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INTRODUCTION 
 
HBV affects millions of people worldwide each 
annually. For instance, in Africa it is estimated that annually 400,000 cases happen and an incidence of 50 per 100,000 (
2006). The mathematical modeling for transmissio
syndrome the population and the foundation, 
transmission of disease itemsin a social population, established the Kermack and McKendrick SIR classical epidemic model 
(Allen, 1994; Nowak, 1996; Guidotti, 1996; Zhang, 2003
advancement of infested nodes in a popula
Organization, 2015). Now we construct an unreservedly convergent to the numerical model for the transmission dynamics for 
HBV which conserves all the critical assets of the incessant 

 
MATHEMATICAL MODEL 
 
Variables and Parameters 
 
x(t):Susceptible entitiesclass at time t. 
y(t):Infected individuals classat time t. 
v(t):Recover individuals classat time t. 

�: Uninfected target cell. 
�1(�):Natural death rate.  

���:Infected target rate. 

��: Death rate. 

��:Rate of treatment. 

��:Disease induced mortality rate. 
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ABSTRACT 

Numerical modeling of communicable disease is a device to appreciate the instrumentin what 
waysyndrome pushovers and in what waystately. we have studied numerically th
We frame an entirelyconstant Non-Standard Finite Difference (NSFD) structurefor a mathematical 
model of HBV. The introduce numerical array is bounded, dynamically designate and contain the 
positivity of the solution, which is one of the important requirements when modeling a prevalent 
contagious. The comparison between the innovative Non-Standard Finite Alteration structure, Euler 
method and Runge-Kutta scheme of order four (RK-4) displays the usefulness of the suggested Non
Standard Finite Alteration scheme. NSFD scheme shows convergence to the exact equilibrium facts 
of the model for any time steps used but Euler and RK-4 fail for large time steps.
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HBV affects millions of people worldwide each year, where over 40 million cases are reported and kills approximately 600,000 
annually. For instance, in Africa it is estimated that annually 400,000 cases happen and an incidence of 50 per 100,000 (
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Fig.1. PSIT Hepatitis B Virus Disease Model 
 

The Scheme of Nonlinear Differential Equations(DE)on behalf of the Typicalremainsspecifiedby: 
 

�′ = � − �1 − ��� 

�′ = ��� − �� 
�′ = �� − �� (1) 
 
Analysis of the Model: We describe two equilibrium points of system i.eDisease free equilibrium(DFE) and Endemic 
equilibrium(EE).  
 

ℰ� = (
�

�����
,0,0) andℰ� = (�∗,�∗,�∗) are stabilityfacts of scheme (1), where 

 

�∗ =
�

�� + ��
 

�∗ =
���

�(�� + ��)
 

�∗ =
����

��(�� + ��)
 

 

Where �0 = �(�+ �−��)

(�+ μ)(�+ �+ μ)
 

 
�0 recognized as Procreative integer who describes the usual number of inferior impurities introduced of the main impurity. ℛ 0is 
a beginning influence who describe the disease of the exit or persist? Ifℛ 0 < 1  �ℎ�� we say that the scheme will observed 
disease Free Equilibrium (DFE) and iffℛ 0 1 the scheme toinvolvementEndemic Equilibrium (EE).  
 

Numerical Modeling: Now we have conferred two standard finite difference structures to unravel the endless dynamical scheme 
(1) i.e. Euler’s Method and Runge-Kutta Method of Order 4. 
 
Euler Method 
 
The Forward Euler’s Structure for the unceasing model (1) certain through: 
 

��+ 1 = �� + ℎ{� − �1 − ����} 

��+ 1 = �
�

+ ℎ{���� − ���} 

��+ 1 = �� + ℎ{��� − ���} 
 
Now solve numerical tryouts by expending the values of given parameters Table 1 (6). 
 

Table 1 
 

Parameters Values 
 DFE EE 

�� 0.00379 0.8 
� 0.00379 0.0044 
� 0.67 10 

� � 9 0.1 

�  0 0.005 
� 0.982 0.9 

 
 

 

4782                                           Anmole Razzaq, Numerical Modeling for Transmission Dynamics of Hepatitis B Virus Disease 
 



 
 

Fig. 2. Euler Method (DFE), � = � Fig.3. Euler Method (DFE), � = � 

  
Fig.4. Euler Method (EE), � = � Fig.5. Euler Method (EE), � = � 

  

 
 

Fig.6RK-4 Method (DFE), � = ��� Fig.7RK-4 Method (DFE), � = � 

  

Fig.8. RK-4 Method (EE), � = ��� Fig.9. RK-4 Method (EE), � = � 
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Fourth Order Runge-Kutta Scheme 
 
For Stage-1  
 
� 1 = ℎ(� − �1 − ����) 

�1 = ℎ[���� − ���] 
�1 = ℎ[��� − ���] 
 
For Stage-2  
 

�� = ℎ(� − �� − ��(�� +
��

2
)) 

�� = ℎ(��(�� +
��

2
) − �(�� +

��

2
)) 

�� = ℎ ��(�� +
��

2
) − �(�� +

��

2
)� 

 
For Stage-3  
 

�� = ℎ(� − �� − ��(�� +
��

2
)) 

�� = ℎ(��(�� +
��

2
) − �(�� +

��

2
)) 

�� = ℎ ��(�� +
��

2
) − �(�� +

��

2
)� 

 
For Stage-4  
 

�� = ℎ(� − �� − ��(�� +
��

2
)) 

�� = ℎ(��(�� +
��

2
) − �(�� +

��

2
)) 

�� = ℎ ��(�� +
��

2
) − �(�� +

��

2
)� 

 
Finally 
 

���� = �� +
1

6
[�� + 2�� + 2�� + ��] 

���� = �� +
1

6
(�� + 2�� + 2�� + ��) 

���� =  �� +
�

�
[��  + 2��  + 2��  + ��] (4) 

 
Non-standard Finite DIFFERENCE MODEL: Now we show an unreservedly convergent non-standard finite difference(NSFD) 
numerical model which be there describe on non-standard finite difference modeling concept introduced by Micken’s(Guidotti, 
1999).Now show the covergenence scrutiny of the suggestedstructure.The NSFD model for the incessant dynamical system is 
given by: 

 

���� =
�����

���������� 

���� =
���������

����
 

���� =
�������

����
 

 

Convergence  Analysis of NSFD Scheme 
 

Let us define  
 

� =
� + ℎ�

1 + ℎ�� + ℎ��
 

� =
� + ℎ���

1 + ℎ�
 

� =
� + ℎ��

1 + ℎ�
 

 

Now the Jacobian Matrix is given by  
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At DiseaseFree Equilibrium ℰ� = (
�

�����
,0,0) 

 

At Endemic Equilibrium ℰ� = (
�

�����
,

���
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,

����

��(�����)
) 

 

�∗(ℰ�) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

1 + ℎ�� + ℎ��
0

ℎ��

1 + ℎ�

1

1 + ℎ�

0
ℎ��

1 + ℎ�

0
ℎ�

1 + ℎ�

1

1 + ℎ�⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

 

There are the following eigen values of above jacobian matrix is: 
 

�� =
1

1 + ℎ�� + ℎ��
< 1 

�� =
1

1 + ℎ�
< 1 

�� =
1

1 + ℎ�
< 1 

Lemma3.1[12] 

For the quadratic equation�� –  �� +  � =  0 , |��|  <  1,� =  1,2; iff the  following conditions are satisfied: 

(1)    1 –  � +  � >  0 
(2)    1 +  � +  � >  0 
(3)     � <  1 

 
Numerical Experiments 
 

 

 
Fig.10. NSFD Method (DFE), � = �� 

 

 

Fig.11. NSFD Method (DFE), � = ���� 
 

  
 

Fig.12. NSFD Method (EE), � = �� 
Fig.13. NSFD Method (EE), � = ���� 
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Fig.14. Comparison (DFE), h=1 Fig.15. Comparison (DFE), h=2 

  
Fig.16.Comparison (DFE), h=4 Fig.17.Comparison (EE), h=1 

  
Fig.18 comparison (EE), h=1.75 Fig.19 comparison (EE), h=1.5 

 

RESULTS AND DISCUSSION 
 
The model of transmission dynamics of Hepatitis B virus disease consumes introduced expending PSITModel. (i.e Threatened, 
Susceptible, Infected and Treated). The constancy of solid positions i.e the Disease free equilibrium(DFE) and Endemic 
equilibrium facts(EE)deliberated numerically. We describe an unqualifiedlyconstant Non-Standard Finite Difference (NSFD) 
structure aimed at the incessant dynamical system.The suggestedstructureexistsdynamical consistant, numerically steady and holds 
all the authentic assets of the incessant model. The outcomesequaled well known standard finite difference schemes i.e Euler’s and 
Runge-Kutta method of order 4 (RK-4). The Euler and RK-4 are provisionally convergent and diverge of the assured ethics of step 
size ‘h’ while the constructedNSFD scheme for every assessment usedto residues convergent. 
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