
 

        
 

 
                                                  
 

 

REVIEW ARTICLE
 

A STUDY ON PERIODIC AND OSCILLATORY PROBLEMS USING SINGLE
HAAR WAVELET SERIES

 
1Sekar, S* and 2Paramanathan

 

 

1Department of Mathematics, A.V.C. College (Autonomous), Mannampandal, 
Mayiladuthurai – 609 305,   Tamil Nadu, India.

2Department of Science and Humanities, A.V.C. College of Engineering, Mannampandal, 
Mayiladuthurai – 609 305,   Tamil Nadu, 
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In this paper, the Single
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implemented in a digital computer and the solution 
any length of time. 
 
 
 

 

 
 

 

 

 

INTRODUCTION 
 

Runge–Kutta (RK) methods are being applied to 
determine numerical solutions for the problems, 
which are modeled as Initial Value Problems 
(IVP’s) involving differential equations that arise 
in the fields of science and engineering by 
Alexander and Coyle (1990), Evans (1991), Evans 
and Yaakub (1998), Lambert (1991), Murugesan et 
al. (2004), Shampine (1994) and Yaakub and 
Evans (1999). 
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solve differential equations
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, the Single-Term Haar Wavelet series (STHW) is used to 
study the periodic and oscillatory problems. Results obtained using 

and classical fourth order Runge-Kutta (RK) methods are 
compared with the exact solutions of the periodic and oscillatory 

. The results obtained using STHW are found to be very closer 
to the exact solutions of these problems. Further, it is found that the 

is superior when compared to RK method. Error graphs for the 
 and exact solutions are presented in a graphical form to 

the efficiency of this method.  This STHW can be easily 
implemented in a digital computer and the solution may be obtained for 
any length of time.  

 
 
Though the RK method had been introduced at the 
turn of the 20th century, research in this area is still 
very active and its applications are enormous. This 
is because of its nature of extending accuracy in the  
determination of approximate solutions and its 
flexibility. Runge-Kutta methods have become 
very popular, both as computational techniques as 
well as subject for research, which were discussed 
by Shampine (1994). This method was derived by 
Runge about the year 1894 and extended by Kutta 
a few years later. They developed algorithms to 
solve differential equations efficiently and yet are 
the equivalent of approximating the exact solutions 
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by matching ‘n’ terms of the Taylor series 
expansion. Runge –Kutta (RK) algorithms have 
always been considered superb tools for the 
numerical integration of Ordinary Differential 
Equations (ODE’s). The fact that RK methods are 
self-starting, easy to program, and show extreme 
accuracy and versatility in ODE problems has led 
to their continuous analysis and use in simulation 
of mathematical research. One of the most exciting 
developments in RK usage has been the discoveries 
that by judicious re-arrangement of interim values 
of the RK predictor’s one can obtain a second 
predictor of one order less. These two equations are 
generally referred to as an RK pair. Fehlberg 
(1970) was among the first to suggest on 
theoretical grounds that the difference between the 
two predictors would be directly proportional to the 
Local Truncation Error (LTE).  
 
     The unusual success of the Fehlberg approach 
was addressed in the popular text by Forsythe et al. 
(1977) and cited as the “state of the art” of RK 
code. The LTE is then used as a test to see whether 
a step has been successful, and if not, the step size 
is reduced (usually halved) until the LTE passes 
the tolerance requirement. The beauty of the RK 
pair is that it requires no extra function evaluations, 
which is the most time consuming aspect of all 
ODE solvers. This breakthrough initiated a search 
for RK algorithms of higher and higher order for 
better error estimates. Nandhakumar et al. (2009) 
introduce Haar Wavelet Series to numerical 
investigation of an industrial robot arm control 
problem. Sekar et al. (2009a; 2009b) introduced the 
STHW to study the nonlinear singular systems and 
second order mechanical vibratory systems. In this 
paper, we introduce the STHW to study the 
periodic and oscillatory problems with more 
accuracy for stability, convergence and error 
analysis. This paper is organized as follows: In 
Section 2, we describe the STHW. Section 3 is 
presented to oscillatory problems taken from the 
real world applications and the results of 
oscillatory problems are presented using STHW. 
 

2. STHW Technique 
 

The orthogonal set of Haar wavelets  thi  is a 

group of square waves with magnitude of 1 in 

some intervals and zeros elsewhere Sekar et al. 
(2009a; 2009b). 
 
In general,  
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Namely, each Haar wavelet contains one and just 
one square wave, and is zero elsewhere. Just these 
zeros make Haar wavelets to be local and very 
useful in solving stiff systems.  Any function y(t), 
which is square integrable in the interval [0,1]. Can 
be expanded in a Haar series with an infinite 
number of terms 
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are determined such that the following integral 
square error  is minimized:  
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Usually, the series expansion Eq. (1) contains an 
infinite number of terms for a smooth y(t). If y(t) is 
a piecewise constant or may be approximated as a 
piecewise constant, then the sum in Eq. (1) will be 
terminated after m terms, that is  
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 Table 1. Results for the inhomogeneous equation at various values of “
 

 
S.No 

 
Time 

 Results
Exact 
Solutions  

RK 
Solutions 

1 0 1.0000000 1.0000000 
2 0.1 1.4816067 1.4817067 
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where “T” indicates transposition, the subscript m 
in the parantheses denotes their dimensions. The 
integration of Haar wavelets can be expandable 
into Haar series with Haar coefficient matrix P[3].  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

              1,0, tthPdh mmmm   

 
 Table 3. Results for an orbit problem at various values of 

 

S.No Time 
Results for

Exact 
Solutions  

RK 
Solutions 

1 0 1.0000000 1.0000000 
2 0.1 0.9950091 0.9950092 
3 0.2 0.9800864 0.9800865 
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where the m-square matrix P is called the 
operational matrix of integration and single-term 

 
2

1
11 P . Let us define from Sekar et al. (2009a; 

2009b). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                 

           tMthth mm
T
mm  ,                   

 (3) 

and      .011 thtM   Eq.(3) satisfies    

           ,thCctM mmmmmm    

 Table 5.  Results for an orbit problem at various values of “
 

S.No Time 
Results for

Exact 
Solutions  

RK 
Solutions 

1 0 1.0000000 1.0000000 
2 0.1 1.0947928 1.0947929 
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where  mc  is defined in Eq.(2)  

and   011 cC  .   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Numerical simulation of periodic and 
oscillatory problems 
  
In this section, we introduce the STHW to four 
problems discussed by Simos and Aguiar (2001).  
 Table 7.  Results for two-body problem at various values of “

 

S.No Time 
Results for

Exact 
Solutions  

RK 
Solutions 

RK 
Error

1 0 0.0000000 0.0000000 
2 0.1 0.0998334 0.0998334 
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Fig. 1. Error graph for “x” at various time intervals 

 

 

 
 

Fig. 2. Error graph for “x” at various time intervals 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3. Error graph for “u” at various time intervals 
(orbit problem) 

 
 

Fig. 4. Error graph for “v” at various time intervals 
(orbit problem) 
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Fig. 5. Error graph for “z” at various time intervals 

 

 
 

Fig. 6. Error graph for “y” at various time intervals 
 

 
 

Fig. 7. Error graph for “z” at various time intervals 
 
The first one is an inhomogeneous problem, the 
second is the nonlinear undamped Duffing’s 
equation, the third is the ‘almost’ periodic orbit 
problem and finally the fourth one is the well-
known two-body problem. 
3.1. Inhomogeneous equation. 
 

Consider the following problem  

xyy sin99100    with initial condition 

  10 y  and   110 y                            (4)                                  

Whose analytical solution is  

  .sin10sin10cos xxxxy            (5)   

 
Equation (4) has been solved numerically using the 
RK method and STHW and the obtained results 
(with step size time = 0.1) along with the exact 
solutions (from equation (5)) are presented in 
Table-1 along with absolute errors calculated 
between them. A graphical representation is shown 
for the inhomogeneous equation in Figure 1, using 
three-dimensional effects. This result reveals the 
superiority of the STHW with less complexity in 
implementation and at the same time the error 
reduction is 1000 times less than the RK method. 

 
3.2. Duffing’s equation. 
Consider the nonlinear undamped Duffing equation 

 xByyy cos3                               (6) 

Where B = 0.002 and 01.1 . The analytical 
solution of the above equation is given by                

    


 
3

0
12 12cos

i
i xiAxy                     (7) 

where ,362001794775.01 A

,10246946143.0 3
3

A
6

5 10304016.0 A and .10374.0 9
7

A  

Equation (5) has been solved numerically with 
boundary conditions of the form  

  ,0 7531 AAAAy     00 y  

 
     The results obtained (with step size time = 1) 
using the STHW and the RK methods along with 
exact solutions(from eqn (7)) and absolute errors 
between them are calculated and are presented in 
Table-2. A graphical representation is given for 
Duffing’s equation in Figure 2, using three-
dimensional effect. It is inferred that, the STHW 
gives better solution for the non-linear undamped 
Duffing’s equation when compared to RK method. 
3.3. An orbit problem. 
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Consider the following ‘almost’ periodic orbit 
problem studied by Stiefel and Bettis (1969).  

,001.0 ixezz     ,10 z  

  ,9995.00 iz   ,Cz                                  (8) 

Whose analytical solution is given by 

     ,xivxuxz   Rvu ,  

  ,sin0005.0cos xxxxu   

  .cos0005.0sin xxxxv                         (9) 

The true solution in equation (9) represents the 
motion on a perturbation of a circular orbit in the 
complex plane. Re-writing the equation (8) in the 
following equivalent form 

,cos001.0 xuu      ,10 u    ,00 u  

,sin001.0 xvv       ,00 v

  ,9995.00 v                                               (10) 

 
     Equation (10) has been solved numerically 
using the RK method and the STHW. The obtained 
results (with step size time = 0.1) along with exact 
solutions (from equation (9)) and the absolute 
errors between them are calculated and are 
presented in Table-3. A graphical representation is 
presented for the orbit problem in figures 3-5, 
using three-dimensional effect.  From Tables 3-5 
and the error graphs 3-5 reveals that STHW works 
well (with out any error) when compared to RK 
method, which yields a little error.  
     
3.4. Two-body problem. 
 
Consider the system of coupled differential 
equations, which is well known as two-body 
problem 

 
,

2/322 zy

y
y


  

 
,

2/322 zy

z
z




  ,10 y   ,00 y   ,00 z   10 z           

    (11) 
whose analytical solution is given by 

   ,cos xxy       xxz sin                      (12) 

 
     The above system of equation (11) has been 
solved numerically using the RK method and 
STHW. The obtained results (with step size time = 
0.1) along with exact solutions (from equation 

(12)) and absolute errors between them are 
calculated and are presented in Table-6 and 7. A 
graphical representation is given for the two-body 
problem in figures 6 and 7, using three-
dimensional effect. 
 
Conclusion  
 
The obtained results of the periodic and oscillatory 
problems using STHW is very closer to these exact 
solutions of the problem when compared to the RK 
method. From the tables 1-7, one can observe that 
for most of the time intervals, the absolute error is 
less in STHW when compared to the RK method 
which yields a little error, along with the exact 
solutions. From figures 1-7, one can predict that 
the error is very less in STHW when compared to 
the RK method and especially STHW works well 
for the orbit problem and the two body problem. 
Hence, the STHW is more suitable for studying the 
periodic and oscillatory problems and especially it 
is recommended for the problems of orbit and two-
body problems. 
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