).

The output transformation step is modular summation used to
map the final output of the single compression function of n
bits to the output length.

SIMULATION RESULTS

Simulation results of Round Logic

The input to the Round Logic is ‘clk’, ‘rst’, and the input ‘w[t]’
is of 32 bit size, output is ‘shaout1’ with 192 bit size. The
output is obtained according to round logic operation.

Figure 1. Simulation results of Round Logic

58610 Shiva Nagender Rao et al. FPGA implementation of enhanced SHA-192 algorithm

Simulation Results of Enhanced SHA-192

The input to the Enhanced SHA-192 Algorithm is ‘clk’, ‘rst’,
and the input ‘msgin’ is of 200 bit size, output is ‘shaout’ with
192 bit size. The output is obtained according to Enhanced
SHA-192 Algorithm operation explained in the chapter3.
Figure 5.6 shows simulation results of Enhanced SHA-192
Algorithm.

Figure 2. Simulation Results of Enhanced SHA-192

Conclusion

The Enhanced SHA-192 Algorithm is designed by using
Xilinx ISE design suite 12.4 version with Verilog HDL. The
design is simulated for functionality and input and output is
verified by using Xilinx ISE Simulator tool.So, this algorithm
can be used in high security applications like Digital signatures
and Authentication. This algorithm can be used in Digital
Certificate and Message integrity applications.

REFERENCES

Secure Hash Standard (SHS), 2012. Federal Information
Processing Standards Publication (FIPS-PUB) 180-4,
March 2012.

Garbita Gupta, Sanjay Sharma, 2013. “Enhanced SHA-192
Algorithm with Larger Bit Difference” International
Conference on Communication Systems and Network
Technologies.

Thulasimani, L. and Madheswaran, M. 2009. “Security and
Robustness Enhancement of Existing Hash Algorithm”
IEEE International Conference on Signal Processing
Systems.

Eli Biham, Rafi Chen, Antoine Joux, Patrick Carribault,
Christophe Lemuet, William Jalby, “Collision in SHA-0
and Reduced SHA-1,”Advances in Cryptology-
EUROCRYPT 2005, LNCS 3494, SpringerVerlag,2005.

William Stallings, “Cryptography and Network Security:
Principles and Practice. Fifth Edition, Pearson Hall, 2011.

HarshvardhanTiwari. A Secure Hash Function MD-192 with
Modified Message Expansion” Vol.7 No.2 February 2010
International Journal of Computer Science and
Information Security.

Florent Chabaud, Antoine Joux, “Differential collisions in
SHA-0”,Advances in Cryptology-CRYPTO’98, LNCS
1462, Springer-Verlag,1998.

Matusiewicz, K. and Pieprzyk, J. 2004. “Finding good
differential patterns attacks on SHA-1”, (Pub 2004),
Available:http://eprint.iacr.org/2004/364.pdf

Marc Stevens hash clash - Framework for MD5 & SHA-1
Differential Path Construction and Chosen-Prefix
Collisions for MD5

58611 International Journal of Current Research, Vol. 9, Issue, 10, pp.58607-58611, October, 2017

