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previous year batting average, two composite estimators that we mentioned, the Bayes estimators 
using either noninformative or informative prior distribution. We use about 370 more times at batting 
average was taken as the true value. Since the true values are assumed to be known, we can compute 
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Overall sample proportion: Gelman (1995) considered the problem of predicting the batting averages of all 18 players for the 

entire 1970 season, and added their career batting averages up to the 1969 season, , and the number of previous times at bat for 

each player, , We calculate the sum of the products as follow:  and overall sample proportion 

.  (2.1) 

 
Synthetic Estimation: Gonzales(1973) describes synthetic estimates as follows: An unbiased estimate is obtained from a sample 
survey for a large area; when this estimate is used to derive estimates for subareas under the assumption that the small areas have 
the same characteristics as the large area, we identify these estimates as synthetic estimates. In 1968, the National Institute for 
Health first used synthetic methods to estimate state long and short-term disabilities from the National Health interview survey 
data. Using synthetic estimation usually has the following advantages. It is simple and intuitive. It could apply to general sampling 
designs. It could borrow strength from similar events. It will provide estimates for area with no sample from the sample survey. 
For the current application, we use the previous year’s batting average, i.e. 
 

  (2.2) 

 
Two composite estimators: The reason to use composite estimator is to balance the potential bias of the synthetic estimator 
against the instability of the design based direct estimator. 
 

  where  direct estimator for the ith small area  synthetic estimator for the ith small 

area.  suitably chosen weight, .  

Our next objective is aim the optimal  subject to minimize with respect to  We assume that 
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In above derivation, we used 
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  is usually very unstable. Applying the above theory to our baseball data, we could obtain two more composite estimators as 

follow: 
 

 direct design based estimator, sample proportion     =0.265389;     

 Overall sample proportion, synthetic estimator     =0.2761; 

 A synthetic estimator using the previous hatting     Average = 0.25356; 

 

  

       

 
D1) 1st composite estimator is 
 

         

 
(D2) 2nd composite estimator is 
 

     

 
The Bayes estimator using uniform prior, noninformative prior, on the true proportion. There has been a desire for prior 
distributions that can be guaranteed to play a minimal role in the posterior distribution. Such distributions are sometimes called 
“reference prior distribution,” and the prior density is described as vague, flat, diffuse or no ninformative. The rationale for using 
noninformative prior distributions is often said to be to let the data speak for themselves, so that inferences are unaffected by 
information external to the current data. In the current case, we may assume prior density as Beta distribution.  
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the posterior mean in the composite estimator form as follows: 
 

 

Suppose we choose  then  
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  (3.1) 

 
 
 Average Square deviation (ASD) 

   (3.2) 

Average ratio square deviation (ARSD) 
 

     (3.3) 

 
Absolute values average deviation (AAD) 
 

     (3.4) 

 
Absolute values ratio average deviation (ARAD) 
 

      (3.5) 

 
Criterion (3.1) is useful to us. If we assume the data  

came from the normal distribution then the numerator and denominator sum square of deviation from the mean has both 
2
( 1)n   

distribution. This leads to the ratio has F distribution. We have the table values for this probability distribution. We prefer criterion 
(3.1) than others. However, the other four criterions still useful for a good reference for comparison purposes.                                                          
 
Summary 

 
 

Concluding Remarks: Using the R-Criterion, we can compare the James-Stein estimator, 3.50091, with our best competitor, 
overall sample proportion estimator, 2.85182, and next one, previous year batting average estimator, 2.82032. Their deviations are 
mild. If we apply(3.4), absolute value average deviation, we found the difference between these estimators are 0.00337 and 
0.00517. In percent, it has only 0.337% and 0.517%. We can conclude that the James-Stein estimator is even better than 
summarize overall past experiences together to get the best estimator.  
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Or superior to use previous year experience. If we use the same criterions and apply to model (2.3) and (2.4), the results are poor 
due to the R-values are small and the deviations are large. This result is not surprising as we already pointed out that the unstable 

weight value of   would cause this. Compare this with the Bayes estimator, model [2.5] and [2.6], the R-value for this model is 

close to 1. We can conclude that these estimators have similar efficiency as direct estimators but with smaller absolute average 
deviation. Based on these evaluations we recommend use these two models, models [2.5] and [2.6], as our selected models. While 
the model [2.7] or [2.8] will be less interest if the same criterions used. This causes by composite estimators have heavier weight 
on direct estimator side. For other criterions, average square deviation [3.2], and average ratio square deviation [3.3], are 
consistent with the other criterion. The difference between James-Stein estimator and model [2.1], [2.2] are not significant, while 
with model [2.5] and [2.6] are larger. The “James-Stein estimator” is much superior to other estimators. From table 1, we can 
clearly see that compromised  
J-S estimator is the best.  
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APPENDIX 
 

player   pi_hat  true p J-S   est c J-S  est    X1    X2    x1*x2 
Clemente  0.4 0.346 0.293 0.334 0.314 8142 2556.588 
Robinson    0.378 0.298 0.289 0.312 0.303 7542 2285.226 
Howard   0.356 0.276 0.284 0.29 0.256 86 22.016 
Johnston   0.333 0.221 0.279 0.279 0.25 2065 516.25 
Berry   0.311 0.273 0.275 0.275 0.275 4826 1327.15 
Spencer   0.311 0.27 0.275 0.275 0.264 3210 847.44 
Kessinge   0.289 0.263 0.27 0.27 0.246 2244 552.024 
Alvarado   0.267 0.21 0.265 0.265 0.244 454 110.776 
Santo 0.244 0.269 0.261 0.261 0.281 5658 1589.898 
Swoboda 0.244 0.23 0.261 0.261 0.248 2753 682.744 
Unser 0.222 0.264 0.256 0.256 0.255 2281 581.655 
Williams 0.222 0.256 0.256 0.256 0.257 1216 312.512 
Scott 0.222 0.304 0.256 0.256 0.271 888 240.648 
Petrocel 0.222 0.264 0.256 0.256 0.255 1139 290.445 
Rodriguez 0.222 0.226 0.256 0.256 0.244 1967 479.948 
Campaneris     0.2 0.285 0.251 0.251 0.234 291 68.094 
Munson 0.178 0.319 0.247 0.243 0.118 51 6.018 
Alvis 0.156 0.2 0.242 0.221 0.249 3514 874.986 

 
    Overall 
 Model [2.1] 

Previous 
 Model  [2.2] 

Model 
[2.3] 

 Model  
 [2.4] 

  Model 
  [2.5] 

   Model 
   [2.6] 

      Model 
[2.7] 

Model 
[2.8] 

0.2761 0.2536 1.2776 1.1683 0.40426 0.413 0.462 0.45 
0.2761 0.2536 1.2776       1.1683 0.38319 0.39386 0.45474 0.439 
0.2761 0.2536 1.2776 1.1683 0.36213 0.37472 0.44748 0.428 
0.2761 0.2536 1.2776 1.1683 0.34011 0.35471 0.43989 0.4165 
0.2761 0.2536 1.2776 1.1683 0.31905 0.33557 0.43263 0.4055 
0.2761 0.2536 1.2776 1.1683 0.31905 0.33557 0.43263 0.4055 
0.2761 0.2536 1.2776 1.1683 0.29798 0.31643 0.42537 0.3945 
0.2761 0.2536 1.2776 1.1683 0.27692 0.29729 0.41811 0.3835 
0.2761 0.2536 1.2776 1.1683 0.25490 0.27728 0.41052 0.372 
0.2761 0.2536 1.2776 1.1683 0.25490 0.27728 0.41052 0.372 
0.2761 0.2536 1.2776 1.1683 0.23384 0.25814 0.40326 0.361 
0.2761 0.2536 1.2776 1.1683 0.23384 0.25814 0.40326 0.361 
0.2761 0.2536 1.2776 1.1683 0.23384 0.25814 0.40326 0.361 
0.2761 0.2536 1.2776 1.1683 0.23384 0.25814 0.40326 0.361 
0.2761 0.2536 1.2776 1.1683 0.23384 0.25814 0.40326 0.361 
0.2761 0.2536 1.2776 1.1683 0.21278 0.239 0.396 0.35 
0.2761 0.2536 1.2776 1.1683 0.19171 0.21986 0.38874 0.339 
0.2761 0.2536 1.2776 1.1683 0.17065 0.20072 0.38148 0.328 
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