

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 03, pp.67414-67425, March, 2018 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

DESIGN AND ANALYSIS OF DRY CYLINDER LINERS OF COATED AND NONCOATED MATERIALS USED IN DIESEL ENGINES

¹Paramesh, T., ^{2,*}Saikrupa, CH. and ³Srinivasulu, B.

^{1,2}Department of Mechanical Engineering, St. Martin's Engineering College, Dhulapally, Secunderabad,

T.S, India

³SSSUTMS, Sehore, Bhopal, India

ARTICLE INFO	ABSTRACT
<i>Article History:</i> Received 23 rd December, 2017 Received in revised form 27 th January, 2018 Accepted 10 th February, 2018 Published online 30 th March, 2018	A Cylinder liner is a cylindrical part to be fixed in to an engine block to form a cylinder. It is one of the most significant efficient parts to make up the interior of an engine. Aim of the thesis is to design and analysis of a dry liner for diesel engines. The first step is to model the dry liner part by using $Pro/Engineer$. The dimension of the liner are taken from "Kusalava Industries", Vijayawada for the engine of Hino – X Ashok Leyland model. In the next step, the amount of heat generated, heat transfer rate of the component, temperature produced inside the cylinder are to be calculated. usually cylinder
Key words:	— liners are ended of Cast Iron, Cast steel, Nickel CI, Nickel chrome CI. The surface of the liner is heat treated to obtain hard surface. The foremost aim of the document is to learn the heat transfer rate, heat
Dry Cylinder Liners Coated non Coatedmaterials Analysis- Diesel Engines.	flux, temperature distribution, thermal stresses, thermal strain, and thermal gradient of the liner by apply boundary circumstances as a temperature produced inside of the cylinder. And also by applying the surface coatings like ceramic, aluminum alloys and Nickel chrome alloy steel. Also we are conducting fatigue analysis on the liners. Fatigue analysis is used for finding the life time of the component means we can find out numeral of cycles it can with stand for the applied loads. By compa re the above results, the desirable type of liner in a diesel engine can be validated. Modeling is ended in Pro/Engineer and analysis is done in ANSYS.

Copyright © 2018, Paramesh et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Paramesh, T., Saikrupa, CH. and Srinivasulu, B. 2018. "Design and analysis of dry cylinder liners of coated and noncoated materials used in diesel engines", *International Journal of Current Research*, 10, (03), 67414-67425.

INTRODUCTION

Cylinder liners

Less hazard of defects. The more complex the casting, the more tricky to create a homogenous casting with low residual stresses. Cylinder liners from older lower powered engines had a consistent wall thickness and the cooling was achieve by circulating cooling water during a space formed between liner and jacket.

Types of cylinder liner

- Dry Cylinder Liners
- Wet Cylinder Liner

Functions of dry cylinder liners

Formation of sliding surface

• High anti-galling properties

*Corresponding author: Saikrupa, CH.,

Department of Mechanical Engineering, St. Martin's Engineering College, Dhulapally, Secunderabad, T.S, India.

- Less wear on the cylinder liner itself
- Less wear on the partner piston ring
- Less consumption of lubricant

Qualities of a good dry cylinder liner

A good liner must possess the following qualities

- Strength to resist the gas pressure
- Sufficiently hard to resist wear
- Strength to resist the thermal stresses owing to the heat flow through the liner wall.
- Corrosion resisting.
- Capable of taking a good bearing surface.
- It should by symmetrical in shape to avoid unequal deflection due to gas load and unequal expansion due to thermal load.
- No distortion of the inner surface due to restrictive fixings.

Dry cylinder liner materials

- Matrix Pearlite
- Graphite A & B Type

- Free Ferrite Max. 5%
- Free Carbide Max. 5%

Dimensions

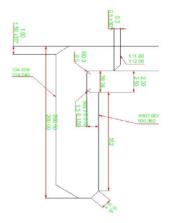
	Full Finish	Semi Finish	
	Dry & Wet Type	Wet Type	Dry Type
Inner Diameter	40 - 250 mm	40 - 250 mm	40 - 325 mm
Outer Diameter	45 - 350 mm	45 - 350 mm	45 - 350 mm
Length	Up to 375 mm	Up to 550 mm	Up to 700 mm

Geometrical Parameters

0	Ovality / Roundness (Circularity) - Within 1 thou
T	Perpendicularity - Within 1 thou
1	Taper - Within 1 thou
\angle	Angularity - Within 1 thou
Ŋ	Cylindricity - Within 1 thou
Ô	Concentricity - Within 1 thou

Finishing

- Phosphating / Blackening
- Chrome Plating (Inner and Outer diameter)



Cylinder Liners for Aluminum Blocks

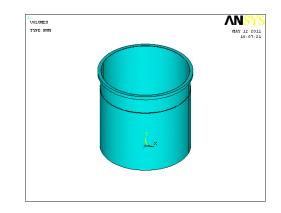
The main aim of the project is to analyze the strength of dry cylinder liner without taking coating material and by taking coating materials using coupled filed analysis. And also to characterize the capability of a material to survive the many cycles a component may experience during its lifetime using fatigue analysis.

Dry liners coating materials

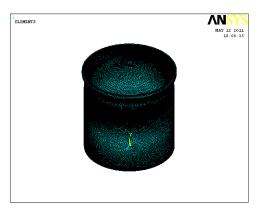
A dissipation of a smaller amount heat from the cylinder liners necessitate the safety of their inside surfaces adjacent to overheating.

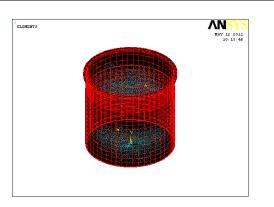
CHAPTER-II

Cylinder liner specifications

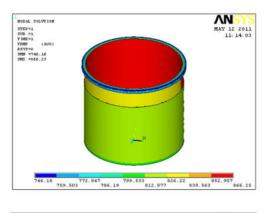

A variety of coating materials have been recommended which are supposed to be capable of making the cylinder liner surfaces resistant to fit and abrasion. Such optional materials include chromium carbide, titanium carbonate and oxide, chromium oxide, and alumina titanium.

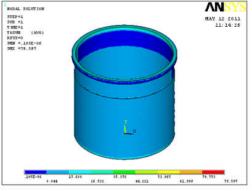
Specifications of Hino-x 145 Bore = 104.04mm Stroke = 4.72inch = 119.888mm Maximum power = 175 hp @ 2500 rpmMaximum torque = 376 lbft @ 1600rpm Displacement = 4730 cu cm = 4730000 cu mm =0.0011825 cum No of cylinders = 4 cylinders Outer diameter = 106.9940Collar diameter = 112mm Collar width = 8.09mm Total length = 201.2mm Capacity per cylinder = 1182500 cu mm at 15°c Density of diesel = 820 to 950 kg/cu m $= 0.00095 \text{kg/cm}^3$

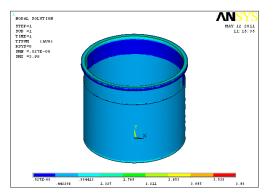

Density = $0.0000095 \text{ kg/mm}^3$ Diesel $C_{10} H_{22}$ to $C_{15} H_{28}$ Molecular weight of $C_{15} H_{28} = 208 \text{ g/mole}$ Mass = density × volume = $0.00000095 \times 1182500$ m = 1.12 kgR = 8.314 j/mol kPv = mRT P = $\frac{MRT}{V}$ P = $\frac{1.2 \times 8.314 \times 288}{0.208 \times 0.0011825}$ P = 10903645.34 J/m3P = 10.9 N


Uncoated cylinder liner

Model of Cylinder Liner


Meshed Surface of Cylinder Liner and Temperature Loads

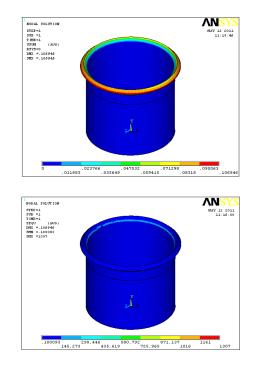




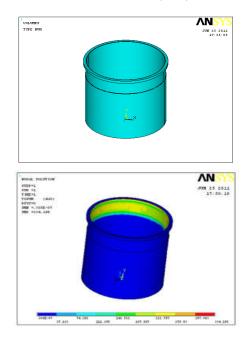
General Post Processor – Plot Results – Contour Plot – Nodal Solution – Stress – Nodal Temperature Nodal Temperature,

Nodal Temperature, Thermal gradient& Thermal flux

New analysis


For Cylinder Liner – Cast Iron Structural Properties Element Type: Solid 20 node 95 Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101 Element Type: Solid 20 node 95 Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio -0.32 Pressure – 10.9N/mm²

Loads – define Loads – Apply – Thermal – Convection – on areas Bulk Temperature – 470K Film Coefficient – 0.00234606W/mm²K

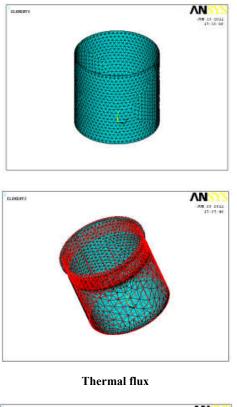

Post Processor

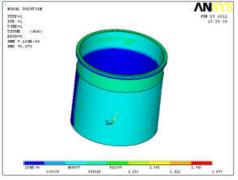
General Post Processor – Plot Results – Contour Plot - Nodal Solution – DOF Solution – Displacement Vector Sum

Displacement, Von Mises Stress

Cylinder liner coated with ceramic (PSZ)

Element Type: Solid 20 node 90


Material Properties: Thermal Conductivity – 25.2W/mk Specific Heat – 506 J/kg k Density - 0.00000719kg/mm³ For Fin – Aluminum Alloy 6101


Element Type: Solid 20 node 90 Material Properties: Thermal Conductivity – 220W/mk Specific Heat – 895 J/kg k Density - 0.0000027kg/mm³

For liner coating - Ceramic (PSZ)

Element Type: Solid 20 node 90

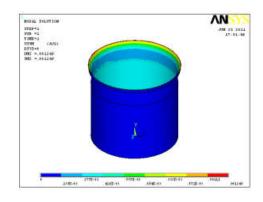
Material Properties: Thermal Conductivity – 3W/mk Specific Heat – 418.68 J/kg k Density - 0.00000575kg/mm³ Meshed Surface of Cylinder Liner, Temperature Loads& Thermal gradient

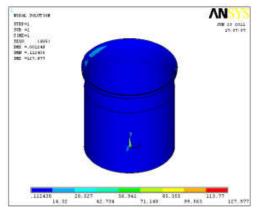
For Cylinder Liner – Cast Iron

Structural Properties

Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101


Element Type: Solid 20 node 95 Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio - 0.32 For liner coating – Ceramic (PSZ)


Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus - 157000Mpa Poisson's ratio - 0.31 Pressure - 4.5N/mm² Loads - define Loads - Apply - Thermal - Convection - on areas Bulk Temperature - 470K Film Coefficient - 0.00234606W/mm²K

Post Processor

General Post Processor – Plot Results – Contour Plot - Nodal Solution – DOF Solution – Displacement Vector Sum

Displacement, Von Mises Stress

Cylinder liner coated with aluminium oxide (Al₂O₃)

Material propertie

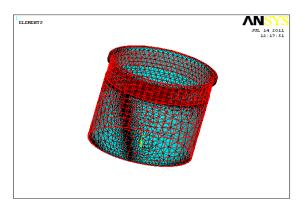
For Cylinder Liner – Cast Iron

Element Type: Solid 20 node 90

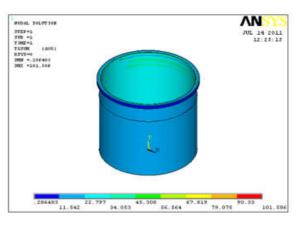
Material Properties: Thermal Conductivity – 25.2W/mk Specific Heat – 506 J/kg k Density - 0.00000719kg/mm³

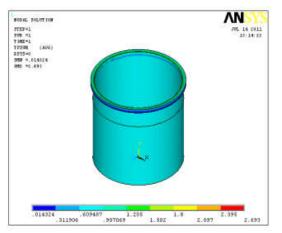
For Fin – Aluminum Alloy 6101

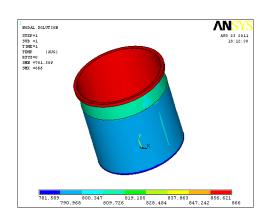
Element Type: Solid 20 node 90


Material Properties: Thermal Conductivity – 220W/mk Specific Heat – 895 J/kg k

Density - 0.0000027kg/mm³ For liner coating – Al₂O₃ Element Type: Solid 20 node 90


Material Properties: Thermal Conductivity – 25W/mk Specific Heat – 880 J/kg k


Density - 0.0000039kg/mm³ LOADS Temperature Loads Temperature – 831K

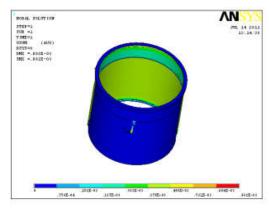

Temperature, Loads, solution

Temperature, Loads, solution

New analysis

For Cylinder Liner – Cast Iron Structural Properties

Element Type: Solid 20 node 95


Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101 Element Type: Solid 20 node 95

Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio - 0.32 For liner coating – Al₂O₃

Element Type: Solid 20 node 95 Material Properties: Density - 0.0000039kg/mm³ Young's Modulus - 353000Mpa Poisson's ratio - 0.22 Pressure - 10.9N/mm² Loads - define Loads - Apply - Thermal - Convection - on areas Bulk Temperature - 470K Film Coefficient - 0.00234606W/mm²K

Post Processor

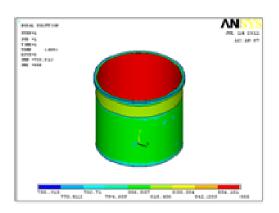
General Post Processor – Plot Results – Contour Plot - Nodal Solution – DOF Solution – Displacement Vector Sum Displacement, Von Mises Stress

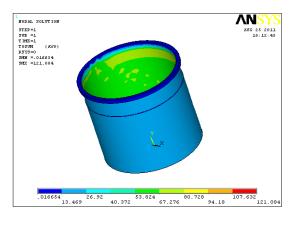
Cylinder liner coated with Nickel chrome alloy steel

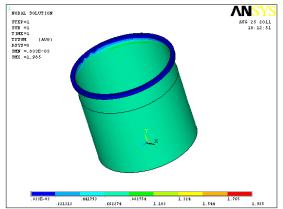
Material properties

For Cylinder Liner - Cast Iron

Element Type: Solid 20 node 90


Material Properties: Thermal Conductivity – 25.2W/mk Specific Heat – 506 J/kg k Density - 0.00000719kg/mm³ For Fin – Aluminum Alloy 6101


Element Type: Solid 20 node 90 Material Properties: Thermal Conductivity – 220W/mk Specific Heat – 895 J/kg k Density - 0.0000027kg/mm³ For liner coating – Nickelchrome Alloy Steel


Element Type: Solid 20 node 90

Material Properties: Thermal Conductivity – 12W/mk Specific Heat – 500 J/kg k Density - 0.00000745kg/mm³

Nodal Temperature, Thermal gradient, Thermal flux

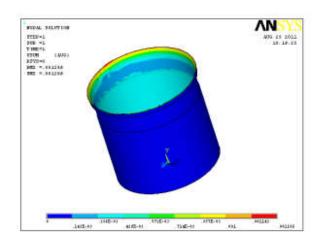
Structural Properties

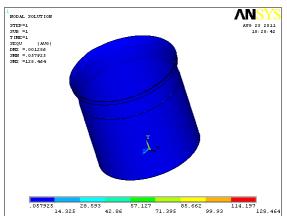
Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.28 For Fin – Aluminum Alloy 6101

Element Type: Solid 20 node 95

Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio - 0.32 For liner coating – NickelChrome Alloy Steel


Element Type: Solid 20 node 95


Material Properties: Density - 0.00000745kg/mm³ Young's Modulus - 115000Mpa Poisson's ratio - 0.32 Pressure - 10.9N/mm² Loads - define Loads - Apply - Thermal - Convection - on areas Bulk Temperature - 470K Film Coefficient - 0.00234606W/mm²K

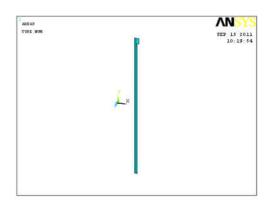
Post Processor

General Post Processor – Plot Results – Contour Plot - Nodal Solution – DOF Solution – Displacement Vector Sum

Displacement, Von Mises Stress

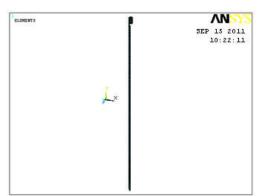
Material	Displacement (mm)	Von Mises Stress (N/mm ²)	Nodal Temperature (K)	Thermal Gradient (K/mm)	Thermal Flux (W/mm ²)
Without Coating	0.106946	1307	866.25	79.597	3.98
PSZ Coating	0.01249	127.977	866	334.196	2.073
Al ₂ O ₃	0.000682	60.681	866	101.586	2.693
Nickel Chrome	0.001286	128.464	866	121.084	1.985
Coating					

RESULTS


Fatigue analysis

Fatigue is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading. The nominal maximum stress values are less than the ultimate tensile stress limit, and may be below the yield stress limit of the material.

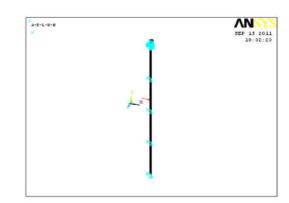
Fatigue analysis


Uncoated

Surafce of liner

For Cylinder Liner – Cast Iron Element Type – Solid 20 Node 95 Material Properties Young's modules - 12.9e⁶ Poisson ratio - 0.29 Density - 6800kg/m³

Meshed Model


Solution

Analysis type New analysis Transient Ok Ok

Four load cases are applied

- 10.9 N. The time at the end of the load step is 10 seconds.
- -10.9 N. The time at the end of the load step is 20 seconds.
- 15 N. The time at the end of the load step is 30 seconds.
- -15 N. The time at the end of the load step is 40 seconds.

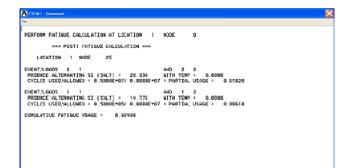
D.O.F Constraining

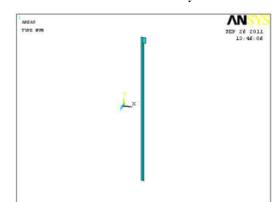
Stress Locations

- NLOC = 1
- NODE = 246(node at the constrained area)
- NLOC = 2
 - NODE = 25(node at the pressure area)
- NLOC = 3
- NODE = 275(node at the open area)

General Postproc

Fatigue Property Table S-N Table

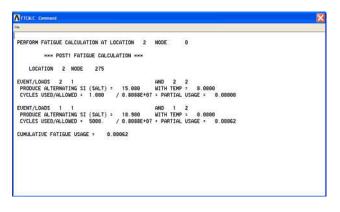

RESULTS


Node at constrained area

PERFORM FATIGUE CALCULATION AT LOCATION 1 NODE 0	
NHN POST1 FATIGUE CALCULATION NHN	
LOCATION 1 NODE 246	
EVENT/LOADS 2 1 AND 2 2	
PRODUCE ALTERNATING SI (SALT) = 15.062 WITH TEMP = 0.0000	
CYCLES USED/ALLOWED = 1.000 / 0.8088E+07 = PARTIAL USAGE = 0.00000	
EVENT/LORDS 1 1 AND 1 2	
PRODUCE ALTERNATING SI (SALT) = 10.945 WITH TEMP = 0.0000	
CYCLES USED/ALLOWED = 5000. / 0.8088E+07 = PARTIAL USAGE = 0.00062	
CUMULATIVE FATIGUE USAGE = 0.00062	

Node 246 at the constrained area. The Cumulative Fatigue Usage value is 0.00062, is the sum of the partial usage factors (Miner's rule).

Node at pressure area



Node 25 at the pressure area:

The Cumulative Fatigue Usage value is 0.62438, is the sum of the partial usage factors (Miner's rule).

Node at open area

Node 275 at the open area. The Cumulative Fatigue Usage value is 0.00062, is the sum of the partial usage factors (Miner's rule).

Displacement, stress

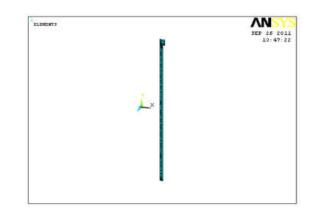
Surafce of Liner

For Cylinder Liner – Cast Iron Structural Properties

Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101

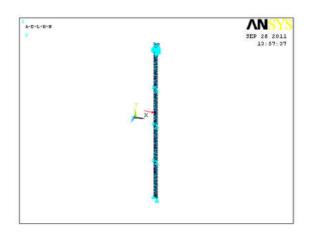
Element Type: Solid 20 node 95


Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa

Poisson's ratio - 0.32 For liner coating – Nickel Chrome alloy

Element Type: Solid 20 node 95

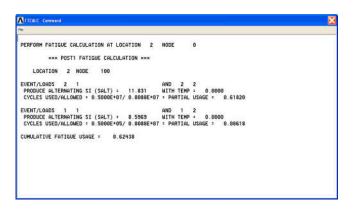
Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio - 0.31


Meshed Model

Four load cases are applied

- 10.9 N. The time at the end of the load step is 10 seconds.
- -10.9 N. The time at the end of the load step is 20 seconds.
- 15 N. The time at the end of the load step is 30 seconds.
- -15 N. The time at the end of the load step is 40 seconds.

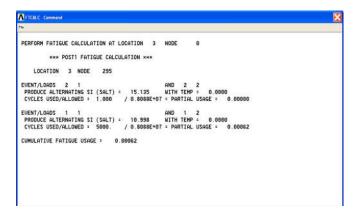
Nickel chrome alloy


D.O.F Constraining

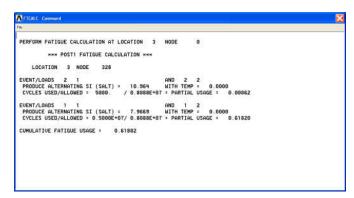
NLOC = 1 NODE = 328 (node at the open area) NLOC = 2 NODE = 100 (node at the constrained area) NLOC = 3NODE = 295(node at the pressure area)

RESULTS

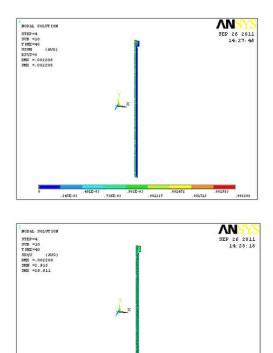
Stress Locations


Node at constrained area

Node 100 at the constrained area.


The Cumulative Fatigue Usage value is 0.62438, is the sum of the partial usage factors (Miner's rule).

Node at pressure area


Node 295 at the pressure area:

The Cumulative Fatigue Usage value is 0.00062, is the sum of the partial usage factors (Miner's rule).

Node at open area

Node 328 at the open area. The Cumulative Fatigue Usage value is 0.61882, is the sum of the partial usage factors (Miner's rule).

Displacement, stress

8.914 5.914 11.914 14.913 17.913 20.912 23.912 26.911

29,911

Aluminium oxide coating

For Cylinder Liner – Cast Iron Structural Properties

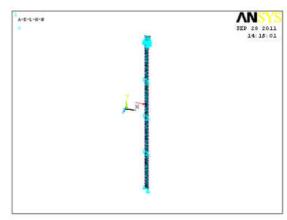
Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101

Element Type: Solid 20 node 95

Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio - 0.32 For liner coating – Al₂O₃

Element Type: Solid 20 node 95

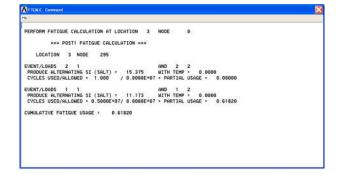

Material Properties: Density - 0.0000039kg/mm³ Young's Modulus – 353000Mpa Poisson's ratio - 0.22

Solution

Analysis type New analysis Transient Ok Ok

Four load cases are applied

- 10.9 N. The time at the end of the load step is 10 seconds.
- -10.9 N. The time at the end of the load step is 20 seconds.
- 15 N. The time at the end of the load step is 30 seconds.
- -15 N. The time at the end of the load step is 40 seconds.


D.O.F Constraining

Stress Locations

NLOC = 1 NODE = 246(node at the pressure area) NLOC =2 NODE =275 (node at the open area) NLOC = 3 NODE =295 (node at the constrained area)

RESULTS

Node at constrained area

Node 295 at the constrained area.

The Cumulative Fatigue Usage value is 0.61820, is the sum of the partial usage factors (Miner's rule).

Node at pressure area

PERFORM FATIGUE CALCULATION AT LOCATION 1 NODE 0 www.POST1 FATIGUE CALCULATION **** LOCATION 1 NODE 2*6 EVENT/LONDS 2 1 AND 2 2 PROLUCE ALTERNATIVES SI (SALT) = 15.520 WITH TEMP = 0.0000 CVCLES USED/ALLOWED = 1.000 / 0.0008E*07 = PARTIAL USAGE = 0.00000 EVENT/LONDS 1 AND 1 2 PROLUCE ALTERNATIVE SI (SALT) = 14.185 WITH TEMP = 0.0000 CVCLES USED/ALLOWED = 0.0000E*07 = PARTIAL USAGE = 0.61820	PERFORM FATIGUE CALCULATION AT LOCATION 1 NODE 0
www POSTI FATIGUE CALCULATION www LOCATION 1 NODE 246 EVENT/LONGS 2 1 PHODUCE ALTERNATING SI (SALT) : 19.528 VCLES USED/ALGUED : 1.000 / 0.8088E+07 · PARTIAL USAGE : 0.0000 EVENT/LONGS 1 1 PRODUCE ALTERNATING SI (SALT) : 19.185 VCLES USED/ALGUED : 1.000 / 0.8088E+07 · PARTIAL USAGE : 0.0000 EVENT/LONGS 1 1 PRODUCE ALTERNATING SI (SALT) : 14.185 VCLES USED/ALLOWED : 0.5000E+07 / 0.8088E+07 : PARTIAL USAGE : 0.61820	
EVENT/LORDS 2 1 0 000 2 2 PRODUCE 4LTERMATTMS SI (SALT) = 19.520 01111 TEXP = 0.0000 EVENT/LORDS 1 000 / 0.00084:47 PARTIAL USAGE = 0.0000 EVENT/LORDS 1 0000 EVENT/LORDS 1 1 0000 EVENT/LORDS 1 0.0000 EVENT/LORDS 2 1 0000 EVENT/LORDS 2 0000 EV	
PRODUCE ALTERNATING SI (SALT) = 19.528 UITH TEMP = 0.0000 CVCLES USEAULUEDE 1.000 / 0.89888407 PARTIAL USAGE 6 0.00000 EVENT,0000 1 1 000 12 2 PRODUCE ALTERNATING SI (SALT) + 14.185 UITH TEM 7 0.0000 CVCLES USED/ALLOWED = 0.5000E407/ 0.89888407 = PARTIAL USAGE 6 0.51820	LOCATION 1 NODE 246
PRODUCE ALTERNATING SI (SALT) = 14.185 MITH TEMP = 0.0080 CVCLES USED/ALLOWED = 0.5008E+07/ 0.8888E+07 = PARTIAL USAGE = 0.61820	PRODUCE ALTERNATING SI (SALT) = 19.528 WITH TEMP = 0.0080
	PRODUCE ALTERNATING SI (SALT) = 14.185 WITH TEMP = 0.0000
	CUMULATIVE FATIQUE USAGE = 0.61820

Node 246 at the pressure area:

The Cumulative Fatigue Usage value is 0.61820, is the sum of the partial usage factors (Miner's rule).

PERFORM FATIGUE CALCULATION AT LOCATION 2 MODE 0 *** POSTI FATIGUE CALCULATION *** LOCATION 2 MODE 275 PRODUCE ALTERNATING SI (SALT) : 14.851 MITH TEMP 8 0.0000 CVCLS USED/MLOWED 1.000 / 0.0008E407 * PARTIAL USAGE * 0.00000 EUCNT/LODDS 1 MITH TEMP 8 0.0000 EUCNT/LODDS 1 MITH TEMP 8 0.0000 CVCLS USED/MLOWED * 0.0008E407 * PARTIAL USAGE * 0.61820 EUCNT/LODDS 0.5000E407 / 0.0008E407 * PARTIAL USAGE * 0.61820				
EUENT/LOADS 1 AND 2 PRODUCE ALTERNATING SI (SRLT): 14.851 MITH TEPP = 0.0000 CVCLES USEDWALLOWED + 1.000 / 0.0008E407 + PARTIAL USAGE + 0.00000 EUENT/LOADS 1 AND PRODUCE ALTERNATING SI (SRLT): 10.701 PRODUCE ALTERNATING SI (SRLT): 10.701 EVENCHADS 1.0002 CVCLES USED/ALLOWED + 0.5000E+07/ 0.0000E+07		NODE	0	
PRODUCE ALTERNATING SI (SALT) = 14.851 WITH TEMP = 0.0000 CVCLES USEDALLANED = 1.0000 / 0.00000 0.00000 EVENT/LOADS 1 1 MAD 2.00000 PRODUCE ALTERNATING SI (SALT) = 10.701 WITH TEMP = 0.0000 0.00000 CVCLES USED/ALLONED + 0.5000E+07/ 0.0000E+07 = PARTIAL USAGE = 0.61820 0.0000	LOCATION 2 NODE 275			
CUMULATIVE FATIGUE USAGE + 0.61828	PRODUCE ALTERNATING SI (SALT) = 14.851 CYCLES USED/ALLOWED = 1.008 / 0.8088E+01 EUENT/LOADS 1 PRODUCE ALTERNATING SI (SALT) = 18.791	WITH TEMP PARTIAL AND 1 WITH TEMP	= 8.0980 USAGE = 0.00 2 = 8.0980	
	CUMULATIVE FATIGUE USAGE = 0.61828			

Node at open area

Node 275 at the open area.

The Cumulative Fatigue Usage value is 0.61820, is the sum of the partial usage factors (Miner's rule).

Displacement, stress

Ceramic coating

For Cylinder Liner – Cast Iron Structural Properties

Element Type: Solid 20 node 95

Material Properties: Density - 0.00000719kg/mm³ Young's Modulus – 157000Mpa Poisson's ratio -0.283 For Fin – Aluminum Alloy 6101

Element Type: Solid 20 node 95

Material Properties: Density - 0.0000027kg/mm³ Young's Modulus – 69000Mpa Poisson's ratio - 0.32 For liner coating – ceramic coating

Element Type: Solid 20 node 95

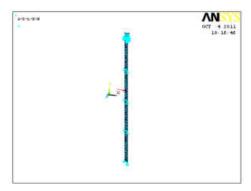
Material Properties: Density - 0.00000745kg/mm³ Young's Modulus – 115000Mpa Poisson's ratio - 0.31

Solution

Analysis type New analysis Transient Ok Ok

		Couple	ed field analysis		
	Displacement (mm)	Von Mises Stress (N/mm ²)	Nodal Temperature (K)	Thermal Gradient (K/mm)	Thermal Flux (W/mm ²)
Without Coating	0.106946	1307	866.25	79.597	3.98
PSZ Coating	0.01249	127.977	866	334.196	2.073
Al ₂ O ₃	0.000682	60.681	866	101.586	2.693
Nickel Chrome Coating	0.001286	128.464	866	121.084	1.985

Coupled field analysis


Event 1 500000 Cycles Event 2 5000 Cycles Uncoated Constrained Area 10.945 15.062 14.776 20.334 Pressure Area 10.9 Open Area 15 PSZ Constrained Area 7.3871 10.166 7.5616 10.406 Pressure area 7.3499 10.144 Open area Aluminum Constrained area 11.173 15.375 Oxide Pressure area 14.185 19.520 Open area 10.791 14.851 Nickel Chrome 8.5969 Constrained area 11.831 10.998 Pressure area 15.135 Open area 7.9669 10.964

Coupled field analysis

		Event 1 500000 Cycles	Event 2 5000 Cycles
Uncoated	Constrained Area	10.945	15.062
	Pressure Area	14.776	20.334
	Open Area	10.9	15
PSZ	Constrained Area	7.3871	10.166
	Pressure area	7.5616	10.406
	Open area	7.3499	10.144
Aluminum	Constrained area	11.173	15.375
Oxide	Pressure area	14.185	19.520
	Open area	10.791	14.851
Nickel Chrome	Constrained area	8.5969	11.831
	Pressure area	10.998	15.135
	Open area	7.9669	10.964

Four load cases are applied

- 10.9 N. The time at the end of the load step is 10 seconds.
- -10.9 N. The time at the end of the load step is 20 seconds.
- 15 N. The time at the end of the load step is 30 seconds.
- -15 N. The time at the end of the load step is 40 seconds.

D.O.F Constraining

Stress Locations

- NLOC = 1
- NODE = 232(node at the constrained area)
- NLOC = 2
- NODE = 219(node at the pressure area)
- NLOC = 3
- NODE = 225(node at the open area)

RESULTS

Node at constrained area

	wann i		
PERFORM FATIGUE CALCULATION AT LOCATION 1	NODE	0	
*** POST1 FATIGUE CALCULATION ***			
LOCATION 1 NODE 232			
EVENT/LOADS 2 1	AND 2	2	
PRODUCE ALTERNATING SI (SALT) = 10.166	WITH TEMP	* 0.0800	
CYCLES USED/ALLOWED = 5808. / 8.8888E+87	= PARTIAL	USAGE = 0.80862	
EVENT/LOADS 1 1	AND 1	2	
PRODUCE ALTERNATING SI (SALT) = 7.3871			
CYCLES USED/ALLOWED = 0.5000E+07/ 8.8088E+07	* PARTIAL	USAGE 0.61820	
CUMULATIVE FATIGUE USAGE = 0.61882			

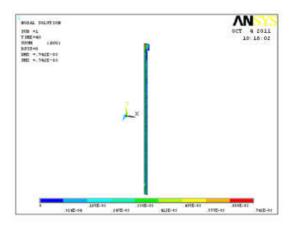
Node 232 at the constrained area.

The Cumulative Fatigue Usage value is 0.61882, is the sum of the partial usage factors (Miner's rule).

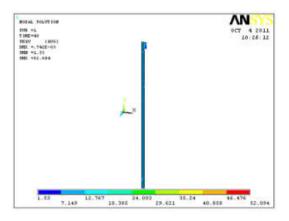
Node at pressure area

THE PERFORM FATISUE CALCULATION AT LOCATION 2 NODE 6 HAVE POSTI FATISUE CALCULATION HAVE	
LOCATION 2 NODE 219	
EVENT/LOADS 2 1 AND 2 2 PRODUCE ALTERNATING SI (SALT) = 10.406 FITH TERM = 0.0080 CVCLES USED/KLOAED = 5000. / 0.8088E+07 = PARTIAL USAGE = 0.00862	
EVENT/LOADS 1 1 AND 1 2 PRODUCE ALTERNATING SI (SALT) + 7.561 ATTH TERM - 0.0000 CVCLES VIES/NLOWED = 0.5006E+07/0.8088E+07 = PARTIAL USAGE = 0.51820	
CUMULATIVE FATIGUE USAGE = 0.61882	

Node 219 at the pressure area:


The Cumulative Fatigue Usage value is 0.61882, is the sum of the partial usage factors (Miner's rule).

Node at open area


5e			
PERFORM FATIGUE CALCULATION AT LOCATION 3 *** POST1 FATIGUE CALCULATION *** LOCATION 3 NODE 225	NODE	0	
EVENT/LOADS 2 1 PRODUCE ALTERNATING SI (SALT) = 10.114 CYCLES USED/ALLOWED = 5000. / 0.8088E+07	WITH TEMP	= 0.0000	
EVENT/LOADS 1 1 PRODUCE ALTERNATING SI (SALT) = 7.3499 CVCLES USED/ALLOWED = 0.5000E+07/ 0.8088E+07		= 0.0000	
CUMULATIVE FATIGUE USAGE = 0.61882			

Node 225 at the open area.

The Cumulative Fatigue Usage value is 0.61882, is the sum of the partial usage factors (Miner's rule).

Displacement, stress

Conclusion

In our project the dry cylinder liner used in engine of Hino -X Ashok Leyland model. The dimensions of the liner are taken from "Kusalava Industries", Vijayawada. The modeling is done in Pro/Engineer. The coupled field and fatigue analysis on dry liner by uncoating the liner and coating the liner with three materials Nickel Chrome, PSZ and Aluminum Oxide. By not coating the cylinder liner, stress value is high and also thermal gradient is less than by coating the liner. And also dry liner wears out fastly. So it is better to coat the liner with a coating material.

Present used material for coating is Nickel Chrome. By observing coupled field analysis result, suggest PSZ coating for cylinder liner, since its thermal gradient is more and its analyzed stress value is 128Mpa which is less than its ultimate stress limit 448Mpa.By observing fatigue analysis results, for 500000 and 5000 cycles, the stress intensity is less for PSZ than other coating materials.

By observing above two results, using PSZ coating for cylinder liner is better than other two materials.

REFERENCES

Modern Diesel Technology: Diesel Engines by Sean Bennett Diesel technology: fundamentals, service, repair by Andrew Norman, John A. Corinchock, Robert Scharff Introduction to Ansys 10. 0 By Dr R B Choudary ANSYS Tutorial 10 By Kent Lawrence