

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 10, Issue, 07, pp.71646-71651, July, 2018 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

CONTROL OF CADMIUM, COPPER, IRON AND LEAD RESIDUES IN CHICKEN MEAT AND THEIR OFFAL

*Nagwa Thabet Elsharawy

Department of Food Hygiene, Faculty of Vet. Med., New Valley Branch, Assuit University, Egypt

ARTICLE INFO	ABSTRACT				
Article History: Received 15 th April, 2018 Received in revised form 27 th May, 2018 Accepted 05 th June, 2018 Published online 31 st July, 2018	The cadmium (Cd), copper (Cu), iron (Fe) and lead (Pb) as heavy metal may reach chicken meat as a result of many of human activities causing severe health hazards to consumers by its accumulative effect. Therefore, A total of 100 chicken meat and their offal (50 of each) were randomly collected from chicken butchers at New Valley governorate, Egypt to evaluate the effect of grilling, marination and simmering on the metals residues. The mean concentration levels of Cd, Cu, Fe and Pb in chicken meat were; 00.04 ± 0.03 , 0.19 ± 0.090 , 7.130 ± 0.251 , $0.30\pm 0.195 \ \mu g/g$ respectively. While in offal ware: $00.056\pm 0.035 = 0.76\pm 0.420$, $87.16\pm 2.485 = 0.455\pm 0.190 \ \mu g/g$ respectively. In concern to				
Key words:	Egyptian standard and WHO/FAO all samples were within the permissible limit and fit for human				
Heavy metals, Chicken, Simmering, Grilling, Marination, Cooking	consumption. Properly cooking of chicken has limited reducing the potency of heavy metals in food, depending on cooking (temperature, cooking medium and time). The most cooking method decline the concentration levels of Cd, Cu, Fe and Pb was simmering which reduce the concentration level in chicken meat to; 0.0 for Cd, 0.15 ± 0.00 , 5.97 ± 0.294 , $0.10\pm 0.010 \ \mu g/g$ for Cu, Fe, Pb respectively in simmered chicken meat samples and were; 0.0 for Cd, 0.46 ± 0.240 , 73.18 ± 2.850 , $0.24\pm 0.0135 \ \mu g/g$ for Cu, Fe, Pb respectively in simmered chicken meat and offals.				

Copyright © 2018, Nagwa Thabet Elsharawy. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Nagwa Thabet Elsharawy, 2018. "Control of cadmium, copper, iron and lead residues in chicken meat and their offal", *International Journal of Current Research,* 10, (7), 71646-71651.

INTRODUCTION

The overall chicken industry is the biggest supplier of acceptable animal protein with high meat yield, low shrinkage in cooking and great source of amino acids, vitamins and minerals for human utilization as chicken meat. Chicken meat may carry heavy metals which might be actually present in air, water, soil and chicken nourishment or can achieve it as a consequence of human activities (Schonfeldt and Gibson, 2008; Hassanin et al., 2014 and Chelebi et al., 2015). The most heavy metals poisonous due to their aggregation in living tissues and hazard; nervous systems, gastrointestinal and genital systems, hepatic toxicity, immune system and carcinogenesis (Rajaganapathy et al., 2010; Hamasalim and Mohammad, 2013 and Tyokumbur, 2016). Cooking methods of chicken as; grilling, marination, simmering which uses to increase palatability, increase flavor, tenderness and aroma of food and decrease microbial load and break down some hazardous residues in food. Grilling is a method of cooking which involves the application of dry heat to the food. The food is usually place on a Grill, a wire grid with a heat source on the top or below the grid.

*Corresponding author: Nagwa Thabet Elsharawy, Department of Food Hygiene, Faculty of Vet. Med., New Valley Branch, Assuit University, Egypt. DOI: https://doi.org/10.24941/ijcr.31397.07.2018 ingredients, containing spices, an acid and one oil, Simmering is a moist heat of food in hot water at a temperature slightly lower the boiling (Encycolopedia, 2016). Heavy metals is one of the most dangerous elements which may reach to consumers not only by polluted environment but also by ingestion of contaminated food by these serious elements which cannot be tasted, smelled or seen be hidden in meat and offals. Cadmium (Cd), and lead (Pb) considered the most heavy metals distributed in our environment and may cause a many side effects to human. However, Copper (Cu), Iron (Fe) are essential for human health, they are the main components of vitamins and enzymes but ingestion of over doses causes harmful effects on consumers(Akan et al., 2010; Khalafalla et al., 2011; Ambusheet al.2012; Bala, et al., 2013; AbdEl-Salam et al., 2013 and Badis et al., 2014 and Khalafalla et al., 2015). One of the most human health hazardous element is cadmium which accumulated in kidney about 10 years with accumulated effect which may resulted in adverse renal effects, moreover its adverse effect on the pain center of the brain, lungs, blood vessels and heart, its toxic dose leading to fatigue, scaly and dry skin, hair loss, anemia, immune suppression, hepatic dysfunction, joint pain, hypertension, renal stones and yellowish teeth (WHO 1992; Kocak et al., 2005 and Khalafalla et al., 2016). Pb is has neurotoxin which inactivate many

Marination is soaking food items in a mixture of flavoring

cellular components and act with some essential body enzymes in addition to its adverse effect on cardiovascular and increasing the blood pressure of the adults and retardation of the children mental performance (Cunningham and Saigo 1997 and EC, 2002). There are almost no available studies performed to control heavy metals in chicken meat and offals thus, we performed this study to examine the effect of some cooking techniques on some heavy metals; cadmium, copper, iron and lead in (meat and offal) of chicken.

MATERIALS AND METHODS

Ethical approval: The Animal Rights and Ethical Use Committee of Assiut Universities have approved this study.

Study area: A cross-sectional study was in fresh chicken meat and offal marketed in New Valley, Egypt to determine the concentration levels of heavy metals deposits in chicken meat and consumable offal. The s investigations done in the Animals Health Researches Laboratory Institute, El-Doky, Egypt.

Sampling: A total of 100 irregular specimens of chicken meat, and offal tests (50 of each) gathered from chicken butchers and markets in New Valley governorate, Egypt, each sample was rapped in plastic pack then identified and moved in an ice-box to the research center for assessment.

Sample preparation: The samples were prepared and digested with 10 ml of nitric / sulfuric / perchloric acids (Oxoid) (8: 1: 1). Initial digestion was made for 4 hours at room temperature followed by warming at 40-45°C for one hour in water bath then temperature was raised to 75°C until the end of digestion. After cooling at room temperature the cold digest was diluted to 20 ml. with deionized water and filtered through 0.45 μ l Whitman filter paper. The clear filtrate of each sample was kept in refrigerator to avoid evaporation.

Determination of Heavy Metals Residues: The standard solutions were analyzed for cadmium, copper, iron and lead by Atomic Absorption Spectrophotometer (Sens AA; GBC scientific equipment *Spectrophotometer*) at the adjusted conditions as follow:

placed into grill for 30 minutes then cooling. Each sample putted in clean bottle, identified and sends to laboratory for quantitative evaluation of heavy metals.

Effect of marinating on heavy metals residues: Each positive sample was marinated using the following formula: about 1 g commercial Egyptian table salt iodine free, 5 g Egyptian red onion "Allium cepa", 5 mL Lemon juice "Rutaceae Citrus" and 1g black pepper "PiperaceaeNigrium"). Meat, liver and kidney samples were kept in marination for 4 hours at 4°C. Then of the samples for evaluation of the same heavy metals.

Effect of simmering on heavy metals residues: Each positive sample heavy metals (cadmium, copper, iron, and lead) residues (25g.) was placed into strainer contained 50 ml. diionized water then heated to 100°C and cooked for 30 minutes then allow to cool. Each sample putted in clean bottle, identified and sends to laboratory for quantitative evaluation of antibiotics and heavy metals.

Statistical Analysis (GraphPad Instant, 2009): The statistical program, GraphPad Instant version 3 for window, was used for determination of means, the analysis of variance between the different data and treatment in this study were determined using standard error (P < 0.05).

RESULTS AND DISCUSSION

Cadmium: The mean concentrations level for cadmium residues in chicken meat and offal samples presented in figure (1). The mean cadmium values in the meat samples in raw, grilling and marinating cases was; $00.04\pm 0.03 \ \mu g/g$, $00.07\pm 0.030 \ \mu g/g$, $0.02\pm 0.011 \ \mu g/g$ respectively while, (Cd) not detected in simmered chicken meat samples, while were; $00.056\pm 0.035 \ \mu g/g$, $00.66\pm 0.035 \ \mu g/g$, $0.03\pm 0.025 \ \mu g/g$ in raw, grilled, marinated offal chicken samples respectively while, (Cd) not detected in simmered offal chicken samples. The cadmium concentration levels were; raw> grilling> marinating> simmering samples. It was cleared that the chicken samples had a significant effect (P > 0.05) on the cadmium levels in the examined samples.

Metal	Lamp Wave Length (nm)	Slit Width (nm)	Lamp Current (ma)	Fuel Flow Rate (I/min)	Burner Height (cm)	Detection Limit (ppm)
Cd	228.8	0.7	5	30	8	0.01
Cu	217.0	0.7	5	30	5	0.05
Fe	235.6	0.7	5	30	8	0.01
Pb	248.3	0.7	12	30	8	0.01

The calculation of residual levels ($\mu g/g$ wet weight) using the following equation:

Element, (ppm, mg/kg) = $R \times D/W$

Where:

R= Reading of element concentration, ppm from the digital scale of AAS.

D= Dilution of the prepared sample. W= Weight of the sample.

Experimental trials

Effect of grilling on heavy metals residues: Each positive meat sample for cadmium, copper, iron and lead residues was

Other investigators obtained the same results from chicken samples (Perelló *et al.*, 2008; Diaconescu *et al.*, 2012 and Ziarati *et al.*, 2013).Cadmium is apparently non-essential element which is absent at birth but accumulate at gizzard and increasing by age called tissue specific bioaccumulation (Nasef and Hamouda, 2008; Atiah, 2011 and Khalafalla *et al.*, 2011). Cadmium cause severe respiratory symptoms, nephrotoxicity, glucosuria, aminoaciduria, hypertension, hepatic injury and lung damage. Cadmium chloride at teratogenic dose induced significant alterations in the detoxification enzymes in the liver and cause osteoporosis, osteomalacia and that known as Itai-Itai disease (Akesson *et al.*, 2009; Akan *et al.*, 2010 and Faten *et al.*, 2014). According to WHO (2010) the provisional tolerable monthly intake for cadmium of 25 μ g/kg body weight. The Egyptian Organization for Standardization and

Quality Control (EOS., 2010) is set a permissible limit for cadmium residues in chicken meat and offal which must be not

investigators obtained the same results from chicken samples by (Perelló *et al.*, 2008).

exceed than 0.05 μ g/g for meat and 1.0 μ g/g for chicken offal. According to this limits, all examined samples (100%) were within the permissible limits and considered safe for human consumption.

Copper: The mean concentrations level for copper residues in chicken meat and offals samples presented in Figure (2) observed the relatively similar effect of different cooking methods in reducing the copper residues in chicken meat and offal respectively. The mean copper values in raw, grilled, marinated and simmered in chicken meat samples were; 0.19 ± 0.090 , 0.18 ± 0.080 , 0.13 ± 0.055 and $0.15\pm 0.00 \ \mu g/g$ respectively. While it was, 0.76 ± 0.420 , 0.73 ± 0.420 , 0.78 ± 0.400 and $0.46\pm 0.240 \ \mu g/g$ in chicken offal samples respectively. The highest concentration levels for copper recorded in chicken offal samples. The copper concentration levels were; raw> grilling> marinating> simmering samples. The investigated animals had a significant effect (P > 0.05) on the copper levels in the chicken examined samples. Other

Aditya et al., (2014) found that simmering decreased level of iron due to change iron to ferrous iron which may decrease iron about 89%, cooking digested meat proteins producing iron-binding peptides. On the other hand, (Gharaibeh, 1993 and Farag, 2002) reported that marination used to prepare meat and offal before cooking may resulted in decreased copper values in meat and kidney samples while the values of copper in liver samples arisen up. According to WHO (2010) the provisional tolerable daily intake for copper of 2 μ g/kg body weight. The Egyptian Organization for Standardization and Quality Control (EOS., 2010) is set a permissible limit for copper residues in meat and offal which must be not exceed than 15.0 µg/g for meat and edible offal. According to this limits, all examined samples (100%) were within the permissible limits and considered safe for human consumption. Copper is an important constituent in a number of different enzymes; it accumulates in muscle and liver acting as essential element, may cause chronic toxicity when its concentrations crosses the safe limits. Copper toxicity including, jaundice, nausea, severe colic, diarrhea, while chronic disease was epitomized by wilson's disease which characterized by

temperature (90 - 120°C) diminished the meat heme iron content about 50%.

Lead Concentrations in Different Meat and Offal

Grilling Meat Marinating Meat Simmering Meat Raw Offal Grilling Offa Marinating Offal Simmering Offal

00.10^d

00.184

excessive copper deposition in most organs as liver, gizzard, brain and eyes, so consumption of such meat from polluted environment may pose human health hazards (Brito et al., 2005; Nnaji et al., 2007; Morshdy, 2010 and Faten et al., 2014).

00.25

00.301

Raw Meat

0.328

0.246

0.164 0.082 0

Iron: The mean concentrations level for iron residues in (breast, thigh) chicken meat, liver and gizzard samples were presented in figure (3). The mean iron values in (raw, grilled, marinated and simmered) chicken meat samples were; $7.130\pm$ 0.251, 6.857 \pm 0.256, 6.400 \pm 1.100 and 5.97 \pm 0.294 µg/g respectively, it were; 87.16 ± 2.485 , 86.48 ± 2.589 , 81.04 ± 5.695 and $73.18\pm 2.850 \ \mu g/g$ in (raw, grilled, marinated and simmered) chicken offal respectively. The iron concentration levels were; raw> grilling> marinating> simmering samples. It was cleared that the chicken samples had a significant effect (P>0.05) on the iron levels in the examined samples. Other investigators obtained the same results from chicken samples (Perelló et al., 2008; Diaconescu et al., 2012 and Adzitey et al., 2015).Bæch et al., (2002) observed that the cooking at high However Iron is an essential dietary element for humans and animals as it is an essential component of hemoglobin. Iron facilitates the oxidation of carbohydrate, proteins and fats to control body weight, exposure to high cooking temperature enhance thermal denaturation of nonheme iron structural changes of the meat the heme iron content of meat diminished by 50% at the highest cooking temperature. Low iron concentration level increases suitability to gastrointestinal infections, nose bleeding, and myocardial infarctions. Iron occurs as a natural constituent of all foods of plant and animal origin and may also be present in drinking water. The effects of toxic doses of iron in animals include depression, coma, convulsions respiratory failure and cardiac arrest. Postexamination of intoxicated animals revealed adverse effects on the gastrointestinal tract (Baech et al., 2003 and Al-Ashmawy, 2013). According to WHO (2010) the provisional tolerable daily intake for iron of 15 µg/kg body weight. The Egyptian Organization for Standardization and Quality Control (EOS, 2010) is set a permissible limit for cadmium residues in chicken meat and offal which must be not exceed than 15.0

00.33h

00.24ⁱ

 μ g/g for meat and 20.0 μ g/g for chicken offal. According to this limits, all examined samples (100%) were within the permissible limits and considered safe for human consumption.

Lead: The mean concentrations level for lead residues in meat, liver and gizzard samples presented in figure (4). The mean lead values in (raw, grilled, marinated and simmered) chicken meat samples were; 0.30 ± 0.195 , 0.25 ± 0.0155 , 0.18 ± 0.013 and $0.10\pm 0.010 \text{ }\mu\text{g/g}$ respectively and were; 0.45 ± 0.190 , 0.38 ± 0.0175 , 0.33 ± 0.0155 and $0.24 \pm 0.0135 \ \mu g/g$ in (raw, grilled, marinated and simmered) offal samples respectively. The lead concentration levels were; raw> grilling> marinating> simmering samples. It was cleared that the chicken samples had a significant effect (P>0.05) on the iron levels in the examined samples. Other investigators obtained the same results recorded from meat samples (Diaconescu et al., 2012 and Adzitey et al., 2015). However, Perelló, et. al., (2008) noticed that (Pb) not detected after all method of cooking. On the other hand, Morgan, (1999) stated that toxic metal reach to the food from many environmental sources such as; handling, preparation and cooking techniques or cooking water, he added that ordinary proper cooking of food, cannot decrease or leach absolutely the heavy metals. Lead has attendance to bio-accumulate in human tissues and organs mainly in the liver, gizzards and bones leading to several diseases. Absorbed lead in human body has biologic half-life in bone about 27 years (Hanaa et al., 2004 and Food Standards 2005). Lead encephalopathy in children due to lead toxicity characterized by irritability, ataxia, convulsion and altered state of consciousness, whereas lead toxicity in adults lead to neuropathy result in wrist and food drop (European Commission, 2001; Nishijo et al., 2002; Adekunle et al., 2003; Jarup, 2003 and Lidsky and Schneider, 2003). Other diseases as haemolytic anemia, atherosclerosis, liver apoptosis, renal toxicity and atrophy of the ovary may be occur (D'Mello, 2004; Johansen et al., 2004; Kocak et al., 2005; Regina et al., 2007; Itodo and Itodo, 2010 and Khalafalla et al., 2011). According to WHO (2010) the provisional tolerable daily intake for lead of 114 µg/kg body weight. The Egyptian Organization for Standardization and Quality Control (EOS, 2010) is set a permissible limit for lead residues in meat and offal which must be not exceed than 0.1 mg/kg for meat and 0.5 mg/kg for edible offal. According to this limits, all examined samples (100%) were within the permissible limits and considered safe for human consumption. This study concluded that the concentration of cadmium, copper, iron and lead residual recorded in chicken meat and edible offal, were below the permissible limits chicken samples while, were higher in offal, than chicken meat. Generally, properly cooking of chicken has limited reducing potency of heavy metals in food, depending on cooking (temperature, cooking medium and time). The best methods of cooking depending were; simmering, followed by marination while grilling has very mild or no effect on heavy metals. Purchase chicken from reputable sources, markets and grocers with a history of providing safe food to customers. More studies still needed to control environmental pollution in chicken meat and offals.

REFERENCES

Abd EI-Salam, N.M, Ahmad.S, Basir, A, Rais. A.K, Bib, A, Ullah, R, Shad, A.A, Muhammad, Z and Hussain, I. 2013. Distribution of heavy metals in the liver, kidney, heart, pancreas andmeat of cow, buffalo, goat, sheep and chicken from Kohat market. *Pakistan. Global Vet.*, 2: 280-284.

- Adekunle J., Ndahi J. and Owolabi D. 2003. Level of some hazardous trace metal and simulated blood lead from high way soil of South-West Nigeria. *International Journal on Environmental issue*, 1(1) 44-48.
- Aditya S. Gokhale and Raymond R. Mahoney, 2014. Cooking Chicken Breast Reduces Dialyzable Iron Resulting from Digestion of Muscle Proteins. *International Journal of Food Science*, (2014): 1-6. Puplishedonline: http://dx.doi.org/ 10.1155/2014/345751
- Adzitey F., Kumah A. and Bright S. 2015. Assessment of the Presence of Selected Heavy Metals and their Concentration Levels in Fresh and Grilled Beef/Guinea Fowl Meat in the Tamale Metropolis, Ghana. *Research Journal of Environmental Sciences*, 9: 15.
- Akan J., Abdulrahman F., Sodipo O. and Chiroma Y. 2010. Distribution of heavy metals in the liver, gizzard and meat of beef, mutton, caprine and chicken from KasuwanShanu market in Maiduguri Metropolis, Borno state, Nigeria. *Research Journal of applied sciences, engineering and technology*, 2(8) 743-748.
- Akesson J., Bergweff A. and Schloesser J. 2009. Food poisoning by clenbuterol in Porugal. Food Additives and *Contaminants Journal*, 22(6): 563-566.
- Al-Ashmawy M. 2013. Trace elements residues in the table eggs rolling in the Mansoura city markets Egypt. *International Food Research Journal*, 20 (4) 1783-1787.
- Ambushe, A. A, Hlongwane, M. M, McCrindle, R.I, and McCrindle, C.M.E. 2012. Assessment of Levels of V, Cr, Mn, Sr, Cd, Pb and U in Bovine Meat. S. Afr. J. Chem., 65, 159–164.
- Atiah R. 2011. Veterinary pharmacology and therapeutics. 18th ed., Iowa state press. USA, pp: 310-311.
- Badis, B., Rachid, Z. and Esma, B. 2014. Levels of selected heavy metals in fresh meat from cattle, sheep, chicken and camel produced in Algeria. *Ann. Res. Rev. in Bio.*, 4: 1260-1267.
- Bæch B.S., Hansen, M., Bukhave, K., Kristensen, L., Jensen, M., Sørensen, S.S., Purslow, P.P., Skibsted, H.L. and Sandstro, B. 2002. Increasing the Cooking Temperature of Meat Does Not Affect Nonheme Iron Absorption from a Phytate-Rich Meal in Women. *The journal of nutrition*, 93-97.
- Baech S., Hansen M. and Bukhave K. 2003. Increasing the cooking temperature of meat does not affect non heme iron absorption from a phytate-rich meal in women, *Journal of Nutrition*, 133:94-97.
- Bala A., Suleiman N., Junaidu A. U., Salihu M. D., Ifende V. I., Saulawa M.A., Magaji A. A., Faleke. O. O. and Anzaku S. A. 2013. Detection of Lead (Pb), Cadmium (Cd), Chromium (Cr) Nickel (Ni) and Magnesium Residue in Kidney and Liver of Slaughtered Cattle in Sokoto Central Abattoir, Sokoto State, Nigeria. *Int. J. of Livestock Research*, 3:77-81.
- Brito G., Diaz C., Galindo L., Hardisson A., Santiago D., Montelongo F. 2005. Levels of metals in canned meat products: Intermetallic correlations. Bull. Environmetcontam. Toxicol., 44 (2) 309-316.
- Chelebi N., Bazzaz J., Yakub N., Bazzaz A. and Hammad G. 2015. Heavy metals residues in frozen chicken meat consumed within Erbil province. *Merit Research Journal of Medicine and Medical Sciences*, Vol. 3(11) pp. 517-520.
- Cunningham WP and Saigo BW, 1997. Environmental science, a global concern, 4th edn. WMC Brown Publisher, New York.

- D'Mello J. P. 2004. Contaminants and toxins in animal feeds; In: Assessing quality and safety of animal feeds. FAO Animal Production and Health 160. Food Agricultural Organization of the United Nations, Rome, Italy. Pp. 107-128.
- Diaconescu C., Urdes L., Diaconescu S. and Popa D. 2012.Effects of cooking methods on the heavy metal concentrations in the fish meat originating from different areas of Danube river. Published in Scientific Papers. Series D. Animal Science, Vol. LV.
- EC (European Commission) (2002) Commission regulation (EC) No. 221/2002 of 6 Feb 2002 amending regulation (EC) No. 466/2001 setting maximum levels for certain contaminants in foodstuffs. *Off J EurCommun.*, L 37/4.
- Encyclopedia 2016.Marination, Simmering, Grilling; Online; https://en.wikipedia.org/wiki/Marination
- EOS, 2010. Egyptian Organization for Standardization and Quality Control. Maximum level for certain contaminants in food stuffs. ES No. 7136/2010.
- European Commission (EC), 2001.Commission regulation No. 466/2001. Setting of maximum limits for certain contaminants in foodstuffs. Off. J. L77,16/03/01.
- Farag, H. 2002. Assessment of some heavy metals in the edible offal and public health significance. Ph.D thesis of Vet. Sci. Suez Canal Univ. *Fac. Of Vet. Med.*, Egypt.
- Faten S., Hassan M., Amira M. and Enas A. 2014. Heavy metals residues in some chicken meat products. *Benha veterinary medical journal*, 27 (2) 256-263.
- Food Standards Australia New Zealand 2005. Scientific assessment of the public health and safety of chicken meat in Australia., Attachment 3.
- Gharaibeh, A. 1993. Toxic effect of metals. In journal Doull, C.D. klassen and M.O. Amdur (eds), Casarett and Doulls Toxicology: The basic science of poisons, Macmillan, New York.
- GraphPad Instant 2009. GraphPad Instant Software, Inc.
- Hamasalim H. and Mohammed H. 2013.Determination of heavy metals in exposed corned beef and chicken luncheon that sold in Sulaymaniah markets. *Academic journal*, 7 (7) 178-182.
- Hanaa M., Sohair R. and BRR A. 2004. Detection of some heavy metal residues in muscles, livers and gizzards of slaughtered ostrich, broilers and rabbits. *Journal Egypt. Vet. Med. Assoc.*, 64(6) 203-213.
- Hassanin FS, Hassan MA, Mohmoud AM, Mohamed EA. 2014. Heavy metal residue in some chicken meat products. *Benha Vet. Medical journal*, 27(2): 256-263.
- Itodo A. and Itodo H. 2010. Quantitative specification of potentially toxic metals in expired canned food. *Journal of Nature and Science*, 8 (4) 54-58.
- Jarup, L. 2003. Hazards of heavy metals contamination. *Brit. Med. Bull.*, 68: 167-182.
- Johansen P., Asmund G. and Riget F. 2004. High human exposure to lead through consumption of meat products. *Environment Pollution*, 127: 125-129.
- Khalafalla A., Fatma H., Schwagele F. and Mariam A. 2011. Heavy metal residues in beef carcasses in Beni-Suef abattoir, Egypt. VeterinariaItaliana, 47(3) 351-361.
- Khalafalla F.A, Abdel-Atty N. S., Mariam A. Abd-El-Wahab, Omima, I.Ali and Rofaida B. Abo-Elsoud. 2015. Assessment of heavy metal residues in retail meat and offals. *Journal of American Science*, 11(5):50-54. http:// www.jofamericanscience.org.

- Khalafalla, F.A., Fatma H. M. Ali1; Hassan, A.H.A. and Basta, SE. 2016. Residues of lead, cadmium, mercury and tin in canned meat products from Egypt: an emphasis on permissible limits and sources of contamination. *J. Verbr. Lebensm*, 11:137–143.
- Kocak S., Tokusoglu O. and Aycan S. 2005. Some heavy metals and trace essential detection in canned vegetable foodstuff by differential pulse polarography. *Elect. Journal of Environment and Agriculture Field Chemistry*, 4: 871-878.
- Lidsky I. and Schneider K. 2003. Lead neurotoxicity in children basic mechanisms and clinical correlates. *Brain*. 126: 5-19.
- Morgan JN, 1999. Effects of processing on heavy metal content of foods. AdvExp Med Biol 459:195–211.
- Morshdy M. 2010. Some heavy metal residues in chicken. Zagzig Veterinary Journal, 36 (2) 155-178.
- Nasef E. and Hamouda A. 2008. Residues of lead, cadmium, mercury and tin in some canned fish products sold in markets of Damietta governorate. *Journal Egypt. Vet. Med. Assoc.*, 68(4) 267-280.
- Nishijo C., Preston R. and Waddell J. 2002. Does the use of antibiotic pose a risk to human? A critical review of published data. *Journal Antimicrobial Chemotherapy*, 53: 28-52.
- Nnaji J., Uzairu A., Harrison S. and Balrabe M. 2007. Evaluation of cadmium, chromium, copper, lead and zinc concentrations in the fish head/viscera of *Oreochromisnilotcus* and synodontisschall of river galma, zaria, Nigeria. Ejeafche, 6(10): 2420-2426.
- Perelló G., Martí-Cid R., Llobet J. andDomingo L. 2008. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. *Journal of Agriculture of Food Chemistry*, 2008 Dec 10;56(23): 11262-9.
- RajaganapathyV., Xavier F., Sreekumar D. and Mandal K. 2010. Heavy Metal Contamination in Soil, Water and Fodder and their Presence in Livestock and Products: A Review. *Journal of Environmental Science and Technology*, 4: 234-249.
- Regina A., Batista M., Nascentes C. and Bento S. 2007. Direct determination of molybdenum in milk and infant food samples using slurry sampling and graphite furnace atomic absorption spectrometry. *Food analytical methods*, 4 (1) 41-48.
- Schonfeldt, H.C. and Gibson, N. 2008. Changes in the nutrient quality of meat in an obesity context; *Meat Science*, 80: 20-27.
- Tyokumbur, E.T. 2016. Evaluation of cadmium (cd) in domestic chicken meat and offal and associated health risk assessment in ibadan. *International Journal of Pure and Applied Zoology*, 4 (2): 203-209.
- WHO, 1992. Cadmium. In: Environmental health criteria, vol 134. World Health Organization, Geneva.
- World Health Organization 2010. Preventing disease through healthy environments, exposure to cadmium: a major public health concern: Geneva, Switzerland.
- Ziarati P., Rabizadeh H., Mousavi Z., Asgarpanah J. and Azariun A. 2013. The Effect of cooking method in Potassium, lead and Cadmium Contents in Commonly Consumed packaged mushroom (Agaricusbisporus) in Iran. International Journal of Farming and Allied Sciences Available online at www.ijfas.