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The study of rainfall time series of two selected weather stations in Malaysia using various statistical 
methods enabled to analyse the temporal behaviour of rainfall in the study areas. 
analysis is an important tool in modelling and forecastin
SARIMA(4, 0, 2)(1, 0, 1)
smoothing were built. All the models proved to be adequate. Therefore, could give information that 
can help decision makers 
other water resource applications in Malacca and Kuantan.
 
 
 
 
 

 

INTRODUCTION 
 
There are different categories of predictive 
causal method and the time series method. The causal method 
assumes that the predicted variable is determined by 
independent explanatory variables, that is regression. The 
causal method has been applied to predict for example, 
building price (Runeson 1988), construction cost (Koehn and 
Navvabi 1989) etc. While the time series methods determines 
future trend based on past values and corresponding errors. 
Since a time series method only require the historical data, it is 
widely used to develop predictive models. A time series is 
simply a set of observations measured at successiv
time or over successive periods of time. Forecasts essentially 
provide future values of the time series on a specific variable. 
Time series forecasting methods are based on analysis of 
historical data. It makes the assumption that past patterns
data can be used to forecast future data points. The popular 
ways of time series modelling include an Autoregressive 
Moving Average; Simple and Weighted Moving Averages; 
Single, Double and Triple Exponential Smoothing. Among 
them, the triple exponential smoothing is more sensitive and 
effective in this situation, because it has three control constant 
i.e. irregular, trend and seasonal influence. The value of three 
constants can control and manage influence of time 
segmentation through the specific time duration. 
 

Simple  exponential  smoothing  was originally developed 
from  heuristics for generating point predictions from historical 
time series data. Although the Exponential Smoothing methods 
has been around since the 1950s. There has not been a well
developed modelling framework incorporating stochastic 
models,   like  lihood   calculation,   prediction   
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ABSTRACT 

The study of rainfall time series of two selected weather stations in Malaysia using various statistical 
methods enabled to analyse the temporal behaviour of rainfall in the study areas. 
analysis is an important tool in modelling and forecasting rainfall. SARIMA (1, 1, 2)(1, 1, 1)
SARIMA(4, 0, 2)(1, 0, 1)12 with constant and ETS state space  models based on exponential 
smoothing were built. All the models proved to be adequate. Therefore, could give information that 
can help decision makers establish strategies for proper planning of agriculture, drainage system and 
other water resource applications in Malacca and Kuantan. 
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There are different categories of predictive modeling; the 
causal method and the time series method. The causal method 

t the predicted variable is determined by 
independent explanatory variables, that is regression. The 
causal method has been applied to predict for example, 
building price (Runeson 1988), construction cost (Koehn and 

methods determines 
future trend based on past values and corresponding errors. 
Since a time series method only require the historical data, it is 
widely used to develop predictive models. A time series is 
simply a set of observations measured at successive points in 
time or over successive periods of time. Forecasts essentially 
provide future values of the time series on a specific variable. 
Time series forecasting methods are based on analysis of 
historical data. It makes the assumption that past patterns in 
data can be used to forecast future data points. The popular 
ways of time series modelling include an Autoregressive 
Moving Average; Simple and Weighted Moving Averages; 
Single, Double and Triple Exponential Smoothing. Among 

l smoothing is more sensitive and 
effective in this situation, because it has three control constant 
i.e. irregular, trend and seasonal influence. The value of three 
constants can control and manage influence of time 

duration.  

was originally developed 
heuristics for generating point predictions from historical 

time series data. Although the Exponential Smoothing methods 
has been around since the 1950s. There has not been a well-
eveloped modelling framework incorporating stochastic 

 intervals   and 
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procedures for model selection. Today exponential smoothing 
refers to a suite of possible forecasting functions (Hyndman et 
al, 2005). In practice, the forecasting function is generally 
selected based on the practitioner’s assessment of the structure 
of the relevant data, for example, whether local trends or 
seasonal factors are important components for describing the 
data. In addition to being a function of historical data, the 
forecasting functions rely upon smoothing parameters that 
must be selected by the practitioner. Both
forecasting function and the degree of smoothing within that 
forecasting function are generally determined either through 
experience, or through ad-hoc forecasting criteria such as the 
minimum mean squared error criterion.
 
The theory of exponential smoothing was built on heuristics 
that had a good track record for generating reliable point 
predictions of demand in business applications. Heuristics also 
exist for determining the uncertainty surrounding predictions. 
Of course, accurate measures of uncertainty can be very 
important. Rainfall estimates are an important component of 
water resources applications, example, in designing drainage 
system and irrigation, an accurate estimate of rainfall is 
needed. There are also concerns with producing 
using appropriate methods. In order to develop a 
comprehensive solution to the forecasting problem, including 
addressing the issue of uncertainty in predictions, a statistical 
model must be employed. One of the most successful 
automatic forecasting methods in practice is based on 
exponential smoothing models. There are a variety of such 
models, each having the property that forecasts are weighted 
averages of past observations with recent observations given 
relatively more weight than older o
“exponential smoothing” reflects the fact that the weights 
decrease exponentially as the observations get older 
(Hyndman, 2002). The main aim of this paper is to explore and 
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Today exponential smoothing 
refers to a suite of possible forecasting functions (Hyndman et 
al, 2005). In practice, the forecasting function is generally 
selected based on the practitioner’s assessment of the structure 

example, whether local trends or 
seasonal factors are important components for describing the 
data. In addition to being a function of historical data, the 
forecasting functions rely upon smoothing parameters that 
must be selected by the practitioner. Both the choice of 
forecasting function and the degree of smoothing within that 
forecasting function are generally determined either through 

hoc forecasting criteria such as the 
minimum mean squared error criterion. 

onential smoothing was built on heuristics 
that had a good track record for generating reliable point 
predictions of demand in business applications. Heuristics also 
exist for determining the uncertainty surrounding predictions. 

s of uncertainty can be very 
important. Rainfall estimates are an important component of 
water resources applications, example, in designing drainage 
system and irrigation, an accurate estimate of rainfall is 
needed. There are also concerns with producing valid estimates 
using appropriate methods. In order to develop a 
comprehensive solution to the forecasting problem, including 
addressing the issue of uncertainty in predictions, a statistical 
model must be employed. One of the most successful 

ecasting methods in practice is based on 
exponential smoothing models. There are a variety of such 
models, each having the property that forecasts are weighted 
averages of past observations with recent observations given 
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“exponential smoothing” reflects the fact that the weights 
decrease exponentially as the observations get older 
(Hyndman, 2002). The main aim of this paper is to explore and 
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model the temporal characteristics of rainfall time series; and 
compare the performance of Seasonal ARIMA models and 
State space models with applications to two monthly rainfall 
series in peninsular Malaysia.  The versatile and fully 
automatic ETS framework requires neither stationary nor strict 
linearity to produce contemporaneous time series forecasts for 
variable time horizons. Consequently, it is extensively 
employed in, e.g., econometrics and inventory control where 
automatic forecasts are required for a large number of diverse 
time series. This forecasting framework, whose performance 
was recently and favourably compared to those of several 
forecasting techniques across thousands of time series 
(Makridakis and Hibon, 2000), adapts to underlying alterations 
in series dynamics and automatically revises forecasts as new 
observations. We adapt two approaches in modelling and 
forecasting rainfall in this paper. The first is the state space 
model based on exponential smoothing methods and the 
second is Box Jenkins model building technique. The rest of 
the paper is organized as follows: Section Two gives the 
methodology employed in this paper; Section Three gives 
discusses the results of the finding and Section Four gives the 
Conclusion and Recommendations. The algorithms and 
modelling frameworks for automatic univariate time series 
forecasting which we employed in this work are implemented 
in the forecast package in R software version 2.14.1. 
 

MATERIAL AND METHODS 
 

Seasonal ARIMA 
 

A time series is said to be seasonal if there exists a 
tendency for the series to exhibit a periodic behaviour 
after certain time interval. The usual ARIMA models 
cannot really cope with seasonal behaviour, it only model 
time series with trends. Seasonal ARIMA models are 
formed by including an additional seasonal terms in the 
ARIMA models and are defined by seven parameters. 
The seasonal ARIMA denoted by 
ARIMA(p,d,q)(P,D,Q)s is given as: 
 

 
 

Where 
 

 
 

The idea behind the seasonal ARIMA is to look at what are the 
best explanatory variables to model a seasonal pattern. Details 
of such model can be found in Box and Jenkins (1976) and 
Madsen (2008). 
 

The decomposition of a time series 
 

A time series can be thought of as consisting of four different 
components 

 Trend (T): In general, natural, human, economic and other 

processes produce gradual trends. A trend is a long-term 

component that represents a growth or a decline of a time 

series over an extended period of time. 

 Seasonal component (S): This term of seasonality is used 

for time series defined at time intervals which are fractions 

of a year. It is a pattern of change that repeats itself from 

year to year. 

 Cyclical component (C): Changes in time series 

sometimes show a wavelike fluctuation around a trend, 

which shows the possible existence of periodicity with 

longer intervals. 

 Irregular component ( ): This is a part of a time series 
represented by residuals, after the above-mentioned 
components have been removed.  

 The time series that contained the above components is 
usually described as   

t t t t ty T S C    
 

Ljung-Box Test 
 
Ljung and Box (1978) proposed a Q-Test called Ljung–Box 
test which is commonly used in autoregressive integrated 
moving average (ARIMA) modelling. It is applied to the 
residuals of a fitted ARIMA model, not the original series, and 
in such applications the hypothesis actually being tested is that 
the residuals from the ARIMA model have no autocorrelation, 
or it performs a lack-of-fit hypothesis test for model 
misspecification, which is based on the Q-statistic given as: 

2
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ˆ
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Where N = sample size, L = number of autocorrelation lags 

included in the statistic, and 
2ˆ
j is the squared sample 

autocorrelation at lag j. Under the null hypothesis of no serial 
correlation, the Q-test statistic is asymptotically Chi-Square 
distributed.  
 
State Space Models 
 
In order to improve predictability, ES models will be fitted to 
each dataset, then the fitted models are used to make the out-
of-sample forecast. The whole datasets from 1968:1 to 2003:12 
were used as an example to illustrate the model fitting process. 
The ES models, which are encapsulated within a state-space 
framework hereafter referred to as ETS for error (E), trend (T), 
and seasonal components (S). The E component is either 
additive (A) or multiplicative (M), T and S components may be 
A, M, or inexistent (N); last, T may also be dampened 
additively (Ad) or multiplicatively (Md). For example, the ETS 
method MMN has E(M), T(M), and S(N) structures. There are 
30 possible ES combinations within the forecasting framework, 
comprising linear and non-linear ones (Hyndman and 
Khandakar, 2008). Exponential smoothing methods were 
originally classified by Pegels' (1969) taxonomy. This was 
later extended by Gardner (1985), modified by Hyndman et al. 
(2002), and extended again by Taylor (2003), giving a total of 
fifteen methods seen in table 1. However, only the 15 ES 
methods with multiplicative error structures (heteroskedastic) 
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were considered for time series analysis (Medina et al, 2008). 
The models also yield more realistic 95% prediction interval 
values. Furthermore, a reduction in the number of ES methods 
evaluated also diminishes the expensive computational time. 
Summary of the models are given in table 1. 
 

Table 1 Fifteen exponential smoothing methods 
 

 
 

Additive error model: ETS (A, Ad, N) 

Let 1 1
ˆ

t t t ty l b     denote the one-step forecast of ty  

assuming that the values of all parameters are known. Also, let 

t t ty    denote the one-step forecast error at time t. 

Hyndman and Khandakar (2008) found that 

 

The last expression can simplify by setting
*  . The 

three equations above constitute a state space model underlying 
the damped Holt's method. Note that it is an innovations state 
space model (Anderson and Moore 1979; Aoki 1987) because 
the same error term appears in each equation. Written in 
standard state space notation by defining the state vector as  

( , )t t tx l b  , and expressing (1) – (3) as 

                11t t ty x                                            (4) 

             1

1

0
t t tx x

 


 

   
    
   

                                  (5) 

The model is fully specified once the distribution of the error 

term t is stated. Usually the assumption is that these are 

independent and identically distributed, following a normal 

distribution with mean 0 and variance
2 , written as

2(0, )t NID � . The model ETS (A,A,N) has additive 

errors, additive trend and no seasonality, in other words, this is 
Holt's linear method with additive errors.  

Data and data analysis  
 

Building an ARIMA model  
 

The time-series data analysed in this section correspond to the 
monthly observations of the homogeneous rainfall datasets for 
the time period 1968:1 – 2003:12, for Kuantan and Malacca 
(Tropical rainforest climate) locations in peninsular Malaysia. 
Any modelling effort on these datasets will have to be based on 
an understanding of the variability in the rainfall datasets. 

The data was examined to check for the most appropriate class 
of ARIMA processes through selecting the order of the 
consecutive and seasonal differencing required making the 
series stationary, as well as specifying the order of the regular 
and seasonal autoregressive and moving-average polynomials 
necessary to adequately represent the time series model. The 
Autocorrelation Function (ACF) and the Partial 
Autocorrelation Function (PACF) are the most important 
elements of time-series analysis and forecasting. The ACF 
measures the amount of linear dependence between 
observations in a time series that are separated by a lag k. The 
PACF plot helps to determine how many autoregressive terms 
are necessary to reveal one or more of the following 
characteristics: time lags where high correlations appear, 
seasonality of the series, trend either in the mean level or in the 
variance of the series. The time plots in Fig. 2 upper panel 
shows that these time series could probably be described using 
an additive model, since the random fluctuations in the data are 
roughly constant in size over time. The autocorrelation 
function (Fig. 1) is a signature of periodicity in the time series. 
Figure 1 Autocorrelation function of monthly average 
 rainfall data 
 

Figure 1 Autocorrelation function of monthly average rainfall 
data with a periodicity behavior 
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Decomposing Time Series 
 
Decomposing a time series means separating it into its 
constituent components, which are: usually trend component, 
irregular component, and if it is a seasonal time series, a 
seasonal component. Figure 2 Time series decomposition plots 

 
Figure 2 Time series decomposition plots separating trend, 
seasonal and error components from the observed rainfall series 
 
 

 

 
 

Figure 2 shows the original time series (top), the estimated 
trend component (second from top), the estimated seasonal 
component (third from top), and the estimated irregular 
component (bottom). The plots show that the estimated trend 
component shows no evidence of moving trend. But, by 
smoothing using a simple moving average of order 100, plots 
of the smoothed time series gives a clearer picture of the trend 
component for the rainfall series, and observed that the 
Kuantan rainfall to have decreased from 1976 to 1984, then 
increased until 1997. Malacca rainfall trend seems to be 
increasing since 1979 as seen in Fig.3. Figure 3 plots of the 
smoothed time series data showing trend movement 
 

Figure 3: plots of the smoothed time series data showimg trend 
movement 

 

 

 
The basic approach to fit a suitable Seasonal ARIMA model is 
to transform a nonstationary monthly rainfall time series to 
stationary time series, in this, the time series were decomposed, 
the seasonal effects were calculated and subtracted from the 
series rendering the series free of seasonality. The first 
difference is taken and it is clear that the first difference of 
both series has zero mean. The orders p and q of the ARIMA 
models were identified and estimated for both series following 
Box and Jenkins methodology. Table 2 displays the results of 
fitted Seasonal ARIMA models. The models were selected 
based on information criteria.   
 

Table 2:  Results of the fitted SARIMA models 
 

 
 
In diagnostic checking, the residuals from the fitted SARIMA 
models were examined against adequacy. This is usually done 
by correlation analysis through the residual ACF/PACF 
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functions and the goodness-of-fit test by means of Ljung-Box 
test. If the residuals are correlated, then the model should be 
refined. Otherwise, the residuals are white noise and the model 
is adequate to represent the time series. Residuals from the 
SARIMA models were tested using Ljung-Box test as shown 
in Table 3. From the table, the hypothesis that the 
autocorrelations of the residuals are zero cannot be rejected for 
both models. This means that the residuals are uncorrelated, 
indicating that models are adequate, that is fits the series well. 
The autocorrelation function in (Fig. 4) also confirmed the 
Ljung-Box test results.  
 

Table 3 Ljung-Box Chi-Square test for residuals from  
SARIMA models 

 

 
 

Figure 4 Autocorrelation and Patial Autocorrelation Functions of 
residuals from fitted SARIMA models 

 

 

 

 
Exponential smoothing methods are useful for making 
forecasts, and require no assumptions about the correlations 
between successive values of the time series. However, to 
make prediction intervals for forecasts made using exponential 
smoothing methods, the prediction intervals requires that the 
forecast errors should be uncorrelated and normally distributed 
with mean zero and constant variance. The exponential 
smoothing state space models that adequately fit the data in can 
be described as the ETS (A, Ad, N). The parameters used in 
generating these models are shown in Table 4.  These 
parameters were chosen to generate data that look reasonably 
realistic. Clearly, the algorithm has a very high success rate at 
determining whether the errors should be additive or 
multiplicative. 

Table 4 ETS (A, Ad , N) models parameters 
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The sample correlogram in Fig. 5 shows that most sample 
autocorrelation coefficients of the residuals from the fitted ETS 
state space models are within the limits upon which the models 
are based, therefore the residuals are white noise suggesting 
that the models are adequate following (Ramasubramanian, 
2007). To confirm the evidence of no autocorrelations, the 
Ljung-Box test results in table 5 shows that there is evidence of 
no autocorrelations in the in-sample forecast errors, and the 
distribution of forecast errors. This suggests that the simple 
exponential smoothing method provides an adequate predictive 
model for Kuantan and Malacca rainfall, which probably 
cannot be improved upon.  

Figure 5 Autocorrelation and Patial Autocorrelation Functions of 
residuals from fitted State space models 

 

 

 
Table 5 Ljung-Box Chi-Square test for residuals from ETS State 

space models 

 
The p-values above 0.05 indicate the acceptance of the null hypothesis of 
model adequacy at significance level 0.05 (Wang et al. 2005) 
 

 
 
 
 

Conclusion 
 
Time-series analysis is an important tool in modelling and 
forecasting rainfall. Two time series analysis techniques were 
applied in this study, the state space models based on 
exponential smoothing and the Box-Jenkins modelling method. 
Seasonal ARIMA models and ETS state space models were 
developed. Both models were found to be adequate for 
forecasting. The diagnostic checking confirms the adequacy of 
the models. Although, this piece of information was not 
appropriate to predict the exact monthly average rainfall but 
could give us information that can help the decision makers 
establish strategies for proper planning of agriculture, drainage 
system and other water resource applications in Malacca and 
Kuantan. 
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