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An n (=2m) dimensional Kaehlerian space Kn
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Where the (,) followed by an index denotes the operation of covariant differentiation with res

Riemannian space. 
 

The Riemannian curvature tensor R���
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The Ricci tensor and the scalar Curvature tensor are respectively given by 
 
R�� = R���

�  and R = g��	R��          
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ABSTRACT 

Takano [1967] have studied decomposition of curvature tensor in a recurrent space. Sinha and Singh 
] have been studied and defined decomposition of recurrent curvature tensor field in a Finsler 

space. Singh and Negi studied decomposition of recurrent curvature tensor field in a Kaehlerian 
space. Negi and Rawat [1995] have studied decomposition of recurrent curvature tensor
Kaehlerian space. Rawat and Silswal [2007] studied and defined decomposition of recurrent curvature 
tensor fields in a Tachibana space. Further, Rawat and Kunwar Singh [
decomposition of curvature tensor field in Kaehlerian recurrent space of first order.

paper, we have studied the decomposition of curvature tensor fields 

vectors and a tensor field in Einstein-Kaehlerian recurrent space of first order and several theorem 
have been established and proved. 
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n is a Riemannian space, which admits a tensor field �

 

 

                                                                                                                             

n index denotes the operation of covariant differentiation with respect to the metric tensor

is given by  
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The Ricci tensor and the scalar Curvature tensor are respectively given by  
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] have studied decomposition of recurrent curvature tensor field in 

] studied and defined decomposition of recurrent curvature 
tensor fields in a Tachibana space. Further, Rawat and Kunwar Singh [2008] studied the 

rent space of first order. In the present 

paper, we have studied the decomposition of curvature tensor fields ����
�   in terms of two non-zero 

recurrent space of first order and several theorem 

Commons Attribution License, which permits 

 

��
� satisfying the conditions 

 (1.1) 

 (1.2) 

                                                                                                                                                           (1.3) 

pect to the metric tensor g��	of the 

 (1.4) 

Department of Mathematics, H.N.B. Garhwal University Campus, Badshahi Thaul, Tehri (Garhwal) -249199, (Uttarakhand), India 

 

 INTERNATIONAL JOURNAL  
 OF CURRENT RESEARCH  

space of first order”, International Journal of 



It is well known that these tensors satisfies the following identities  
   
 R���

�  = R��,� - R��,�  (1.5) 

 
�,� = 2��,�

�    (1.6) 

 
��
���� = −	���	��

�  (1.7) 

 
and   
 
��
���

�  = ��
���

�  (1.8) 

 
The holomorphically projective curvature tensor ����

�  is defined by 
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�  = ����

�  + 
�

(���)
 (���	��

�	- �����
� + �����

�	- ���	��
� + 2���	��

� ) (1.9) 

 
where ���	= ��

� ���   
 
Let us suppose that a Kaehlerian space is Einstein one, and then the Ricci tensor satisfies  
 

��� = 
�

�
 ��� ,  �,� = 0 

 
from which, we obtain 
 
���, � = 0 , ���,� = 0 

 

and  ���  = 
�

�
	��� 

 
The Bianchi identity for Einstein-Kaehlerian space are given by  
 

R���
�  + R���

�  + R���
�	  = 0     (1.10) 

 
and 
 

R���,�
�  + R���,�

�  + R���,�
�  = 0  (1.11) 

 
The Commutative formulae for the Curvature tensor fields are given as follows 
 

T,��
� − 	T,��

�  = T�	R���
�   (1.12) 

 

T�,��
� −	T�,��

�  = T	�
�	R���

� −	T�
�	R���

�    (1.13) 
 
A Einstein-Kaehlerian space is said to be Einstein-Kaehlerian recurrent space of first order, if its curvature tensor field satisfy the 
condition  
 

R���,�
� = λ�	R���

�     (1.14) 

 
where λ� is a non - zero vector and is known as recurrence vector field.  The following relations follow immediately from equation 
(1.14), 
 
R��,� = λ� R��  (1.15) 

 
and  
 
R,� = λ�R    (1.16) 
 

2. Decomposition of Curvature Tensor Field ����
�   

 

We Consider the decomposition of recurrent curvature tensor field R���
�  in the following form  
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R���
�  = V	�

� Φ� Ψ�     (2.1) 

 

where the non - zero tensor field V�
� and vector  Φ� , Ψ� are such that 

 

λ� V	�
� = P�     (2.2) 

 

Theorem (2.1) : Under the decomposition (2.1), the Bianchi identities for R���
�  takes the forms  

 
P� Φ� Ψ� + P� Φ� Ψ� + P� Φ� Ψ� = 0  (2.3) 

 
and  
λ� Φ�ψ� + λ� Φ�ψ� + λ� Φ�ψ� = 0    (2.4) 

 
Proof:- From Equations (1.10) and (2.1), we have 
 

V	�
�Φ� Ψ� + V�

�	Φ� ��  + V	�
�Φ� Ψ� = 0     (2.5) 

 
Multiplying (2.5), by λ� , and using (2.2), we get relation (2.3) 
 
P�	Φ� Ψ� + P� Φ� Ψ� + P� Φ� Ψ� = 0  

 
From Equations (1.11), (1.14) and (2.1), we have  
 

V�
� [ λ�	ϕ�	ψ� + λ�ϕ�ψ� + λ�	Φ�	ψ� ] = 0    (2.6) 

 
Multiplying (2.6) by �� and using (2.2), we get relation (2.4). 
 

Theorem (2.2) : Under the decomposition (2.1), the tensor field ����
� , 	��� and vectors 	ϕ� , ψ� satisfies the relations 

 
λ� R���

�  = λ�	R�� - λ�R�� = P� ϕ� ψ�      (2.7) 

 
Proof : With the help of Equations (1.5), (1.14) and (1.15), we have  
 
λ�R���

�  = λ� R��	- λ� R��       (2.8) 

 
Multiplying (2.1) by λ� , and using relation (2.2), we get 
 

λ� R���
�  = P� ϕ� ψ�      (2.9) 

 
in view of (2.8) and (2.9), we get the required relation (2.7). 
 

Theorem (2.3) : Under the decomposition (2.1), the quantities λ� and  V�
�	 behave like the recurrent vector and tensor field. 

The recurrent form of these quantities are given by 
 
λ�,� = μ�λ�			                                                                                                                                                                                (2.10) 
 

V�,�
�  = μ� V�

�        (2.11) 

 
Proof : Differentiating (2.7), covariantly with respect to ��, and using (2.1) and (2.7) , we obtain 
 
λ�,� V�

� ϕ�ψ� = λ�,� R��	 - λ�,� R��                                                                                                                                                (2.12) 

 
Multiplying (2.12) by  λ� and using (2.1) and (2.8), we get 
 
λ�,�(λ�R�� - λ�R��) = λ�(λ�,�R�� - λ�,�R��)                                                                                                                                  (2.13) 

 
Now, multiplying (2.13) by 	λ� , we have  
 
λ�,� (λ�R��	- λ�R��) λ� = λ�	λ�(λ�,�	R�� - λ�,�	R��)                                                                                         (2.14) 

 
Since the expression of right hand side of the above equation is symmetric in a and h, therefore 
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 λ�,�λ� = λ�,� λ� ,                                                                                                                                                                     (2.15) 
 
Provided that    λ�R�� - λ�R�� ≠ 0  

 
The vector field  λ� being non-zero, we can have a proportional vector μ�	such that 
 
λ�,� = μ�λ�       (2.16) 
 
Further, differentiating (2,2) w.r to �� and using (2.16), we get 
 

λ�V�,�
�  = P�,� – μ� P�      (2.17) 

 
from the above equation, it is obvious that 
 

λ� V�,�
� 	= λ� V�,�

�         (2.18) 
 
Since λ�	is a non-zero recurrence vector field, we can get a proportional vector field μ� such that 
 

V�,�	
�  = μ�V�

� 

 
 which complete the proof.   
 
Theorem (2.4) : Under the decomposition (2.1), the vector field P� , ϕ�, ψ�	 behave like recurrent vectors and their recurrent form 

are given respectively by 
 
P�,� = 2 μ� P�        (2.19) 
 
and    
 
(λ� −	μ� ) ϕ� ψ�	= ϕ�,� ψ�	+ ϕ� ψ�,�	    (2.20) 

 
Proof  Differentiating (2.2) covariantly w.r. to x�, and using equation (2.2), (2.10) and (2.11), we obtain the required result (2.19). 
Further, differentiating equation (2.1) covariantly w.r. to x�, and using equation (1.14), (2.1) and (2.11), we get the required 
recurrent form (2.20).  
 
Theorem (2.5) : Under the decomposition (2.1), the curvature tensor and holomorphically projective curvature tensor are equal if  
 

 Φ�	Ψ� {(P�	δ�
� − 	P�	δ�

�) + P� (F�
� F�

� − F�
� F�

� )} + 2 P� Φ�	Ψ� F�
� F�

�  = 0   (2.21) 

 
Proof: The equation (1.9), may be written in the form  
 

P���
� 	= R���

�  + D���
�        (2.22) 

 
where   
 

D���
� 	= 

�

���
 (	R�� δ�	

� − 	R�� δ�	
� + S�� F�	

� − S�� F�	
� + 2 S�� F�	

� )   (2.23) 

 
Contracting indices h and k in (2.1), we obtain 
 

R�� = 	V	�	
�  Φ�	Ψ�           (2.24) 

 
In view of equation (2.24), we have  
 

S�� = F�	
�	Φ�	Ψ� V	�	

�       (2.25) 

 
Making use of (2.24) and (2.25) in equation (2.22), we get  
 

D���
�  = 

�

���
 [Φ�	Ψ� {(V	�	

�  δ�	
� − V	�	

�  δ�	
� ) + V	�	

�  (F	�	
�  F�	

� − F	�	
�  F�	

�)} + 2 Φ�	Ψ� F	�	
�  F�	

� 	V	�	
� ]  (2.26)       

                         
In view of (2.23), it is clear that 
  

P���
� 	=  R���

�  iff D���
�  = 0, which in view of equation (2.26) gives 
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[Φ�	Ψ� {(V	�	
�  δ�	

� − V	�	
�  δ�	

� ) + V	�	
�  (F	�	

�  F�	
� − F	�	

�  F�	
�)} + 2 Φ�	Ψ� F	�	

�  F�	
� 	V	�	

� ] = 0     (2.27)              

 
Multiplying (2.27) by λ� and using (2.2), we obtain the required condition (2.21). 
 
Theorem (2.6) : Under the decomposition (2.1), the scalar curvature  R, satisfy the relation. 
 
λ�	R = g�� P�	Φ�	Ψ�   (2.28) 

 
Proof : Contracting indices h and  k in (2.1), we get  
 

R�� = 	V	�	
� Φ�	Ψ�      (2.29) 

 
Multiplying (2.29) by g�� both sides, we get  
 

g�� R�� = 	 g
�� V	�	

� Φ�	Ψ�    (2.30) 

 
in view of Equation (1.4), the above equation reduces to  
 

R = g��	V	�	
�	Φ�	Ψ�   (2.31)  

 
Now multiplying (2.31) by  λ� and using (2.2), we get  
 
   λ� R = g�� P�	Φ�	Ψ� 

 
 which complete the proof of the theorem. 
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