

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 9, Issue, 12, pp.63090-63095, December, 2017 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

REVIEW ARTICLE

DIFFERENTIATIONS OF SELECTION FOR CHOLINESTERASE INHIBITORS TO TREAT ALZHEIMER'S DISEASE BASED ON THE CLINICAL AND BIOLOGICAL ASPECTS

^{*,1,2}Koji Hori, ²Misa Hosoi, ^{1,3}Kimiko Konishi, ¹Michiho Sodenaga, ²Hiroi Tomioka and ⁴Mitsugu Hachisu

¹Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan ²Department of Psychiatry, Showa University Northern Yokohama Hospital, Yokohama, Yokohama, Japan ³Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/ Multiple Disabilities, Tokyo, Japan ⁴Department of Clinical Pharmacy, Division of Pharmaceutical Therapeutics, School of Pharmacy, Showa University, Tokyo, Japan

ARTICLE INFO	ABSTRACT
Article History: Received 15 th September, 2017 Received in revised form 12 th October, 2017 Accepted 19 th November, 2017 Published online 31 st December, 2017	There is no convention or rule to select one of three cholinesterase inhibitors, i.e., donepezil (D), galantamine (G) and rivastigmine (R) for Alzheimer's disease (AD). Therefore, in this article we will give our considerations regarding the differentiations of prescription among these three medicines based on the clinical symptoms and biological markers. In clinical points of view, prescription D is good for AD patients at mild cognitive impairment. At mild stage, when prominence of apathy, R should be prescribed and for those showing depression, anxiety, delusion, hallucination and
Key words:	aggressiveness, G should be prescribed. In biological points of view, with plasm brain derived neurotrophic factor (BDNF) contents and plasma cholinesterase (p-ChE) activity, we speculate that
Acetylcholine (ACh), Alzheimer's disease (AD), Brain derived neurotrophic factor (BDNF), Butylycholinesterase,	there might be critical values in both plasma BDNF contents and p-ChE activity in ADsymptoms. Therefore, we also speculate that G should be prescribed patients with low plasma BDNF or R with high p-ChE.

Copyright © 2017, Koji Hori et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Koji Hori, Misa Hosoi, Kimiko Konishi, Michiho Sodenaga, Hiroi Tomioka and Mitsugu Hachisu, 2017. "Differentiations of selection for cholinesterase inhibitors to treat alzheimer's disease based on the clinical and biological aspects", *International Journal of Current Research*, 9, (12), 63090-63095.

INTRODUCTION

Cholineacetyltransferase (ChAT), Cholinesterase inhibitor (ChEI), Mild cognitive impairment (MCI), Plasma cholinesterase activity.

In Japan, 3 cholinesterase inhibitors (ChEIs), donepezil (D), galantamine (G) and rivastigmine (R) are available for treatment of Alzheimer's disease (AD). ChEIs are not allowed to be prescribed combined with each other in a rule of Japanese medical insuarance, therefore we have to select one of these inhibitors depending on a symptom of AD. As D has been available since 1999 and other two ChEIs (G and R) have been available since 2011, D has long been prescribed and used to most AD in Japan. One important issue is that the three ChEIs, D, G or R is selected without rationalized treatment based on objective parameters to the symptoms. R and G are pharmacological unique in its nature inhibiting butyrylcholinesterase (BuChE) (Furukawa-Hibi et al., 2011)

and allosterically potentiating nicotinic ACh receptors (nAChR) addition to inhibiting acetylcholinesterase (AChE) activity, respectively (Geerts *et al.*, 2002). Therefore, we should consider these characteristics in case of selection of ChEIs. In this article, we propose the differentiation of selection of ChEIsto treat AD based on the clinical symptoms and biological markers taking into the difference of these three ChEI characteristics.

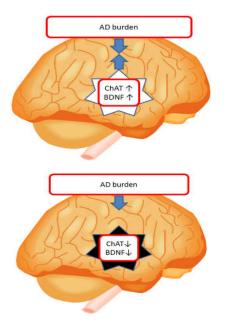
Putative changes in central nervous system in Alzheimer's disease at MCI and mild stage and differentiation of selection of cholinesterase inhibitors between at MCI stage and mild stage

The degeneration of cholinergic neurons have been observed in AD pathology (Whitehouse *et al.*, 2011). In this pathology, the activity of choline acetyltransferase (ChAT; an enzyme that synthesizes ACh) is thought to be downregulated in the mild to moderate stages of AD (Ferreira-Vieira *et al.*, 2016), however,

^{*}Corresponding author: Koji Hori,

Department of Neuropsychiatry, St. Marianna University School of Medicine, Kawasaki, Japan.

the activity of ChAT were reported to be upregulated in patients with MCI or early AD (deKosky et al., 2002). The upregulation of ChAT activity is explained as a compensation to keepACh activity remains normal. This compensatory reaction to the onset of AD may be attributable to hyperactivity of presynaptic cholinergic neurons. If this compensatory mechanism workswell, the activity of cholinergic system might be intact, rather than deteriorated. We speculate that when clinical symptoms appear, ever if the cholinergic neuronal system is burdened, the whole activity of AChis still intact, i.e., the cholinergic neuron is relative reserve and not degenerated. In fact, cholinergic neuron is reported to be reserved (Gilmor et al., 1999). In this context, we also speculate that when at MCI stage, symptoms occur at limited two situation. Onesituation is when patients with AD at the MCI stage relax, at which time the ACh level might be lower than normal. In this situation, these patients might show apathy (e.g., when they watch television, they fall asleep). The other situation is when they are more stressed than usual. In this situation, their cholinergic system might not be able to be up regulated any further because ChAT is already activated and does not permit further upregulation (Hori et al., 2016). Therefore, we speculate that when clinical symptoms occur, neuronal whole activity is intact (i.e. not degenerated). From these speculations, we hypothesize that in the MCI stage, AD pathology burdens the brain in AD patients, whileChAT activity is upregulated (deKosky et al., 2002), and consequently ACh levels are normal. Moreover, we also propose that in mild-stage AD, ACh gradually decreases because hyperactivity of presynaptic neurons may take a turn to early and rapid neuronal degeneration, consequently downregulating ChAT activity. Therefore, in the mild stage downregulation of ACh occurs and amyloid pathology increases. In the moderate stage, as we mentioned, because downregulation of ACh reaches a critical level, AA appears endogenously (Fig. 1a-b) (Hachisu et al., 2015).


Moreover, the activity of nAChR is also reported to be downregulated (Ogawa et al., 2006). Therefore, at mild stage in AD, not only downregulation of ACh but also downregulation of nAChR occur. Alternatively, we speculate that at MCI stage, the activities of nAChR might in normal levels because we consider that at MCI stage cholinergic neurons are reserved and amyloid pathology is not so prominent (Konishi et al., 2015). Moreover, BuChE exists in amyloid (Darvesh et al., 2012, Mizukami et al., 2016). Therefore, at MCI activity of BuChE might not be high and rather there might be possibly hyperactive of AChE, because of upregulation of ChAT. However, in mild stage the activity of BuChE might be high and that of AChE is relative low. Therefore, it is better to treat MCI with D rather than G and R. On the contrary, at mild stage in AD, nervous cells are degenerated and amyloid proliferate, then the activity of nAChR might be deteriorated and BuChE might be hyperactivated. Therefore, at mild stage in AD, G or R should be prescribed rather than D. The concepts of the selection of prescriptions are presence of compensatory mechanism (upregulation of ChAT) of ACh activityin MCI stage and not to hyperactivateChAT activity in order to sustain the compensatory mechanism adequately as long as possible. However, in mild stage changes of the concept to select the prescriptions should be done and the deterioration of compensatory mechanisms (upregulation of nAChR and ACh) occur in mild stage of AD. Therefore the concept of selection

of medicines is n order to cover the downregulations of nAChR and AChsystems.

Differentiation of selection for cholinesterase inhibitors based on clinical symptoms

As mentioned above, R is unique in its pharmacological character to inhibit not only AChE but also BuChE and G is so because G has not only an action of AChEI and allosteric potentiating capacity to nAChR (Furukawa-Hibi et al., 2011, Geerts et al., 2002). Therefore, we consider the characteristics of BuChE and nAChR in order to select ChELs at mild stage. In normal brain, AChE, which exists on neuronal cells is main enzyme to degrade ACh. In the AD brain, glia cells and amyloids proliferate and neuronal cells shrink, therefore AChE decrease and the main enzyme that degrade AChchages toBuChEthat exists on the glia cells and amyloids (Darvesh et al., 2012, Mizukami et al., 2016). Therefore, when AD progresses, the activities of AChEs decrease and BuChEs increase (Perry et al., 1978, Darveshh et al., 2003). Accordingly the ratio of BuChEs/AChEs increases. As mentioned above at MCI stage, even when AD pathology is burdened, nervous cells are almost normal. Therefore, main enzyme which catalysesACh is still AChE. However, at mild stage in AD, when nervous cells decrease and glia cells and amyloids increase, main enzymes those catalyseACh are changes to mainly BuChEnot AChE (Perry et al., 1978, Darveshh et al., 2003). In fact Perry et al. reported thatAChEs decrease with liner fashion and BuChEs increase with sigmoid fashion by the progression of AD (Perry et al., 1978). Moreover, BuChE is considered to accelerate an accumulation of amyloids, i.e., BuChE is considered to accelerate AD pathology (Darveshh et al., 2012). Therefore, when at mild stage, R which inhibits actions on both AChE and BuChEis suitable than D. Moreover, we consider that treatment of R is suitable to relativelyyounger patient with AD pathology. In relative older patients cognitive dysfunctions by both AD pathology and aging (Barnes et al., 2015). On the contrary, in relatively younger patient only AD pathology causes cognitive dysfunctions. Therefore, AD pathology is thought to be more pronounced in relatively younger patient than older patient when the same cognitive disturbances exist. We had better to consider that R should be prescribed for relatively younger patients with AD. Needless to say, at mild stage, downregulation of ACh is more severe than that at MCI stage. Moreover, downregulation of ACh is related with apathic symptom (Rea et al., 2015). Therefore, we should also prescribe R when the apathy is prominent. In fact, we have experienced at the relatively younger AD patient with apathy who have been prescribed D. When we changed the prescription to R from D, his clinical symptoms mainly apathy were ameliorated after the change to R from D (Horiuchi et al., 2014). Therefore, when the symptoms of apathy is prominent in relative younger patients with AD, Rshould beprescribed.

As for nAChR, this receptors exist not only on the postsynaptic neurons but also on the synaptic terminal of ACh, serotonin, noradrenaline and gamma amino butyric acids and potentiate release of these transmitters (Picciotto *et al.*, 2000). These neurons are related with depressive symptoms and anxiety (Stahl *et al.*, 2000). Moreover, we also commented that aging and AD pathology cause depression andanxiety to connect with symptoms of delusion, hallucination and aggressiveness (Hori *et al.*, 2012; Hosoi *et al.*, 2017).

Figure 1.

(A) MCI stage: AD pathology causes a burden in the brains of patients with AD; however, ChAT activity BDNF are upregulated and ACh is maintained at a normal level. (B) Mild stage: ACh gradually decreases because hyperactivity of presynaptic neurons may cause early and rapid neuronal degeneration with a consequent downregulation of ChAT activity and BDNF.Figures are reproduced from Hachisu et al. [8], with permission of Karger, Basel, Switzerland. Abbreviations: ACh, acetylcholine; AD, Alzheimer's disease; ChAT, choline acetyltransferase; BDNF: brain-derived neurotrophic factor, MCI, mild cognitive impairment

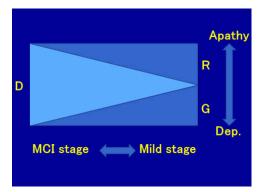
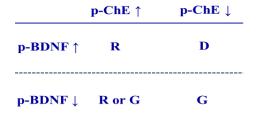



Figure 2. In clinical points of view, we should prescribe D patients with AD at MCI. At mild stage in AD, we should do R those with prominent apathy and G with depressive symptoms (depression, anxiety, delusion, hallucination and aggressiveness). AD: Alzheimer's disease, Dep: depressive symptoms, D: donepezil, G: galantamine, MCI: mild cognitive impairment, R: rivastigmine.

Table 1. We speculate that there are critical points (critical value) in both p-BDNF and p-ChE. We should separate AD patients into four groups, i.e., (1) high p-BDNF and high p-ChE group, (2) high p-BDNF and low p-ChE group, (3) low p-BDNF and high p-ChE group, (4) low p-BDNF and low p-ChE group. We should prescribe R patients with high p-BDNF and high p-ChE, D patients with high p-BDNF and low p-ChE group, G or R patients with low p-BDNF and high p-ChE group, and G patients with low p-BDNF and low p-ChE group. D: donepezil, G: galantamine, p-BDNF: plasma brain-derived neurotrophic factor, p-ChE: plasma cholinesterase activity, R: rivastigmine

Therefore, G is better to be prescribed to the patients with AD showing delusion, hallucination and aggressiveness. We also have experienced that an AD patient whose delusion, hallucination and aggressiveness were ameliorate by the prescription of G (Hori et al., 2012). We summarize that at MCI stage, compensatory mechanisms work and degeneration of nervous cells doesn't occur. Accordingly downregulations of ACh and nAChR don't occur. Therefore, main enzyme that degenerate ACh is AChE. We should prescribe D for MCI patients in order for compensatory mechanisms to work as long as possible. At mild stage, downregulations of ACh and nAChR occur because the degenerations of central nervous cells occur mainly those with cholinergic neurons with the deteriorations of compensatory reactions. Therefore, according to the symptoms those are related with downregulation of ACh or nAChR. We propose that patients whose symptoms prominent apathy should be prescribed R. On the contrary, the symptomsprominent depression, anxiety, delusion. hallucination and aggressiveness, G should be prescribed. Moreover, patients at MCI stage, D should be prescribed (Fig.2).

Biological markers as for differentiation of selection of cholinesterase inhibitors

In this chapter, we iscuss biological markers as for differentiation of selection of ChEIs. As we discuss below, we recommend toprescribe G, when theplasma brain-derived neurotrophic factor (p-BDNF) is lowand prescribe R, when he plasma cholinesterase (p-ChE) activity is high (Hosoi et al., 2015). BDNF is now considered to play a role to restore not only the depression but also to accelerate the synaptic plasticity of neurons in the hippocampus and BDNF accelerates the synaptic plasticity of neurons in the hippocampus, inducing a learning and memory and this phenomena are interpreted well known a long-term potentiation in the hippocampus (Hellweg and Jockers-Scherübl 1994, Heldt et al., 2007). The main symptoms of AD are deficit of memory and cognition and pathologically neurodegeneration; therefore, the loss of BDNF is easily assumed. There are many reports that BDNF at the mRNA (Garzon et al., 2002) and protein (Hock et al., 1998, Michalski and Fahnestock, 2003, Bendix et al., 2014) levels are decreased in the hippocampus and the cortex of the AD brain. Therefore, it is considered that production of BDNF is upregulated byACh.In fact, there are report that serum BDNF is increased by the treatment of ChEIs (Savaskan et al, 2000, Durany et al., 2000). We also speculate that among ChEIs, G is most favorable for upregulation of BDNF because activities of5-HT, NA and GABA neurons might beupregulated bypresynsptienAChR stimulation (Picciotto et al., 2000). In contrast, there are reports that the BDNF and activation of the receptor tropomyosin-related receptor kinase B (TrkB) are not reduced in AD symptoms (Lampón et al., 2012, Oropesa et al., 2014). We speculate that at MCI stage there might be a hyperactivity of BDNF because of a high activity of choline acetyltransferase (ChAT) in this stage, compensating AD pathologyin MCI (Hachisu et al., 2015). In MCI, BDNF and ChAT activities were hyperactivated because of a compensatory mechanism of AD pathology when there might not be prominent neuronal loss. In contrast, at a stage of mild AD, BDNF and ChAT activities go down. From these speculations, we recommend a prescription of ChEIthat if the p-BDNF is under the normal level, prescribe Gand is higher than the normal level, prescribe D.

The p-ChE is known as a nonspecific cholinesterase enzyme that hydrolyses many different choline-based esters (Oropesa et al., 2014). Therefore, p-ChE is not the AChEbut BuCh. When we prescribe R, p-ChE activity should be evaluated. Until now it is considered that high p-ChE activity is related tolow grade inflammation (Lampón et al., 2012), to reduce p-ChE activity is important to recover cognitive function of AD(Nakamura et al., 2014). Certainly, as a hyperactivity of p-ChEinduces low grade inflammation, that causes diabetes mellitus, hyperlipidemia (Inácio et al., 2006, Chaves et al., 2013) or psychiatric disorders (Haring et al., 2015). On the other hand, downregulation of p-ChE is related with anemia (Rice, 1977), liver dysfunction (Temel et al., 2015) and frail (Hubbard et al., 2008), which we speculate this might be related to downregulation of detoxication and antioxidant (Haghnazari et al., 2016). Therefore, it is important to keep p-ChE at an appropriate range of activity. Both higher and lower p-ChE activities might affected to cognition, and behavioral symptoms in various psychotic disorders and also psychiatric symptoms. We consider the regulation of p-ChE activity can be work well on AD. The former example is reported by Bando and Nakamura (Bando and Nakamura, 2016). They reported that 40% reduction of p-ChE activity was related with the reduction of behavioral symptoms in AD. The later example was reported by Cerejeira et al. (Cerejeira et al., 2011). They reported that low level of p-ChE in before operation was related with the occurrence of delirium in postoperative phase. We consider that we should select R or D from the p-ChE activity in the patients (Hosoi et al., 2017). Therefore it is important to keep p-ChE between at appropriate normal range.

- From these considerations above, we emphasize that there are critical points (critical value) in both p-BDNFconcentration and p-ChE activity. We should separate AD patients into four groups, i.e., (1) high p-BDNF and high p-ChE group, (2) high p-BDNF and low p-ChE group, (3) low p-BDNF and high p-ChE group, (4) low p-BDNF and low p-ChE group. Prescribe R is good to patients with high p-BDNF and high p-ChE, prescribe D is patients with high p-BDNF and low p-ChE group, prescribe G or R is patients with low p-BDNF and high p-ChE group, and prescribe G is patients with low p-BDNF and low p-ChE group (Table1).As for in patients with high p-BDNF and low p-ChE group, there might be a possibility that agent with not only inhibition of AChE and BuChE but also potentiation of nAChRmight beimportant.
- There is no data about the BDNF and AD. However, as for p-ChE we will report the results between the p-ChE and AD. In this report we will also comment the critical point (critical value) of p-ChEactivity for differentiation of selection of R or D.

Summary

In this article, we discussed the differentiation for choice of ChEIs based on the characteristics of BuChE and nAChR activities in AD in view of clinical symptoms and biological markers. In clinical points of view, we should prescribe D patients with AD at MCI. At mild stage in AD, when the apathy is prominent we recommend to prescribeR and depression, anxiety, delusion, hallucination and aggressiveness are observed, G should be prescribed. In biological points of view, with p-BDNF concentration and pChE activity, R should be prescribed to patients with high p-BDNF and high p-ChE, D should be prescribed to patients with high p-BDNF and low p-ChE group, G or R should be prescribed to patients with low p-BDNF and high p-ChE group, and G should be prescribed to patients with low p-BDNF and low p-ChE group. From these points of views, agents those have AChEI, BuChEI and the ability that potentiates nAChR, also might be needed in future.

Conflict of interest

Koji Hori received lecture fees from Eisai Co. Ltd., Pfizer Japan Inc., Novartis Pharma KK, Daiichi Sankyo Inc., Ono Pharmaceutical Co. Ltd., Janssen Pharmaceutical KK, Yoshitomi Yakuhin Co. Meiji Seika Pharma Co. Ltd.and Otsuka Pharmaceutical KK, and Mitsubishi Tanabe Pharma Co.MitsuguHachisu received lecture fees from Meiji Seika Pharma Co. Ltd. However, the sponsors had no role in study design, data collection and analysis including our before presented articles, decision to publish, or preparation of thismanuscript.

Disclosure Statement

Koji Hori received funding form Ito Memorial Fund and MitsuguHachisu received funding from Astellas Pharma Inc., Meiji Seika Pharma Co. Ltd., Dainippon Sumitomo Pharm Co. Ltd., Eli Lilly Japan KK, and Shionogi & Co. Ltd. However, these funds were no related with role in study design, data collection and analysis including our before presented articles, decision to publish, or preparation of this manuscript.

Author Contributions

Koji Hori coordinated the study about the inflammatory markers in neuropsychiatric disorders and mainly wrote this article.Misa Hosoi conducted the study about the relationships between the p-ChE and AD. All member other than Misa Hosoi and Koji Hori also contribute to this manuscript as that Kimiko Konishi and MitsuguHachisu measure serum anticholinergic activity as the biological marker of inflammation and gave idea and advice about writing this article, that MichihoSodenagaand HiroiTomiokaprovided an ideas on writing this article, and gave idea about treatment option against inflammation and anticholinergic activity in psychiatric disorders. All checked the manuscript.

Acknowledgments

Dr. Chiaki Hashimoto (St. Mariana University School of Medicine, Department of Neuropsychiatry, Kawasaki, Japan), Dr. Ouga Sasaki (St. Mariana University School of Medicine, Department of Neuropsychiatry, Kawasaki, Japan), Dr. ItsukuSuziki (Kawasaki Municipal Tama Hospital, Department of Neuropsychiatry, Kawasaki, Japan)are other member in study group of geropsychiatry in St. Mariana University School of Medicine and all checked the manuscript.

REFERENCES

Bando N. and Nakamura Y. 2017. Preliminary evidence that rivastigmine-induced inhibition of serum butyrylcholinesterase activity improves behavioral symptoms in Japanese patients with Alzheimer's disease. *Geriatr Gerontol Int.*, 17:1306-1312 doi:10.1111/ggi. 12865. [Epub ahead of print]

- Barnes JN. Exercise, cognitive function, and aging. Adv Physiol Educ. 2015; 39:55-62.
- Bendix I, Serdar M, Herz J, von Haefen C, Nasser F, Rohrer B, Endesfelder S, Felderhoff-Mueser U, Spies CD. and Sifringer M. 2014. Inhibition of acetylcholinesterase modulates NMDA receptor antagonist mediated alterations in the developing brain. *Int J Mol Sci.*, 15: 3784-3798.
- Cerejeira J, Batista P, Nogueira V, Firmino H, Vaz-Serra A. and Mukaetova-Ladinska EB. 2011. Low preoperative plasma cholinesterase activity as a risk marker of postoperative delirium in elderly patients. *Age Ageing.*, 40: 621-626.
- Chaves TJ, Leite N, Milano GE, Milano GE, Souza RL, Chautard-Freire-Maia EA. and Furtado-Alle L. 2013. -116A and K BCHE gene variants associated with obesity and hypertriglyceridemia in adolescents from Southern Brazil. *Chem Biol Interact.*, 203:341-343.
- Darvesh S, Hopkins DA. and Geula C. 2003. Neurobiology of butyrylcholinesterase. *Nat Rev Neurosci.*, 4: 131–138.
- Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A. and Geula C. 2012. Butyrylcholinesterase is associated with βamyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. *J Neuropathol Exp Neurol.*, 71: 2-14.
- DeKosky ST, Ikonomovic MD, Styren SD, Beckett L, Wisniewski S, Bennett DA, Cochran EJ, Kordower JH. and Mufson EJ. 2002. Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. *Ann Neurol.*, 51: 145-155.
- Durany N, Michel T, Kurt J, Cruz-Sánchez FF, Cervás-Navarro J. and Riederer P. 2000. Brain-derived neurotrophic factor and neurotrophin-3 levels in Alzheimer's disease brains. *Int J Dev Neurosci.*, 18: 807– 813.
- Ferreira-Vieira TH, Guimaraes IM, Silva FR. and Ribeiro FM. 2016. Alzheimer's disease: targeting the cholinergic system. *Curr Neuropharmacol.*, 14: 101-115.
- Furukawa-Hibi Y, Alkam T, Nitta A, Matsuyama A, Mizoguchi H, Suzuki K, Moussaoui S, Yu QS, Greig NH, Nagai T. and Yamada K. 2011. Butyrylcholinesterase inhibitors ameliorate cognitive dysfunction induced by amyloid-β peptide in mice. *Behav Brain Res.*, 225: 222-229.
- Garzon D, Yu G. and Fahnestock, M. 2002. A new brain derived neurotrophic factor transcript and decrease in brain-derived neurotrophic factor transcripts 1, 2 and 3 in Alzheimer's disease parietal cortex. J Neurochem., 82: 1058–1064.
- Geerts H, Finkel L, Carr R. and Spiros A. 2002. Nicotinic receptor modulation: advantages for successful Alzheimer's disease therapy. *J Neural Transm Suppl.*, 62: 203-216.
- Gilmor ML, Erickson JD, Varoqui H, Hersh LB, Bennett DA, Cochran EJ, Mufson EJ. and Levey AI. 1999. Preservation of nucleus basalis neurons containing choline acetyltransferase and the vesicular acetylcholine transporter in the elderly with mild cognitive impairment and early Alzheimer's disease. *J Comp Neurol.*, 411: 693-704.
- Hachisu M, Konishi K, Hosoi M, Tani M, Tomioka H, Inamoto A, Minami S, Izuno T, Umezawa K, Horiuchi K. and Hori K. 2015. Beyond the hypothesis of serum

anticholinergic activity in Alzheimer's disease: acetylcholine neuronal activity modulates brain-derived neurotrophic factor production and Inflammation in the brain. *Neurodegener Dis.*, 15:182-187.

- Haghnazari L, Vaisi-Raygani A, Keshvarzi F, Ferdowsi F, Goodarzi M, Rahimi Z, Baniamerian H, Tavilani H, Vaisi-Raygani H, Vaisi-Raygani H. and Pourmotabbed T. 2016.
 Effect of acetylcholinesterase and butyrylcholinesterase on intrauterine insemination contribution to inflammations, o xidative stress and antioxidant status; a preliminary report. *J Reprod Infertil.*, 17: 157-162.
- Haring L, Koido K, Vasar V, Leping V, Zilmer K, Zilmer M. and Vasar E. 2015. Antipsychotic treatment reduces psychotic symptoms and markers of low-grade inflammation in first episode psychosis patients, but increases their body mass index. *Schizophr Res.*, 169: 22-29.
- Heldt SA, Stanek L, Chhatwal JP and Ressler KJ. 2007. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. *Mol Psychiatry*, 12: 656–670.
- Hellweg R and Jockers-Scherübl M, 1994. Neurotrophic factors in memory disorders. *Life Sci.*, 55: 2165–2169.
- Hock C, Heese K, Müller-Spahn F, Hulette C, Rosenberg C. and Otten U. 1998. Decreased trkAneurotrophin receptor expression in the parietal cortex of patients with Alzheimer's disease. *Neurosci Lett.*, 241: 151–154.
- Hori K, Hosoi M, Konishi K, Sodenaga M, Hashimoto C, Sasaki O. *et al.* 2016. Cholinesterase inhibitors as a disease-modifying therapy for Alzheimer's disease: the anticholinergic hypothesis. *Austin J ClinNeurol.*, 3: 1091.
- Hori K, Konishi K, Tomioka H, Tani M, Minegishi G, Tanaka H, Akita R, Yokoyama S, Oshio T. and Hachisu M. 2012. Galantamine for aggressive behavior in Alzheimer's disease. J New Remedies Clinics, 61: 1304-1305.
- Horiuchi K, Hori K, Hosoi M, Konishi K, Tomioka H. and Hachisu, M. 2014. Rivastigmine for relatively younger Alzheimer's disease patient. Brain DisordTher 2014, *Brain Disord Ther.*, 3:4 http://dx.doi.org/10.4172/2168-975X. 1000133
- Hosoi M, Hori K, Tomioka H, Konishi K, Sodenaga M. and Hachisu M. 2017. The plasma cholinesterase activity as a marker of effectiveness of rivastigmineTheranostics Brain Disord., 1: 555559.
- Hosoi M, Hori K, Konishi K, Tani M, Tomioka H, Kitajima Y, Akashi N, Inamoto A, Minami S, Izuno T, Umezawa K, Horiuchi K and Hachisu M. 2015. Plasma cholinesterase activity in Alzheimer's disease. *Neurodegener Dis.*, 15:188-190.
- Hubbard RE, O'Mahony MS, Calver BL and Woodhouse KW.2008. Plasma esterases and inflammation in ageing and frailty. *Eur J Clin Pharmacol.*, 64: 895-900.
- Inácio Lunkes G, Stefanello F, Sausen Lunkes D, Maria Morsch V, Schetinger MR. and Gonçalves JF. 2006. Serum cholinesterase activity in diabetes and associated pa thologies. *Diabetes Res Clin Pract.*,72:28-32.
- Konishi K, Hori K, Tani M, Tomioka H, Kitajima Y, Akashi N, Inamoto A, Kurosawa K, Yuda H, Hanashi T, Ouchi H, Hosoi M and Hachisu M. 2015. Hypothesis of endogenous anticholinergic activity in Alzheimer's disease. *Neurodegener Dis.*, 15: 149-56.
- Lampón N, Hermida-Cadahia EF, Riveiro A. and Tutor JC. 2012. Association between butyrylcholinesterase activity and low-grade systemic inflammation. *Ann Hepatol.*, 11: 356-363.

- Michalski B and Fahnestock M. 2003. Pro-brain-derived neurotrophic factor is decreased in parietal cortex in Alzheimer's disease. *Brain Res Mol Brain Res.*, 111: 148–154.
- Mizukami K, Akatsu H, Abrahamson EE, Mi Z. and Ikonomovic MD. 2016. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease. *Neuropathology*, 36:135-145.
- Nakamura Y, Imai M, Shigeta M, Shirahase T, Kim H, Kiyose K, Fujii A and Homma A. 2014. Relationship between changes in plasma butyrylcholinesterase activity and effects on cognitive function due to treatment with a rivastigmine patch in patients with mild to moderate Alzheimer's disease. *Jpn J Geriatr Psychiatry*, 25: 566–574.
- Ogawa M, Iida Y, Nakagawa M, Kuge Y, Kawashima H, Tominaga A, Ueda M, Magata Y. and Saji H. 2006. Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer's disease. *Nucl Med Biol.*, 33: 249-254.
- Oropesa AL, Pérez-López M. and Soler F. 2014. Characterization of plasma cholinesterase in rabbit and evaluation of the inhibitory potential of diazinon. *Ecotoxicol Environ Saf.*, 100: 39-43.
- Perry EK, Tomlinson BE, Blessed G, Bergmann K, Gibson PH. and Perry, RH. 1978. Correlation of cholinergic abnormalities with senile plaques and mental test scores in senile dementia. *Br Med J.*, 25: 1457–1459.

- Picciotto MR, Caldarone BJ, King SL. and Zachariou V. 2000. Nicotinic receptors in the brain. Links between molecular biology and behavior. *Neuropsychopharmacology*, 22: 451-465.
- Rea R, Carotenuto A, Traini E, Fasanaro AM, Manzo V. and Amenta F. 2015. Apathy treatment in Alzheimer's disease: interim results of the ASCOMALVA trial. J Alzheimers Dis., 48: 377-383.
- Rice EW. 1977. Plasma fibrinogen, cholinesterase activity, and anemia: utility of fibrinogen in multiphasic screening and in assessing the activity of disease. *Clin Chem.*, 23: 741-742.
- Savaskan E, Müller-Spahn F, Olivieri G, Bruttel S, Otten U, Rosenberg C, Hulette C. and Hock C. 2000. Alterations in trk A, trk B and trk C receptor immunoreactivities in parietal cortex and cerebellum in Alzheimer's disease. *EurNeurol.*, 44: 172–180.
- Stahl SM. 2000. Depression and bilopar disorders. Stahl's essential psychopharmacology. : Cambridge University Press: 135-197.
- Temel HE, Temel T, Cansu DU. and Ozakyol A. 2015. Butrylcholinesterase activity in chronic liver disease patien ts and correlation with Child-Pughclassification and MELD scoring system. *Clin Lab.*, 61: 421-426.
- Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT. and Delon MR. 1982. Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. *Science*, 215: 1237–1239.
