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INTRODUCTION 
 
The problems of hydromechanics of two-phase (heterogeneous, multiphase, weighted) flows are extremely important for various 
technical and technological problems: hydro and heat power engineering; oil, gas and chemical industries; hydraulic engineering 
and water management; drilling, environmental protection and agriculture, etc. The range of problems of this topic is extreme
wide and includes the flows of such systems as "liquid (or gas) 
between which mass, momentum and energy can be exchanged.
problem and develops in several directions, each of which has its own specifics and characteristics, both from the point of view of 
the theoretical description and the experimental study 
flows are established only without taking into account external mass transfer (ie, for flows of constant mass). In the presence of 
external mass transfer (ie, attached or detachable mass), the hydrodynamic parameters of the flow can significantly change. S
flows are often encountered in problems: distribution (or combined) oil and gas, and water pipes (channels); blowing (or suction) 
while controlling the boundary layer; Injection and separation systems; scattering and drainage pipes (channels); sedimentati
tanks of continuous action and with hydromechanical cleaning, etc. Common to these problems is that the flow in their flow part 
occurs with a change in mass (ie, with the addition or detachment of mass along the path). Their account is necessary for a 
complex solution of the problems of hydrodynamics of two
 

Basic equations of motion 
 

To construct the basic equations of motion, we consider a two
(a liquid or a gas) and a sink (solid particles, bubbles or droplets) of phases whose masses and mixtures as a whole continuo
change due to disconnection from them or attachment to them he new masses of both phases. Under thes
the basic equations of hydromechanics (consisting of the equations of continuity, dynamics and energy) of two
mass transfer, we select an arbitrary volume of the mixture V (t) bounded by the surface S (t).
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ABSTRACT 

The work is devoted to the construction of the basic equations of hydromechanics of two
with external mass transfer. The flow of a two-phase liquid is regarded as a continuum consisting of a 
large number of different groups of particles. The derivation of the phenomenological equations of 
motion is given taking into account both the external attached (or detachable) mass and the phase 
transitions within the medium. By applying fundamental conservation equations, the equations of 
mass, momentum and energy transfer for individual phases and the medium as a whole are obtained. 
It is shown that from the obtained systems of equations, in the absence of sources (sinks) of mass, 
momentum and energy, as a particular case, the known equations of hydromech
flows follow. The obtained equations of motion are valid for describing the component of the mixture 
and the medium with any physical and mechanical properties. For closure them, one can use 
thermodynamic and rheological equations of state, as well as expressions for the heat flux, interphase 
forces, the mass of phase transitions, and heat transfer between phases.
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Equation of continuity 
 
It is a mathematical formulation of the law on the conservation of matter, which in the presence of external sources (or sinks) of 
mass and phase transitions is formulated as follows: the total time derivative of the mass of the medium (phase) in an arbitrary 
volume is equal to its change as a result of the addition (or detachment) of particles and phase transitions. The above for the i-th 
phase of the mixture is written in the integral form: 
 

∫ ��(����)�(�)
�� + ∫ ������П�� = ∫ (�∗� + (−1)�æ)

�(�)�(�)
��.                 .......…………………………………………………….(1) 

 

where �� =
�

��
;	� = 1.2	 here and below, the subscript 1 refers to the carrier (fluid or gas), and 2 refers to the incompatible (solid 

particles, drops or bubbles) phase of the mixture;��, �� − true density (�� = � �/��, where � �,�� −mass and volume� −
�ℎ	�ℎ���)	����ℎ�����������������������ℎ�� − �ℎ	�ℎ���(�� = ��/� where V is the volume of the mixture); U_in is the 
projection of the velocity vector of the ith phase U _⃗i on the direction of the outer normal n ;⃗ q _ (* i) is the specific mass of the i-
th phase added (or detachable, for this q_ (* i) <0); æ is the specific mass of the phase transition from the carrier phase to the 
incommensurable phase.      Under the condition of motion with continuously differentiable characteristics and applying the known 
Gauss-Ostrogradsky formula to the second integral on the left-hand side of (1), in view of the arbitrariness of the chosen volume, 
we obtain the continuity equation for the i-th phase of the mixture in the differential form 
 

��(����) + ∇��������⃗ �� = �∗� + (−1)�æ                                                        ……………………………………………………….(2) 
 
Where ∇-nabla (the Hamiltonian operator). 
 
Summing (1) or (2) over i, we can obtain a differential equation of continuity for a two-phase mixture as a whole 
 

���	+ ∇	�����⃗ � = �∗,                                                                                     ………………………………………………………..(3) 
 

whereρ and U  ⃗are the density and velocity vector of a two-phase medium (� = ∑ ����; ���⃗ = ∑(�������⃗ �)/�);	�∗- is the specific 
mass of the mixture (�∗ < 0) added (or detachable, with (�∗ = ∑ �∗�)). 
 
Equations of dynamics: These include equations expressing the vector measures of mechanical motion-quantity of movement  
(impulce  of the body) and its moment with respect to a certain center (angular momentum or kinetic moment). In the presence of 
external mass transfer, the theorem on the change in the momentum can be formulated as follows: the total time derivative of the 
amount of motion of the medium in an arbitrary volume is equal to the sum of all external (mass, surface and interphase) forces 
applied to it, as well as the amount of motion of the attached (or detachable) mass and phase transitions per unit time. This theorem 
for the i-th phase of a two-phase mixture is written in integral form: 
 

∫ ��(�������⃗ �)�(�)
�� + ∫ (�������⃗ �)��	��� = ∫ ��������⃗�(�)�(�)

�� + ∫ ���⃗���� + + ∫ [���⃗ ∗��∗�+(−1)�(��⃗ � + ���⃗ ææ)]��
�(�)�(�)

,    ………..(4) 

 

Where �⃗������⃗ �–the share vector of mass and interphase forces of the i-th phase; ��� = �⃗���⃗ �,�⃗�– the specific stress vector of the 

surface forces of the i-th phase;���⃗ ∗�,���⃗ æ - the velocity vector of the attached (or detachable) mass of the i-th phase and the phase 

transitions (the carrier phase into the one being carried).In the region of continuous motions, from (4) taking into account (2) and 
the Gauss-Ostrogradsky formula, we obtain the equation of dynamics for the i-th phase of the mixture in the differential form 
 

����(�����⃗ �	+ (���⃗ �	∇)���⃗ �	) = ��������⃗ + ∇(��	�����⃗ ) + (−1)�[��⃗ � + (���⃗ æ − ���⃗ �	)æ]+ 	(���⃗ ∗� − ���⃗ �)�∗                  ……………………………(5) 
 
Summing (5) with respect to i, we obtain the differential equation of momentum for a two-phase mixture as a whole:  
 

�(�����⃗ + (���⃗ ��
∇)���⃗ ) = ��⃗ + ∇�⃗ + (���⃗ ∗� − ���⃗ )�∗,                                                                                ……………………………(6)   

 

where��⃗ = ∑ ��������⃗ ,�⃗ = ∑ �����⃗ . 
 
In the problems of dynamics, one must take into account not only the quantities of motion, but also its moment with respect to the 
center. The dynamic characteristic of this vector measure of mechanical motion is the moment of momentum relative to the center, 
which is expressed by the vector product of the radius vector of the point drawn from this center by the momentum. If the internal  
moments and the distributed (mass and surface) pairs of forces are absent in the medium, the theorem on the change of the angular 
momentum for the medium (phase) is formulated as follows: The total derivative with respect to time from the moment of the 
amount of motion of the medium (phase) in an arbitrary volume calculated relative to the center is equal to the sum of the moments 
of external (mass, surface and interphase) forces, as well as the angular momentum of the attached (or detachable) mass and phase 
transitions relative to the same center.  This theorem for the i-th phase of the medium as a whole leads to the establishment of the 
symmetry of the stress tensor, ��� = ���	[8]. The equation of the momentum does not contain new unknowns, but simply reduces 
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the number of unknown components of stress tensors from nine to six. Under these conditions, the equations of the dynamics of 
two-phase media with external mass transfer will be written in this form 
 

�(�����⃗ + (���⃗ ∙∇)���⃗ ) = ��⃗ + ∇�⃗ + (���⃗ ∗	− ���⃗ )�∗, ��� = ���.                            ……………………………………………….(7)   

 
Equations of energy. During the transfer of liquid media, some types of energy are converted into others (mechanical energy into 
thermal energy), the regularity of which is realized on the basis of the energy balance equation derived from the energy change 
theorem. For a medium moving with an external mass transfer, the theorem on the change in energy is formulated as follows: he 
total derivative of the sum of the kinetic and internal (thermal) energy of the medium (phase) in an arbitrary volume is equal to the 
sum of the powers (works per unit time) of external (mass, surface and interfacial) forces applied to this volume and its surface, 
heat plus the kinetic and internal energy of the attached (or detachable) mass and phase transitions. We write it for the i-th phase of 
the mixture in integral form 
 

∫ ��(������)�(�)
�� + ∫ ��������	��� = ∫ ����(����⃗�(�)�(�)

∙���⃗ �)�� + ∫ ��(������⃗ � − −��
∗)�� + (−1)� ∫ [(�����⃗ � ∙���⃗ �) + �� +�(�)�(�)

�ææ]�� + ∫ �∗��∗�æ
��,

�(�)
                                                                                   …………………………………………………...(8) 

 

где�� = �� +
��

�

�
;		�∗� = 	�∗� +

�∗�
�

�
;	�æ = �æ +

�æ
�

�
;	��, �∗,�æ – internal energy of a mass unit of the i-th phase, external mass and 

phase transitions; �⃗�
∗ − the specific heat syrup vector to the �-th phase from the medium through the surface 

�(�);		
��

�

�
;		

�∗�
�

�
;	

�æ
�

�
	−kinetic energy of a unit mass of the �-th phase, external mass and phase transitions. In (8), according to the 

Gauss-Ostrogradsky theorem from integrals over the surface to the integral over the volume, we obtain the following differential 
equations of total energy for the i-th phase of the mixture. 
 

����	(���� 	+ (���⃗ � ∙∇)���⃗ �) = ����(����⃗ ∙���⃗ �) + ���(�����⃗ ∙���⃗ � − ��
∗���⃗ )�� + (�∗� − ��)�∗� + +(−1)�[(�����⃗ � ∙���⃗ �) + �� + (�æ − ��)æ]		 …….(9) 

 
and for a two-phase medium as a whole.  
 

�����	+ (���⃗ � ∙∇����⃗ �) = �(�⃗ ∙���⃗ ) + ���(�⃗ ∙���⃗ − �∗���⃗ ) + (�∗	− �)�∗,                                                                   …………………(10) 
 
where� = ∑ �� ,�∗	= ∑ �∗�,�∗���⃗ = ∑ �∗�����⃗ , 
 
In the conditions of slowly changing flows of two-phase media with external mass transfer (ie, at velocities of the medium flow is 
much less than the speed of sound), one can use the internal energy equation. This equation for the medium as a whole can be 
obtained from a comparison of equation (10) with the kinetic energy equation [8], in the following form 
 

�����	+ (���⃗ � ∙∇��) = −∇(�⃗∗ + �∗) + (�∗	− �)	�∗,                                                                                          …………………...(11) 
 
where�∗-specific power of internal forces of the medium with external mass transfer:  
 

�∗ = −�⃗������⃗ − 0,5(���⃗ − ���⃗ ∗)
��∗                                                                                                                      …………………...(12) 

 
The set of hydromechanical equations for the i-th phase (2), (5), (9) and the medium as a whole (3), (7), (10), (11) add a 
generalized system of equations for two-phase flows with external heat and mass exchange and are valid for Description of the 
environment with  favorite physical properties. The analysis showed that these equations are general, since the proposed earlier 
different forms of equations of two-phase media [1-7] can be obtained from these as special cases by appropriate transformations 
(under certain assumptions).However, the system of equations for two-phase media with external heat and mass transfer is 
uncertain. For its closure it is necessary to attract thermodynamic and rheological equations of state, as well as expressions for the 
heat flux, interphase forces and heat transfer between phases. These additional (defining) relations are established in the 
construction of a mathematical model of a particular studied medium. 
 
Model of viscous media: In many cases, for a mathematical description of disperse systems (suspension, solutions, petroleum 
products), a model of a quasi-homogeneous medium can be effectively applied. In this case, the disperse system is regarded as a 
homogeneous mixture with some effective shear viscosity �. In the case of a small concentration of suspended particles φ in the 
medium flows, the effective shear viscosity μ can be determined by Einstein's formula� = ��(1+ 2,5�), where �� − shear 
viscosity of the carrier medium (liquid). Under these conditions, the flow of the medium qualitatively coincides with a 
homogeneous medium in which the components of the stress tensor are connected by the components of the strain rate tensor 
according to Newton's law. For a viscous incompressible medium we have: 
 

��� = �

−� + 2�
���

���
,			при	� = �

� �
���

���
+

���

���
� ,при	� ≠ �

�                                                                                                …………………………………(13) 
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e=сT, �∗	= сT∗,�∗ = −�∇�                                                                                                       …………………………………...(14) 
 
whereР- pressure, с -heat capacity (in an incompressible viscous medium � = �� = ��); T, �∗  –temperature of the main (current) 

and attached (or detachable) mass of the medium; � – кcoefficient of thermal conductivity. 
 
Substituting expressions (13) and (14) into the system of equations of motion (3), (7), and (11) and taking into account that for an 

incompressible medium ρ, μ, c, λ, the constants, we can write∇���⃗ = �; 
 

�����⃗ + (���⃗ ∙∇)���⃗ = �⃗ − ���∇P + ν∇����⃗ + ����⃗ ∗ − ���⃗ ∗��,                                                          ……………………………………..(15) 
 

��T + (���⃗ ∙∇)T = �∇�� +
2ν

�
���
� + [(�∗− �) + �]	�, 

 

where��� = 0,5	�
���

���
+

���

���
� ,� =

����⃗ ∗����⃗ )��
��

�
�

��
;ν–coefficient of kinematic viscosity, ν = �/� ; � – coefficient of temperature 

conductivity, � =
�

��
;� = �∗/� 

 
The system (15) is the basic equation of hydromechanics of a viscous incompressible medium with external heat and mass transfer. 

Of these, in the absence of external sources (or sinks) of the mass � = 0, momentum ����⃗ ∗ − ���⃗ �� = 0 and energy [(�∗− T) +

�]� = 0,  as a particular case one can obtain the well-known Navier-Stokes equations of motion [9]. 
 

∇���⃗ = 0,�����⃗ + ����⃗ ∙∇����⃗ = F�⃗ − ���∇� + +ν∇����⃗ ,                                                          ………………………………………..(16) 
 
and the heat conduction equation for a viscous incompressible medium [9]. 
 

��T����⃗ ∙∇�T = �∇�� + 2ν���(
���

���
+

���

���
)�                                                                       ………………………………………..(17) 

 
An analysis of the systems of hydrodynamics equations for a viscous incompressible medium (15) shows that they form a system 
of five equations (one equation of continuity, three equations of dynamics and one heat equation) for finding five 

quantities�,���⃗ (��,��,��)	 and Т (other quantities�,ν,�,�,�∗,�,�∗,� the equations entering into the system of equations of 

motion (15) are given), i.e. system (15) is closed. 
 
The conclusion 
 
The equations of motion derived from the general conservation laws establish a relationship between the temporal and spatial 
changes in velocity, pressure, temperature in any point in the medium in which the process of matter transfer takes place. Their 
study makes it possible to construct a number of physical phenomena and solve a variety of particular problems. When solving a 
particular problem, it is necessary to choose from all these solutions those that satisfy certain additional conditions arising from its 
physical meaning. Such additional conditions are often the so-called initial and boundary conditions. The initial conditions are 
given only when studying nonstationary processes and are specified in the fact that for a certain instant of time � = ��    (usually 
believe� = 0) should be knowna function, for example�|��� = �(�,�,�),			�|��� = �(�,�,�)		���		�|��� = �(�,�,�) spatial 
coordinates. If the viscous medium is transported with the source or sink of the mass (ie, when there is a blowing or sucking of the 
substance through the wall), the boundary conditions on the permeable surfaces differ from the corresponding conditions on the 
impermeable wall. In this case, the normal velocity component on the surface is not zero and is determined from the given mass 
flow through the wall (���)� = �(�,�), where �(�,�) −a given function characterizing the mass velocity of injection or suction of 
matter through the wall, the index ω refers to the parameter on the wall The slip conditions (i.e. the tangential velocity component) 

on the wall (��)� = �
�∗���

��
�,   where the coefficient λ_ * is proportional to the permeability of the wall material or the 

characteristic pore size. The last expression has the same form as the slip condition on the wall in the theory of a rarefied gas, 
where λ_ * denotes the mean free path of the molecules. 
 
As the thermal boundary condition, the wall temperature (the boundary condition of the first kind), the heat flux through the wall 
(the boundary condition of the second kind), the heat flux density due to thermal conductivity (the boundary condition of the third 
kind) and the heat exchange of the surface of the body with the environment (boundary condition fourth kind). In addition to these 
boundary conditions, there are others that we have to deal with when considering various practical problems.  
 
Thus, a mathematical problem with the goal of describing reality must satisfy the following basic requirements: 1) the solution 
must exist, 2) the solution must be unique, 3) the solution must be stable. This means that small changes in the task should cause 
accordingly a small change in the solution. A task that satisfies all (three) requirements is called a correctly posed problem. To 
solve the boundary value problem is to find all functions satisfying a given differential equation and given boundary conditions. 
For various special cases of the proof of existence and uniqueness theorems for boundary value problems, there is an example of 
heat and mass transfer. However, in the most general case there are no proofs of these theorems. Since the solution of various 
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hydrodynamic and thermophysical problems for the existence of a solution follows from the very formulation of the problem, it 
can be assumed that the existence of the solution and its uniqueness is proved for the boundary value problems under study. 
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